1
|
Dong M, Shi C, Yu X, Yang Q, Wu S, Liu R, Liu T, Wang L, Niu W. Milk-derived small extracellular vesicles: nanomaterials to promote bone formation. J Nanobiotechnology 2022; 20:370. [PMID: 35953855 PMCID: PMC9367159 DOI: 10.1186/s12951-022-01580-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Small extracellular vesicles (sEVs) are an important component in the paracrine pathway. They can be used as a substitute for seed cells and have shown good application prospects in promoting bone regeneration. Cow’s milk could be used as a source of sEVs with good biocompatibility and cost-effectiveness, with easy availability, low cost and low toxicity. This study focused on the role and mechanism of small extracellular vesicles derived from milk in bone repair. In order to explore the mechanism via which Milk-sEVs promote bone repair, we screened the differential gene GJA1 in Milk-sEV-treated osteoblasts through transcriptome chips, and verified the transcript AP3B1 of GJA1 through chromatin immunoprecipitation (CHIP). We have proved by in vivo and in vitro experiments that milk-derived sEVs (Milk-sEVs) increase the repair ability of bone tissue, and promote expression of the osteogenic gene GJA1 through the transcript AP3B1.
Collapse
Affiliation(s)
- Ming Dong
- School of Stomatology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Chun Shi
- School of Stomatology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xinxin Yu
- School of Stomatology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Qian Yang
- School of Stomatology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Saixuan Wu
- School of Stomatology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Runyuan Liu
- School of Stomatology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Tingjiao Liu
- Department of Basic Science of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200003, China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200003, China
| | - Lina Wang
- School of Stomatology, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Dalian, 116044, Liaoning, China.
| |
Collapse
|
2
|
Riquelme MA, Cardenas ER, Xu H, Jiang JX. The Role of Connexin Channels in the Response of Mechanical Loading and Unloading of Bone. Int J Mol Sci 2020; 21:ijms21031146. [PMID: 32050469 PMCID: PMC7038207 DOI: 10.3390/ijms21031146] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
The skeleton adapts to mechanical loading to promote bone formation and remodeling. While most bone cells are involved in mechanosensing, it is well accepted that osteocytes are the principal mechanosensory cells. The osteocyte cell body and processes are surrounded by a fluid-filled space, forming an extensive lacuno-canalicular network. The flow of interstitial fluid is a major stress-related factor that transmits mechanical stimulation to bone cells. The long dendritic processes of osteocytes form a gap junction channel network connecting not only neighboring osteocytes, but also cells on the bone surface, such as osteoblasts and osteoclasts. Mechanosensitive osteocytes also form hemichannels that mediate the communication between the cytoplasmic and extracellular microenvironment. This paper will discuss recent research progress regarding connexin (Cx)-forming gap junctions and hemichannels in osteocytes, osteoblasts, and other bone cells, including those richly expressing Cx43. We will then cover the recent progress regarding the regulation of these channels by mechanical loading and the role of integrins and signals in mediating Cx43 channels, and bone cell function and viability. Finally, we will summarize the recent studies regarding bone responses to mechanical unloading in Cx43 transgenic mouse models. The osteocyte has been perceived as the center of bone remodeling, and connexin channels enriched in osteocytes are a likely major player in meditating the function of bone. Based on numerous studies, connexin channels may present as a potential new therapeutic target in the treatment of bone loss and osteoporosis. This review will primarily focus on Cx43, with some discussion in other connexins expressed in bone cells.
Collapse
Affiliation(s)
- Manuel A. Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (E.R.C.)
| | - Eduardo R. Cardenas
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (E.R.C.)
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (E.R.C.)
- Correspondence: ; Tel.: +1-210-562-4094
| |
Collapse
|
3
|
Wang J, Li G, Li Y, Zhao Y, Manthari RK, Wang J. The Effects of Fluoride on the Gap-Junctional Intercellular Communication of Rats' Osteoblast. Biol Trace Elem Res 2020; 193:195-203. [PMID: 30887282 DOI: 10.1007/s12011-019-01692-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
The gap junction protein plays an important role in the bone formation and alteration of these proteins leading to cause bone development. Aim to determine the effects of different concentration of fluoride on gap-junctional intercellular communication (GJIC) related genes and proteins in the rats' osteoblast cells. We treated the osteoblast cells with various concentrations (0, 0.01, 0.1, 0.5, and 1.0 mM) NaF for 24 and 72 h. We used the scrape loading and dye transfer technique to research the intracellular connectivity. Moreover, the mRNA expression levels of connexin 43 (Cx43), connexin45 (Cx45), collagen I, and osteocalcin (OCN) were analyzed by qRT-PCR, the protein expression levels of connexin43 (Cx43) were analyzed by western blotting and immunofluorescence. Our results suggested that the osteoblast proliferations were decreased in the 0.5 and 1 mM NaF groups, after 24 and 72 treatments. The scrape loading and dye transfer experiment showed that the GJIC were increased in the 0.01 mM NaF group and decreased in the 0.5 and 1 mM NaF groups. In addition, the mRNA expressions of Cx43, Cx45, and OCN, and the protein expressions of Cx43 were increased in the 0.01 mM NaF group and decreased in the 0.5 and 1 mM NaF groups. In summary, these results suggest that the low concentration NaF is good for the GJIC, but the high concentration NaF damages the GJIC.
Collapse
Affiliation(s)
- Jinming Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Guangsheng Li
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yanyan Li
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yangfei Zhao
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jundong Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China.
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
4
|
Connexin43 enhances Wnt and PGE2-dependent activation of β-catenin in osteoblasts. Pflugers Arch 2019; 471:1235-1243. [PMID: 31240382 DOI: 10.1007/s00424-019-02295-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Connexin43 is an important modulator of many signaling pathways in bone. β-Catenin, a key regulator of the osteoblast differentiation and function, is among the pathways downstream of connexin43-dependent intercellular communication. There are striking overlaps between the functions of these two proteins in bone cells. However, differential effects of connexin43 on β-catenin activity have been reported. Here, we examined how connexin43 influenced both Wnt-dependent and Wnt-independent activation of β-catenin in osteoblasts in vitro. Our data show that loss of connexin43 in primary osteoblasts or connexin43 overexpression in UMR106 cells regulated active β-catenin and phospho-Akt levels, with loss of connexin43 inhibiting and connexin43 overexpression increasing the levels of active β-catenin and phospho-Akt. Increasing connexin43 expression synergistically enhanced Wnt3a-dependent activation of β-catenin protein and β-catenin transcriptional activity, as well as Wnt-independent activation of β-catenin by prostaglandin E2 (PGE2). Finally, we show that the activation of β-catenin by PGE2 required signaling through the phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase 3 beta (GSK3β) pathway, as the PI3K inhibitor, LY-294002, disrupted the synergy between connexin43 and PGE2. These data show that connexin43 regulates Akt and β-catenin activity and synergistically enhances both Wnt-dependent and Wnt-independent β-catenin signaling in osteoblasts.
Collapse
|
5
|
Selective tracking of FFAR3-expressing neurons supports receptor coupling to N-type calcium channels in mouse sympathetic neurons. Sci Rep 2018; 8:17379. [PMID: 30478340 PMCID: PMC6255804 DOI: 10.1038/s41598-018-35690-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Activation of short-chain free fatty acid receptors 3 (FFAR3) has been suggested to promote sympathetic outflow in postganglionic sympathetic neurons or hamper it by a negative coupling to N-type calcium (CaV2.2) channels. Heterogeneity of FFAR3 expression in sympathetic neurons, however, renders single neurons studies extremely time-consuming in wild-type mice. Previous studies demonstrated large variability of the degree of CaV2.2 channel inhibition by FFAR3 in a global population of rat sympathetic neurons. Therefore, we focused on a small subpopulation of mouse sympathetic neurons using an FFAR3 antibody and an Ffar3 reporter mouse to perform immunofluorescent and electrophysiological studies. Whole-cell patch-clamp recordings of identified FFAR3-expressing neurons from reporter mice revealed a 2.5-fold decrease in the CaV2.2-FFAR3 inhibitory coupling variability and 1.5-fold increase in the mean ICa2+ inhibition, when compared with unlabeled neurons from wild-type mice. Further, we found that the ablation of Ffar3 gene expression in two knockout mouse models led to a complete loss-of-function. Subpopulations of sympathetic neurons are associated with discrete functional pathways. However, little is known about the neural pathways of the FFAR3-expressing subpopulation. Our data indicate that FFAR3 is expressed primarily in neurons with a vasoconstrictor phenotype. Thus, fine-tuning of chemically-coded neurotransmitters may accomplish an adequate outcome.
Collapse
|