1
|
Novaes FJM, da Silva MAE, Silva DC, de Aquino Neto FR, Rezende CM. Extraction of Diterpene-Phytochemicals in Raw and Roasted Coffee Beans and Beverage Preparations and Their Relationship. PLANTS (BASEL, SWITZERLAND) 2023; 12:1580. [PMID: 37111804 PMCID: PMC10145731 DOI: 10.3390/plants12081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Cafestol and kahweol are expressive furane-diterpenoids from the lipid fraction of coffee beans with relevant pharmacological properties for human health. Due to their thermolability, they suffer degradation during roasting, whose products are poorly studied regarding their identity and content in the roasted coffee beans and beverages. This article describes the extraction of these diterpenes, from the raw bean to coffee beverages, identifying them and understanding the kinetics of formation and degradation in roasting (light, medium and dark roasts) as the extraction rate for different beverages of coffee (filtered, Moka, French press, Turkish and boiled). Sixteen compounds were identified as degradation products, ten derived from kahweol and six from cafestol, produced by oxidation and inter and intramolecular elimination reactions, with the roasting degree (relationship between time and temperature) being the main factor for thermodegradation and the way of preparing the beverage responsible for the content of these substances in them.
Collapse
Affiliation(s)
| | - Maria Alice Esteves da Silva
- Aroma Analysis Laboratory, Chemistry Institute, Federal University of Rio de Janeiro, Avenida Athos da Silveira Ramos, 149, Bloco A, Sala 626A, Rio de Janeiro 21941-895, RJ, Brazil
| | - Diana Cardoso Silva
- Chemistry Department, Federal University of Viçosa, Peter Henry Rolfs Avenue, Viçosa 36570-900, MG, Brazil
| | - Francisco Radler de Aquino Neto
- Laboratory for the Support of Technological Development (LADETEC), Chemistry Institute, Federal University of Rio de Janeiro, Avenida Horácio Macedo, 1281, Polo de Química, Bloco C, Rio de Janeiro 21941-598, RJ, Brazil
| | - Claudia Moraes Rezende
- Aroma Analysis Laboratory, Chemistry Institute, Federal University of Rio de Janeiro, Avenida Athos da Silveira Ramos, 149, Bloco A, Sala 626A, Rio de Janeiro 21941-895, RJ, Brazil
| |
Collapse
|
2
|
Chhoud R, Said Bagga M, Ali Lassoued M, Jlizi S, Nabili A, Sfar S, Ben Jannet H, Majdoub H. Chemical Profile of the Pits Oil from the Tunisian 'Alig' Cultivar of Phoenix dactylifera L.: In Vivo Wound Healing Potential Evaluation of a Cream Formulated from the Extracted Oil and Insights from Molecular Docking and SAR Analysis. Chem Biodivers 2023; 20:e202200533. [PMID: 36325999 DOI: 10.1002/cbdv.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/05/2022]
Abstract
Since ancient times the oil from date palm pits (Phoenix dactylifera L.) has been used to heal wounds. In order to prove this traditional usage of the pits, this oil was extracted from the pits of the Tunisian cultivar 'Alig' and its physico-chemical properties and the chemical composition were evaluated. The fatty acid profile, evidenced by GC, allowed to classify this oil as an oleic-myristic acid oil with a clear abundance of oleic acid (53.66 %). 1 H and 13 C-NMR as well as FT-IR analyses confirmed the presence of fatty acids in triglyceride forms. Furthermore, in vivo wound healing activity of a cream formulated from the extracted oil was performed, for the first time, using a rat model and was compared to placebo cream and a commercial formulation, MEBO®. This study showed that the test cream promoted the healing of pressure ulcers better than the placebo cream and the MEBO® ointment. The results showed that this vegetable oil is able to improve the healing of infected wounds in rats, thus supporting its traditional use. The contribution of the main oleic, linoleic and myristic acids that can be derived from enzymatic hydrolysis to the healing activity of the whole pits oil was predicted by in silico study and the calculated pharmacokinetics parameters.
Collapse
Affiliation(s)
- Rihab Chhoud
- University of Monastir, Faculty of Sciences of Monastir, Laboratory of Interfaces and Advanced Materials (LIMA), Bd. of the Environment, 5019, Monastir, Tunisia
| | - Mohamed Said Bagga
- Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir, 5000, Tunisia
| | - Mohamed Ali Lassoued
- Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir, 5000, Tunisia
| | - Salma Jlizi
- University of Monastir, Faculty of Sciences of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Bd. of the Environment, 5019, Monastir, Tunisia
| | - Abdelkader Nabili
- University of Monastir, Faculty of Sciences of Monastir, Laboratory of Interfaces and Advanced Materials (LIMA), Bd. of the Environment, 5019, Monastir, Tunisia
| | - Souad Sfar
- Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir, 5000, Tunisia
| | - Hichem Ben Jannet
- University of Monastir, Faculty of Sciences of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Bd. of the Environment, 5019, Monastir, Tunisia
| | - Hatem Majdoub
- University of Monastir, Faculty of Sciences of Monastir, Laboratory of Interfaces and Advanced Materials (LIMA), Bd. of the Environment, 5019, Monastir, Tunisia
| |
Collapse
|
3
|
Makhija P, Kathuria H, Sethi G, Grobben B. Polymeric Hydrogels for Controlled Release of Black Tea and Coffee Extracts for Topical Applications. Gels 2021; 7:174. [PMID: 34698154 PMCID: PMC8544385 DOI: 10.3390/gels7040174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
Tea and coffee are popular beverages. Both are also used in topical applications, such as ultraviolet (UV) protection, anti-aging, and wound healing. However, the impact of tea and coffee extract on skin cells is minimally explored. This study investigated the direct exposure of tea and coffee extract on skin cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. It was found that direct exposure of tea and coffee to skin cells can be toxic at a high dose on prolonged exposure (72 h). Therefore, it was hypothesized that a formulation providing a controlled release of tea and coffee could improve their skin compatibility. Thermally cross-linked poly(acrylic acid) hydrogels loaded with tea and coffee extracts (with and without milk) were formulated and optimized. The release profiles of these hydrogels were studied at varying loading efficiency. Milk addition with tea extract retarded the tea extract release from hydrogel while minimally affecting the coffee release. This effect was due to the molecular interaction of tea with milk components, showing changes in size, zeta potential, and polydispersity index. The release study best fitted the Korsmeyer-Peppas release model. Skin cells exposed to tea or coffee-loaded hydrogel showed normal skin cell morphology under fluorescence microscopic analysis. In conclusion, the hydrogels controlled the tea and coffee release and showed biocompatibility with skin cells. It can potentially be used for skin applications.
Collapse
Affiliation(s)
- Pooja Makhija
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore;
- Nusmetic Pvt Ltd., Makerspace, i4 Building, 3 Research Link, Singapore 117602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD3, 16 Medical Drive, Singapore 117600, Singapore;
| | - Bert Grobben
- Budding Innovations Pvt Ltd., 06-02 Jellicoe Rd, Singapore 208766, Singapore
| |
Collapse
|
4
|
Erdogan SS, Gur TF, Terzi NK, Dogan B. Evaluation of the cutaneous wound healing potential of tamanu oil in wounds induced in rats. J Wound Care 2021; 30:Vi-Vx. [PMID: 34597168 DOI: 10.12968/jowc.2021.30.sup9a.v] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AIMS Tamanu is a plant oil derived from the fruit and seeds of the Calophyllum inophyllum tree. Although scientific data on tamanu oil are limited, it is recommended worldwide for the treatment of abrasions, burns, diabetic wounds and scars. This study aimed to compare the wound healing efficacy of the topical use of tamanu oil with a reference drug in rats. METHODS Uniform wounds were induced on the dorsum of 21 rats, randomly divided into three groups. The control group received normal saline; the tamanu group received tamanu oil; and the centella group was treated with Centella asiatica. Wound healing was clinically evaluated using wound healing scoring and wound contraction. A biopsy was taken from the wound sites of each rat on days 7, 14 and 21 for histopathological evaluation. RESULTS Wound contraction was significantly lower in the tamanu group compared with the other groups. On day 7, the intensity of macrophage infiltration and mature granulation tissues were significantly higher in the centella and tamanu groups than in the control group. Fibrosis and collagen density were higher in the tamanu group than the other groups on day 7. CONCLUSION In wound healing in rats, tamanu oil accelerated the formation of macrophage-granulation tissues-fibrosis and resulted in less wound contraction.
Collapse
Affiliation(s)
- Sevil S Erdogan
- Department of Dermatology, University of Health Sciences, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Tugba F Gur
- Department of Dermatology, University of Health Sciences, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Neslihan K Terzi
- Department of Pathology, University of Health Sciences, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Bilal Dogan
- Department of Dermatology, University of Health Sciences, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
5
|
Poljšak N, Kreft S, Kočevar Glavač N. Vegetable butters and oils in skin wound healing: Scientific evidence for new opportunities in dermatology. Phytother Res 2019; 34:254-269. [PMID: 31657094 DOI: 10.1002/ptr.6524] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022]
Abstract
The use of vegetable butters and oils shows promising results in the treatment of skin wounds, as they have an effective impact on the phases of the wound-healing process through their antimicrobial, anti-inflammatory, and antioxidative activities and by promoting cell proliferation, increasing collagen synthesis, stimulating dermal reconstruction, and repairing the skin's lipid barrier function. In this article, in vitro and in vivo studies of argan (Argania spinosa), avocado (Persea americana), black cumin (Nigella sativa), calophyllum (Calophyllum inophyllum), coconut (Cocos nucifera), cranberry (Vaccinium macrocarpon), grape (Vitis vinifera), green coffee (Coffea arabica), lentisk (Pistacia lentiscus), linseed (Linum usitatissimum), lucuma (Pouteria lucuma), mango (Mangifera indica), olive (Olea europaea), pomegranate (Punica granatum), pumpkin (Cucurbita pepo), rapeseed (Brassica napus), sea buckthorn (Hippophae rhamnoides), and sunflower (Helianthus annuus) oils were reviewed. In many cases, vegetable oils proved to be more effective than synthetic wound-healing compounds used as controls. The fatty-acid components of vegetable oils are assumed to play a major role in the wound-healing process, in particular polyunsaturated fatty acids such as linoleic acid. Evidence shows that oils with a higher linoleic to oleic acid ratio are more effective for lipid barrier repair. However, in depth studies are needed to gain knowledge about vegetable oils' effects on the skin and vice versa.
Collapse
Affiliation(s)
- Nina Poljšak
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Samo Kreft
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
6
|
Topical essential fatty acid oil on wounds: Local and systemic effects. PLoS One 2019; 14:e0210059. [PMID: 30608959 PMCID: PMC6319702 DOI: 10.1371/journal.pone.0210059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The use of medicinal plants and their derivatives is increasing, and approximately one-third of all traditional herbal medicines are intended for wound treatment. Natural products used in these treatments include vegetable oils, which are rich in essential fatty acids. Once in contact with an ulcerative surface, the oil reaches the blood and lymphatic vessels, thus eliciting systemic effects. OBJECTIVE This study evaluated the local and possible systemic effects of essential fatty acids (sunflower oil) applied topically to rat wounds. METHODS Cutaneous punch wounds (6 mm) were produced on the dorsa of 30 rats. Saline (SS), mineral oil (MO) or essential fatty acid (EFA) solutions were applied topically. Healing was evaluated after 2, 4 and 10 days (n = 5 per group) by visual and histological/morphometric examination, second harmonic generation (SHG) microscopy, and cytokine and growth factor quantification in the scar tissue (real-time PCR) and in serum (ELISA). RESULTS MO/EFA-treated animals had higher IGF-1, leptin, IL-6 and IFN-γ mRNA expression and lower serum IL-6 levels than the control (SS/MO) animals. SHG analysis showed no difference in collagen density between the animals treated with MO and EFA. CONCLUSION EFA treatment induces topical (observed by local IGF-1, leptin, IL-6 and IFN-γ production) and systemic effects, lowering IL-6 levels in the serum. As the oil is widely used to shorten ulcer healing time, studies are needed to evaluate the treatment safety and possible undesired effects.
Collapse
|
7
|
Yoon CS, Kim MK, Kim YS, Lee SK. In vivo protein expression changes in mouse livers treated with dialyzed coffee extract as determined by IP-HPLC. Maxillofac Plast Reconstr Surg 2018; 40:44. [PMID: 30613574 PMCID: PMC6308107 DOI: 10.1186/s40902-018-0183-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Coffee extract has been investigated by many authors, and many minor components of coffee are known, such as polyphenols, diterpenes (kahweol and cafestol), melanoidins, and trigonelline, to have anti-inflammatory, anti-oxidant, anti-angiogenic, anticancer, chemoprotective, and hepatoprotective effects. Therefore, it is necessary to know its pharmacological effect on hepatocytes which show the most active cellular regeneration in body. Methods In order to determine whether coffee extract has a beneficial effect on the liver, 20 C57BL/6J mice were intraperitoneally injected once with dialyzed coffee extract (DCE)-2.5 (equivalent to 2.5 cups of coffee a day in man), DCE-5, or DCE-10, or normal saline (control), and then followed by histological observation and IP-HPLC (immunoprecipitation high performance liquid chromatography) over 24 h. Results Mice treated with DCE-2.5 or DCE-5 showed markedly hypertrophic hepatocytes with eosinophilic cytoplasms, while those treated with DCE-10 showed slightly hypertrophic hepatocytes, which were well aligned in hepatic cords with increased sinusoidal spaces. DCE induced the upregulations of cellular proliferation, growth factor/RAS signaling, cellular protection, p53-mediated apoptosis, angiogenesis, and antioxidant and protection-related proteins, and the downregulations of NFkB signaling proteins, inflammatory proteins, and oncogenic proteins in mouse livers. These protein expression changes induced by DCE were usually limited to the range ± 10%, suggesting murine hepatocytes were safely reactive to DCE within the threshold of physiological homeostasis. DCE-2.5 and DCE-5 induced relatively mild dose-dependent changes in protein expressions for cellular regeneration and de novo angiogenesis as compared with non-treated controls, whereas DCE-10 induced fluctuations in protein expressions. Conclusion These observations suggested that DCE-2.5 and DCE-5 were safer and more beneficial to murine hepatocytes than DCE-10. It was also found that murine hepatocytes treated with DCE showed mild p53-mediated apoptosis, followed by cellular proliferation and growth devoid of fibrosis signaling (as determined by IP-HPLC), and subsequently progressed to rapid cellular regeneration and wound healing in the absence of any inflammatory reaction based on histologic observations. Electronic supplementary material The online version of this article (10.1186/s40902-018-0183-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheol Soo Yoon
- 1Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University and Institute of Oral Science, 123 Chibyun-dong, Gangneung, 210-702 South Korea
| | - Min Keun Kim
- 2Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University and Institute of Oral Science, Gangneung, South Korea
| | - Yeon Sook Kim
- 3Department of Dental Hygiene, College of Health Sciences, Cheongju University, Cheongju, South Korea
| | - Suk Keun Lee
- 1Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University and Institute of Oral Science, 123 Chibyun-dong, Gangneung, 210-702 South Korea
| |
Collapse
|