1
|
Corti A, Colombo M, Migliavacca F, Rodriguez Matas JF, Casarin S, Chiastra C. Multiscale Computational Modeling of Vascular Adaptation: A Systems Biology Approach Using Agent-Based Models. Front Bioeng Biotechnol 2021; 9:744560. [PMID: 34796166 PMCID: PMC8593007 DOI: 10.3389/fbioe.2021.744560] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
The widespread incidence of cardiovascular diseases and associated mortality and morbidity, along with the advent of powerful computational resources, have fostered an extensive research in computational modeling of vascular pathophysiology field and promoted in-silico models as a support for biomedical research. Given the multiscale nature of biological systems, the integration of phenomena at different spatial and temporal scales has emerged to be essential in capturing mechanobiological mechanisms underlying vascular adaptation processes. In this regard, agent-based models have demonstrated to successfully embed the systems biology principles and capture the emergent behavior of cellular systems under different pathophysiological conditions. Furthermore, through their modular structure, agent-based models are suitable to be integrated with continuum-based models within a multiscale framework that can link the molecular pathways to the cell and tissue levels. This can allow improving existing therapies and/or developing new therapeutic strategies. The present review examines the multiscale computational frameworks of vascular adaptation with an emphasis on the integration of agent-based approaches with continuum models to describe vascular pathophysiology in a systems biology perspective. The state-of-the-art highlights the current gaps and limitations in the field, thus shedding light on new areas to be explored that may become the future research focus. The inclusion of molecular intracellular pathways (e.g., genomics or proteomics) within the multiscale agent-based modeling frameworks will certainly provide a great contribution to the promising personalized medicine. Efforts will be also needed to address the challenges encountered for the verification, uncertainty quantification, calibration and validation of these multiscale frameworks.
Collapse
Affiliation(s)
- Anna Corti
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Monika Colombo
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.,Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Switzerland
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Jose Felix Rodriguez Matas
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Stefano Casarin
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States.,Center for Computational Surgery, Houston Methodist Research Institute, Houston, TX, United States.,Houston Methodist Academic Institute, Houston, TX, United States
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.,PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
2
|
Hobeika MJ, Casarin S, Saharia A, Mobley C, Yi S, McMillan R, Mark Ghobrial R, Osama Gaber A. In silico deceased donor intervention research: A potential accelerant for progress. Am J Transplant 2021; 21:2231-2239. [PMID: 33394565 DOI: 10.1111/ajt.16482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 01/25/2023]
Abstract
Progress in deceased donor intervention research has been limited. Development of an in silico model of deceased donor physiology may elucidate potential therapeutic targets and provide an efficient mechanism for testing proposed deceased donor interventions. In this study, we report a preliminary in silico model of deceased kidney donor injury built, calibrated, and validated based on data from published animal and human studies. We demonstrate that the in silico model behaves like animal studies of brain death pathophysiology with respect to upstream markers of renal injury including hemodynamics, oxygenation, cytokines expression, and inflammation. Therapeutic hypothermia, a deceased donor intervention studied in human trials, is performed to demonstrate the model's ability to mimic an established clinical trial. Finally, future directions for developing this concept into a functional, clinically applicable model are discussed.
Collapse
Affiliation(s)
- Mark J Hobeika
- J.C. Walter, Jr. Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, Texas.,Department of Surgery, Weill Cornell Medical College, New York, New York.,Department of Surgery, Houston Methodist Hospital, Houston, Texas.,Center for Outcomes Research, Houston Methodist, Houston, Texas.,Houston Methodist Academic Institute, Houston, Texas
| | - Stefano Casarin
- Department of Surgery, Houston Methodist Hospital, Houston, Texas.,Center for Computational Surgery, Houston Methodist Research Institute, Houston, Texas.,Houston Methodist Academic Institute, Houston, Texas
| | - Ashish Saharia
- J.C. Walter, Jr. Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, Texas.,Department of Surgery, Weill Cornell Medical College, New York, New York.,Department of Surgery, Houston Methodist Hospital, Houston, Texas.,Houston Methodist Academic Institute, Houston, Texas
| | - Constance Mobley
- J.C. Walter, Jr. Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, Texas.,Department of Surgery, Weill Cornell Medical College, New York, New York.,Department of Surgery, Houston Methodist Hospital, Houston, Texas.,Houston Methodist Academic Institute, Houston, Texas
| | - Stephanie Yi
- J.C. Walter, Jr. Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, Texas.,Department of Surgery, Weill Cornell Medical College, New York, New York.,Department of Surgery, Houston Methodist Hospital, Houston, Texas.,Center for Outcomes Research, Houston Methodist, Houston, Texas.,Houston Methodist Academic Institute, Houston, Texas
| | - Robert McMillan
- J.C. Walter, Jr. Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, Texas.,Department of Surgery, Weill Cornell Medical College, New York, New York.,Department of Surgery, Houston Methodist Hospital, Houston, Texas.,Houston Methodist Academic Institute, Houston, Texas
| | - Rafik Mark Ghobrial
- J.C. Walter, Jr. Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, Texas.,Department of Surgery, Weill Cornell Medical College, New York, New York.,Department of Surgery, Houston Methodist Hospital, Houston, Texas.,Houston Methodist Academic Institute, Houston, Texas
| | - Ahmed Osama Gaber
- J.C. Walter, Jr. Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, Texas.,Department of Surgery, Weill Cornell Medical College, New York, New York.,Department of Surgery, Houston Methodist Hospital, Houston, Texas.,Houston Methodist Academic Institute, Houston, Texas
| |
Collapse
|
3
|
Ward AO, Angelini GD, Caputo M, Evans PC, Johnson JL, Suleiman MS, Tulloh RM, George SJ, Zakkar M. NF-κB inhibition prevents acute shear stress-induced inflammation in the saphenous vein graft endothelium. Sci Rep 2020; 10:15133. [PMID: 32934266 PMCID: PMC7492228 DOI: 10.1038/s41598-020-71781-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
The long saphenous vein (LSV) is commonly used as a conduit in coronary artery bypass grafting. However, long term patency remains limited by the development of vascular inflammation, intimal hyperplasia and accelerated atherosclerosis. The impact of acute exposure of venous endothelial cells (ECs) to acute arterial wall shear stress (WSS) in the arterial circulation, and the subsequent activation of inflammatory pathways, remain poorly defined. Here, we tested the hypothesis that acute exposure of venous ECs to high shear stress is associated with inflammatory responses that are regulated by NF-κB both in-vitro and ex-vivo. Analysis of the LSV endothelium revealed that activation of NF-κB occurred within 30 min after exposure to arterial rates of shear stress. Activation of NF-κB was associated with increased levels of CCL2 production and enhanced binding of monocytes in LSVECs exposed to 6 h acute arterial WSS. Consistent with this, ex vivo exposure of LSVs to acute arterial WSS promoted monocyte interactions with the vessel lumen. Inhibition of the NF-κB pathway prevented acute arterial WSS-induced CCL2 production and reduced monocyte adhesion, both in vitro and in human LSV ex vivo, demonstrating that this pathway is necessary for the induction of the acute arterial WSS-induced pro-inflammatory response. We have identified NF-κB as a critical regulator of acute endothelial inflammation in saphenous vein in response to acute arterial WSS. Localised endothelial-specific inhibition of the NF-κB pathway may be beneficial to prevent vein graft inflammation and consequent failure.
Collapse
Affiliation(s)
- Alexander O Ward
- Bristol Medical School, University of Bristol, Research Floor Level 7, Queens' Building, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Gianni D Angelini
- Bristol Medical School, University of Bristol, Research Floor Level 7, Queens' Building, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Massimo Caputo
- Bristol Medical School, University of Bristol, Research Floor Level 7, Queens' Building, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jason L Johnson
- Bristol Medical School, University of Bristol, Research Floor Level 7, Queens' Building, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - M Saadeh Suleiman
- Bristol Medical School, University of Bristol, Research Floor Level 7, Queens' Building, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Robert M Tulloh
- Bristol Medical School, University of Bristol, Research Floor Level 7, Queens' Building, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Sarah J George
- Bristol Medical School, University of Bristol, Research Floor Level 7, Queens' Building, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Mustafa Zakkar
- Bristol Medical School, University of Bristol, Research Floor Level 7, Queens' Building, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
4
|
Corti A, Chiastra C, Colombo M, Garbey M, Migliavacca F, Casarin S. A fully coupled computational fluid dynamics – agent-based model of atherosclerotic plaque development: Multiscale modeling framework and parameter sensitivity analysis. Comput Biol Med 2020; 118:103623. [DOI: 10.1016/j.compbiomed.2020.103623] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
|
5
|
Casarin S, Berceli SA, Garbey M. A Twofold Usage of an Agent-Based Model of Vascular Adaptation to Design Clinical Experiments. JOURNAL OF COMPUTATIONAL SCIENCE 2018; 29:59-69. [PMID: 30931048 PMCID: PMC6438199 DOI: 10.1016/j.jocs.2018.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Several computational models of Vein Graft Bypass (VGB) adaptation have been developed in order to improve the surgical outcome and they all share a common property: their accuracy relies on a winning choice of their driving coefficients which are best to be retrieved from experimental data. Since experiments are time-consuming and resources-demanding, the golden standard is to know in advance which measures need to be retrieved on the experimental table and out of how many samples. Accordingly, our goal is to build a computational framework able to pre-design an effective experimental structure to optimize the computational models setup. Our hypothesis is that an Agent-Based Model (ABM) developed by our group is comparable enough to a true set of experiments to be used to generate reliable virtual experimental data. Thanks to a twofold usage of our ABM, we created a filter to be posed before the real experiment in order to drive its optimal design. This work is the natural continuation of a previous study from our group [1], where the attention was posed on simple single-cellular events models. With this new version we focused on more complex models with the purpose of verifying that the complexity of the experimental setup grows proportionally with the accuracy of the model itself.
Collapse
Affiliation(s)
- Stefano Casarin
- Center for Computational Surgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Scott A. Berceli
- Department of Surgery, University of Florida, Gainesville, FL, USA
- Malcom Randall VAMC, Gainesville, FL, USA
| | - Marc Garbey
- Center for Computational Surgery, Houston Methodist Research Institute, Houston, TX, USA
- LASIE UMR 7356 CNRS, University of La Rochelle, La Rochelle, France
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
6
|
Garbey M, Casarin S, Berceli SA. A versatile hybrid agent-based, particle and partial differential equations method to analyze vascular adaptation. Biomech Model Mechanobiol 2018; 18:29-44. [PMID: 30094656 PMCID: PMC6373284 DOI: 10.1007/s10237-018-1065-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/26/2018] [Indexed: 11/27/2022]
Abstract
Peripheral arterial occlusive disease is a chronic pathology affecting at least 8–12 million people in the USA, typically treated with a vein graft bypass or through the deployment of a stent in order to restore the physiological circulation. Failure of peripheral endovascular interventions occurs at the intersection of vascular biology, biomechanics, and clinical decision making. It is our hypothesis that the majority of endovascular treatment approaches share the same driving mechanisms and that a deep understanding of the adaptation process is pivotal in order to improve the current outcome of the procedure. The postsurgical adaptation of vein graft bypasses offers the perfect example of how the balance between intimal hyperplasia and wall remodeling determines the failure or the success of the intervention. Accordingly, this work presents a versatile computational model able to capture the feedback loop that describes the interaction between events at cellular/tissue level and mechano-environmental conditions. The work here presented is a generalization and an improvement of a previous work by our group of investigators, where an agent-based model uses a cellular automata principle on a fixed hexagonal grid to reproduce the leading events of the graft’s restenosis. The new hybrid model here presented allows a more realistic simulation both of the biological laws that drive the cellular behavior and of the active role of the membranes that separate the various layers of the vein. The novel feature is to use an immersed boundary implementation of a highly viscous flow to represent SMC motility and matrix reorganization in response to graft adaptation. Our implementation is modular, and this makes us able to choose the right compromise between closeness to the physiological reality and complexity of the model. The focus of this paper is to offer a new modular implementation that combines the best features of an agent-based model, continuum mechanics, and particle-tracking methods to cope with the multiscale nature of the adaptation phenomena. This hybrid method allows us to quickly test various hypotheses with a particular attention to cellular motility, a process that we demonstrated should be driven by mechanical homeostasis in order to maintain the right balance between cells and extracellular matrix in order to reproduce a distribution similar to histological experimental data from vein grafts.
Collapse
Affiliation(s)
- Marc Garbey
- Houston Methodist Research Institute, Houston, TX, USA. .,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA. .,LaSIE, UMR CNRS 7356, University of la Rochelle, La Rochelle, France.
| | - Stefano Casarin
- Houston Methodist Research Institute, Houston, TX, USA.,LaSIE, UMR CNRS 7356, University of la Rochelle, La Rochelle, France
| | - Scott A Berceli
- Department of Surgery, University of Florida, Gainesville, FL, USA.,Malcom Randall VAMC, Gainesville, FL, USA
| |
Collapse
|
7
|
A Computational Model-Based Framework to Plan Clinical Experiments - an Application to Vascular Adaptation Biology. COMPUTATIONAL SCIENCE--ICCS ... : INTERNATIONAL CONFERENCE ... : PROCEEDINGS. ICCS 2018; 10860:352-362. [PMID: 31032487 DOI: 10.1007/978-3-319-93698-7_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several computational models have been developed in order to improve the outcome of Vein Graft Bypasses in response to arterial occlusions and they all share a common property: their accuracy relies on a winning choice of the coefficients' value related to biological functions that drive them. Our goal is to optimize the retrieval of these unknown coefficients on the base of experimental data and accordingly, as biological experiments are noisy in terms of statistical analysis and the models are typically stochastic and complex, this work wants first to elucidate which experimental measurements might be sufficient to retrieve the targeted coefficients and second how many specimens would constitute a good dataset to guarantee a sufficient level of accuracy. Since experiments are often costly and time consuming, the planning stage is critical to the success of the operation and, on the base of this consideration, the present work shows how, thanks to an ad hoc use of a computational model of vascular adaptation, it is possible to estimate in advance the entity and the quantity of resources needed in order to efficiently reproduce the experimental reality.
Collapse
|