1
|
Hotter droughts alter resource allocation to chemical defenses in piñon pine. Oecologia 2021; 197:921-938. [PMID: 34657177 PMCID: PMC8591002 DOI: 10.1007/s00442-021-05058-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/04/2021] [Indexed: 01/11/2023]
Abstract
Heat and drought affect plant chemical defenses and thereby plant susceptibility to pests and pathogens. Monoterpenes are of particular importance for conifers as they play critical roles in defense against bark beetles. To date, work seeking to understand the impacts of heat and drought on monoterpenes has primarily focused on young potted seedlings, leaving it unclear how older age classes that are more vulnerable to bark beetles might respond to stress. Furthermore, we lack a clear picture of what carbon resources might be prioritized to support monoterpene synthesis under drought stress. To address this, we measured needle and woody tissue monoterpene concentrations and physiological variables simultaneously from mature piñon pines (Pinus edulis) from a unique temperature and drought manipulation field experiment. While heat had no effect on total monoterpene concentrations, trees under combined heat and drought stress exhibited ~ 85% and 35% increases in needle and woody tissue, respectively, over multiple years. Plant physiological variables like maximum photosynthesis each explained less than 10% of the variation in total monoterpenes for both tissue types while starch and glucose + fructose measured 1-month prior explained ~ 45% and 60% of the variation in woody tissue total monoterpene concentrations. Although total monoterpenes increased under combined stress, some key monoterpenes with known roles in bark beetle ecology decreased. These shifts may make trees more favorable for bark beetle attack rather than well defended, which one might conclude if only considering total monoterpene concentrations. Our results point to cumulative and synergistic effects of heat and drought that may reprioritize carbon allocation of specific non-structural carbohydrates toward defense.
Collapse
|
2
|
Liu JJ, Schoettle AW, Sniezko RA, Williams H, Zamany A, Rancourt B. Fine dissection of limber pine resistance to Cronartium ribicola using targeted sequencing of the NLR family. BMC Genomics 2021; 22:567. [PMID: 34294045 PMCID: PMC8299668 DOI: 10.1186/s12864-021-07885-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) domains (NLR) make up one of most important resistance (R) families for plants to resist attacks from various pathogens and pests. The available transcriptomes of limber pine (Pinus flexilis) allow us to characterize NLR genes and related resistance gene analogs (RGAs) in host resistance against Cronartium ribicola, the causal fungal pathogen of white pine blister rust (WPBR) on five-needle pines throughout the world. We previously mapped a limber pine major gene locus (Cr4) that confers complete resistance to C. ribicola on the Pinus consensus linkage group 8 (LG-8). However, genetic distribution of NLR genes as well as their divergence between resistant and susceptible alleles are still unknown. RESULTS To identify NLR genes at the Cr4 locus, the present study re-sequenced a total of 480 RGAs using targeted sequencing in a Cr4-segregated seed family. Following a call of single nucleotide polymorphisms (SNPs) and genetic mapping, a total of 541 SNPs from 155 genes were mapped across 12 LGs. Three putative NLR genes were newly mapped in the Cr4 region, including one that co-segregated with Cr4. The tight linkage of NLRs with Cr4-controlled phenotypes was further confirmed by bulked segregation analysis (BSA) using extreme-phenotype genome-wide association study (XP-GWAS) for significance test. Local tandem duplication in the Cr4 region was further supported by syntenic analysis using the sugar pine genome sequence. Significant gene divergences have been observed in the NLR family, revealing that diversifying selection pressures are relatively higher in local duplicated genes. Most genes showed similar expression patterns at low levels, but some were affected by genetic background related to disease resistance. Evidence from fine genetic dissection, evolutionary analysis, and expression profiling suggests that two NLR genes are the most promising candidates for Cr4 against WPBR. CONCLUSION This study provides fundamental insights into genetic architecture of the Cr4 locus as well as a set of NLR variants for marker-assisted selection in limber pine breeding. Novel NLR genes were identified at the Cr4 locus and the Cr4 candidates will aid deployment of this R gene in combination with other major/minor genes in the limber pine breeding program.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| | - Anna W. Schoettle
- USDA Forest Service, Rocky Mountain Research Station, 240 West Prospect Road, Fort Collins, CO 80526 USA
| | - Richard A. Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Road, Cottage Grove, Oregon, 97424 USA
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| | - Benjamin Rancourt
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| |
Collapse
|
3
|
Netherer S, Kandasamy D, Jirosová A, Kalinová B, Schebeck M, Schlyter F. Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. JOURNAL OF PEST SCIENCE 2021; 94:591-614. [PMID: 34720785 PMCID: PMC8550215 DOI: 10.1007/s10340-021-01341-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 05/04/2023]
Abstract
Resilience and functionality of European Norway spruce forests are increasingly threatened by mass outbreaks of the bark beetle Ips typographus promoted by heat, wind throw and drought. Here, we review current knowledge on Norway spruce and I. typographus interactions from the perspective of drought-stressed trees, host selection, colonisation behaviour of beetles, with multi-level effects of symbiotic ophiostomatoid fungi. By including chemo-ecological, molecular and behavioural perspectives, we provide a comprehensive picture on this complex, multitrophic system in the light of climate change. Trees invest carbon into specialised metabolism to produce defence compounds against biotic invaders; processes that are strongly affected by physiological stress such as drought. Spruce bark contains numerous terpenoid and phenolic substances, which are important for bark beetle aggregation and attack success. Abiotic stressors such as increased temperatures and drought affect composition, amounts and emission rates of volatile compounds. Thus, drought events may influence olfactory responses of I. typographus, and further the pheromone communication enabling mass attack. In addition, I. typographus is associated with numerous ophiostomatoid fungal symbionts with multiple effects on beetle life history. Symbiotic fungi degrade spruce toxins, help to exhaust tree defences, produce beetle semiochemicals, and possibly provide nutrition. As the various fungal associates have different temperature optima, they can influence the performance of I. typographus differently under changing environmental conditions. Finally, we discuss why effects of drought on tree-killing by bark beetles are still poorly understood and provide an outlook on future research on this eruptive species using both, field and laboratory experiments.
Collapse
Affiliation(s)
- Sigrid Netherer
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, BOKU, Vienna, Austria
| | - Dineshkumar Kandasamy
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Anna Jirosová
- ETM Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, CULS, Praha-Suchdol, Czech Republic
| | - Blanka Kalinová
- ETM Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, CULS, Praha-Suchdol, Czech Republic
| | - Martin Schebeck
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, BOKU, Vienna, Austria
| | - Fredrik Schlyter
- ETM Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, CULS, Praha-Suchdol, Czech Republic
- Chemical Ecology Plant Protection Department, Swedish University of Agricultural Sciences, SLU, Alnarp, Sweden
| |
Collapse
|
4
|
Singh J, Fabrizio J, Desnoues E, Silva JP, Busch W, Khan A. Root system traits impact early fire blight susceptibility in apple (Malus × domestica). BMC PLANT BIOLOGY 2019; 19:579. [PMID: 31870310 PMCID: PMC6929320 DOI: 10.1186/s12870-019-2202-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/12/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND Although it is known that resistant rootstocks facilitate management of fire blight disease, incited by Erwinia amylovora, the role of rootstock root traits in providing systemic defense against E. amylovora is unclear. In this study, the hypothesis that rootstocks of higher root vigor provide higher tolerance to fire blight infection in apples is tested. Several apple scion genotypes grafted onto a single rootstock genotype and non-grafted 'M.7' rootstocks of varying root vigor are used to assess phenotypic and molecular relationships between root traits of rootstocks and fire blight susceptibility of apple scion cultivars. RESULTS It is observed that different root traits display significant (p < 0.05) negative correlations with fire blight susceptibility. In fact, root surface area partially dictates differential levels of fire blight susceptibility of 'M.7' rootstocks. Furthermore, contrasting changes in gene expression patterns of diverse molecular pathways accompany observed differences in levels of root-driven fire blight susceptibility. It is noted that a singular co-expression gene network consisting of genes from defense, carbohydrate metabolism, protein kinase activity, oxidation-reduction, and stress response pathways modulates root-dependent fire blight susceptibility in apple. In particular, WRKY75 and UDP-glycotransferase are singled-out as hub genes deserving of further detailed analysis. CONCLUSIONS It is proposed that low root mass may incite resource-limiting conditions to activate carbohydrate metabolic pathways, which reciprocally interact with plant immune system genes to elicit differential levels of fire blight susceptibility.
Collapse
Affiliation(s)
- Jugpreet Singh
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Jack Fabrizio
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Elsa Desnoues
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Julliany Pereira Silva
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Wolfgang Busch
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, and Integrative Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
5
|
Van Ghelder C, Parent GJ, Rigault P, Prunier J, Giguère I, Caron S, Stival Sena J, Deslauriers A, Bousquet J, Esmenjaud D, MacKay J. The large repertoire of conifer NLR resistance genes includes drought responsive and highly diversified RNLs. Sci Rep 2019; 9:11614. [PMID: 31406137 PMCID: PMC6691002 DOI: 10.1038/s41598-019-47950-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/26/2019] [Indexed: 12/25/2022] Open
Abstract
The NLRs or NBS-LRRs (nucleotide-binding, leucine-rich-repeat) form the largest resistance gene family in plants, with lineage-specific contingents of TNL, CNL and RNL subfamilies and a central role in resilience to stress. The origin, evolution and distribution of NLR sequences has been unclear owing in part to the variable size and diversity of the RNL subfamily and a lack of data in Gymnosperms. We developed, searched and annotated transcriptomes assemblies of seven conifers and identified a resource of 3816 expressed NLR sequences. Our analyses encompassed sequences data spanning the major groups of land plants and determinations of NLR transcripts levels in response to drought in white spruce. We showed that conifers have among the most diverse and numerous RNLs in tested land plants. We report an evolutionary swap in the formation of RNLs, which emerged from the fusion of an RPW8 domain to a NB-ARC domain of CNL. We uncovered a quantitative relationship between RNLs and TNLs across all land plants investigated, with an average ratio of 1:10. The conifer RNL repertoire harbours four distinct groups, with two that differ from Angiosperms, one of which contained several upregulated sequences in response to drought while the majority of responsive NLRs are downregulated.
Collapse
Affiliation(s)
- Cyril Van Ghelder
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, BP167, 06903, Sophia Antipolis, France. .,Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Geneviève J Parent
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.,Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Philippe Rigault
- Gydle Inc., 1135 Grande Allée Ouest Suite 220, Québec, QC, G1S 1E7, Canada.,Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Julien Prunier
- Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Isabelle Giguère
- Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Sébastien Caron
- Gydle Inc., 1135 Grande Allée Ouest Suite 220, Québec, QC, G1S 1E7, Canada
| | - Juliana Stival Sena
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, G1V 4C7, Canada
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | - Jean Bousquet
- Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada.,Canada Research Chair in Forest Genomics, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Daniel Esmenjaud
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, BP167, 06903, Sophia Antipolis, France
| | - John MacKay
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.,Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, 1030 rue de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
6
|
Salmon Y, Dietrich L, Sevanto S, Hölttä T, Dannoura M, Epron D. Drought impacts on tree phloem: from cell-level responses to ecological significance. TREE PHYSIOLOGY 2019; 39:173-191. [PMID: 30726983 DOI: 10.1093/treephys/tpy153] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/03/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
On-going climate change is increasing the risk of drought stress across large areas worldwide. Such drought events decrease ecosystem productivity and have been increasingly linked to tree mortality. Understanding how trees respond to water shortage is key to predicting the future of ecosystem functions. Phloem is at the core of the tree functions, moving resources such as non-structural carbohydrates, nutrients, and defence and information molecules across the whole plant. Phloem function and ability to transport resources is tightly controlled by the balance of carbon and water fluxes within the tree. As such, drought is expected to impact phloem function by decreasing the amount of available water and new photoassimilates. Yet, the effect of drought on the phloem has received surprisingly little attention in the last decades. Here we review existing knowledge on drought impacts on phloem transport from loading and unloading processes at cellular level to possible effects on long-distance transport and consequences to ecosystems via ecophysiological feedbacks. We also point to new research frontiers that need to be explored to improve our understanding of phloem function under drought. In particular, we show how phloem transport is affected differently by increasing drought intensity, from no response to a slowdown, and explore how severe drought might actually disrupt the phloem transport enough to threaten tree survival. Because transport of resources affects other organisms interacting with the tree, we also review the ecological consequences of phloem response to drought and especially predatory, mutualistic and competitive relations. Finally, as phloem is the main path for carbon from sources to sink, we show how drought can affect biogeochemical cycles through changes in phloem transport. Overall, existing knowledge is consistent with the hypotheses that phloem response to drought matters for understanding tree and ecosystem function. However, future research on a large range of species and ecosystems is urgently needed to gain a comprehensive understanding of the question.
Collapse
Affiliation(s)
- Yann Salmon
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, Gustaf Hällströmin katu 2b, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, Latokartanonkaari 7, University of Helsinki, Helsinki, Finland
| | - Lars Dietrich
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, Basel, Switzerland
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, PO Box 1663 MA 495, Los Alamos, NM, USA
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, Latokartanonkaari 7, University of Helsinki, Helsinki, Finland
| | - Masako Dannoura
- Kyoto University, Laboratory of Ecosystem Production and Dynamics, Graduate School of Global Environmental Studies, Kyoto, Japan
- Kyoto University, Laboratory of Forest Utilization, Graduate School of Agriculture, Kyoto, Japan
| | - Daniel Epron
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| |
Collapse
|
7
|
Mistletoe Versus Host Pine: Does Increased Parasite Load Alter the Host Chemical Profile? J Chem Ecol 2018; 45:95-105. [PMID: 30523519 DOI: 10.1007/s10886-018-1039-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/10/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
Stress caused by parasitic plants, e.g. mistletoes, alters certain host-plant traits as a response. While several physical implications of the parasite-host relation have been well studied, shifts in the host chemical profile remain poorly understood. Here we compare the chemical profiles of mistletoe (Viscum album subsp. austriacum) leaves and host pine (Pinus nigra subsp. salzmannii) needles and we investigate chemical changes in host needles of trees with different parasite loads (control, low, medium, and high). Our results reveal that despite the intimate contact between mistletoe and host pine, their chemical profiles differed significantly, revealing extremely low concentrations of defense compounds (including a complete lack of terpenes) and high levels of N concentrations in mistletoe leaves. On the other hand, parasitized pines showed unique chemical responses depending on parasite loads. Overall, the content in monoterpenes increased with parasitism. Higher parasitized pines produced higher amounts of defense compounds (phenols and condensed tannins) than less parasitized trees, but amounts in samples of the same year did not significantly differ between parasitized and unparasitized pines. Highly parasitized pines accumulated less N than pines with other parasite loads. The strongest response was found in sesqui- and diterpenes, which were at lower levels in pines under medium and high parasitism. Chemical responses of pines to mistletoe parasitism resembled reactions to other kinds of stress. Low levels induced reactions resembling those against drought stress, while medium and high parasitism elicited responses comparable to those against burning and defoliation.
Collapse
|