1
|
Wang L, Mao Y, Tang Y, Zhao J, Wang A, Li C, Wu H, Wu Q, Zhao H. Rutin distribution in Tartary buckwheat: Identifying prime dietary sources through comparative analysis of post-processing treatments. Food Chem 2025; 464:141641. [PMID: 39427614 DOI: 10.1016/j.foodchem.2024.141641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/06/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Rutin is a crucial bioactive compound that determines the nutritional value of Tartary buckwheat (TB). However, the potential of utilizing TB as a dietary source of rutin for human consumption remains largely unexplored. This study aims to address these knowledge gaps by conducting a detailed analysis of rutin content distribution in TB tissues. Our findings revealed a significant variation in rutin content across different plant tissues. Notably, higher levels of rutin were found in embryos and cotyledons compared to other tissues, highlighting them as the primary sites of rutin accumulation in TB seeds and sprouts. Additional research on the processing of TB showed that sprouts and seeds retain high rutin levels even after boiling, steaming, deep-frying, stir-frying, and popping. Comparative analysis of different TB-derived products confirmed that cooked seeds and sprouts can serve as significant dietary sources of rutin. This study offers a foundational framework for the development of future dietary recommendations and applications of TB.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Yuanbin Mao
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Yu Tang
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Anhu Wang
- Xichang University, 615013 Xichang, Sichuan, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, Sichuan, China.
| |
Collapse
|
2
|
Zargar SM, Hami A, Manzoor M, Mir RA, Mahajan R, Bhat KA, Gani U, Sofi NR, Sofi PA, Masi A. Buckwheat OMICS: present status and future prospects. Crit Rev Biotechnol 2024; 44:717-734. [PMID: 37482536 DOI: 10.1080/07388551.2023.2229511] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Buckwheat (Fagopyrum spp.) is an underutilized resilient crop of North Western Himalayas belonging to the family Polygonaceae and is a source of essential nutrients and therapeutics. Common Buckwheat and Tatary Buckwheat are the two main cultivated species used as food. It is the only grain crop possessing rutin, an important metabolite with high nutraceutical potential. Due to its inherent tolerance to various biotic and abiotic stresses and a short life cycle, Buckwheat has been proposed as a model crop plant. Nutritional security is one of the major concerns, breeding for a nutrient-dense crop such as Buckwheat will provide a sustainable solution. Efforts toward improving Buckwheat for nutrition and yield are limited due to the lack of available: genetic resources, genomics, transcriptomics and metabolomics. In order to harness the agricultural importance of Buckwheat, an integrated breeding and OMICS platforms needs to be established that can pave the way for a better understanding of crop biology and developing commercial varieties. This, coupled with the availability of the genome sequences of both Buckwheat species in the public domain, should facilitate the identification of alleles/QTLs and candidate genes. There is a need to further our understanding of the molecular basis of the genetic regulation that controls various economically important traits. The present review focuses on: the food and nutritional importance of Buckwheat, its various omics resources, utilization of omics approaches in understanding Buckwheat biology and, finally, how an integrated platform of breeding and omics will help in developing commercially high yielding nutrient rich cultivars in Buckwheat.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Kaiser A Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Umar Gani
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Najeebul Rehman Sofi
- MRCFC, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, India
| | - Parvaze A Sofi
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| |
Collapse
|
3
|
Kuznetsova X, Dodueva I, Afonin A, Gribchenko E, Danilov L, Gancheva M, Tvorogova V, Galynin N, Lutova L. Whole-Genome Sequencing and Analysis of Tumour-Forming Radish ( Raphanus sativus L.) Line. Int J Mol Sci 2024; 25:6236. [PMID: 38892425 PMCID: PMC11172632 DOI: 10.3390/ijms25116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Spontaneous tumour formation in higher plants can occur in the absence of pathogen invasion, depending on the plant genotype. Spontaneous tumour formation on the taproots is consistently observed in certain inbred lines of radish (Raphanus sativus var. radicula Pers.). In this paper, using Oxford Nanopore and Illumina technologies, we have sequenced the genomes of two closely related radish inbred lines that differ in their ability to spontaneously form tumours. We identified a large number of single nucleotide variants (amino acid substitutions, insertions or deletions, SNVs) that are likely to be associated with the spontaneous tumour formation. Among the genes involved in the trait, we have identified those that regulate the cell cycle, meristem activity, gene expression, and metabolism and signalling of phytohormones. After identifying the SNVs, we performed Sanger sequencing of amplicons corresponding to SNV-containing regions to validate our results. We then checked for the presence of SNVs in other tumour lines of the radish genetic collection and found the ERF118 gene, which had the SNVs in the majority of tumour lines. Furthermore, we performed the identification of the CLAVATA3/ESR (CLE) and WUSCHEL (WOX) genes and, as a result, identified two unique radish CLE genes which probably encode proteins with multiple CLE domains. The results obtained provide a basis for investigating the mechanisms of plant tumour formation and also for future genetic and genomic studies of radish.
Collapse
Affiliation(s)
- Xenia Kuznetsova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Irina Dodueva
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Alexey Afonin
- All-Russia Research Institute for Agricultural Microbiology, 190608 Saint Petersburg, Russia (E.G.)
| | - Emma Gribchenko
- All-Russia Research Institute for Agricultural Microbiology, 190608 Saint Petersburg, Russia (E.G.)
| | - Lavrentii Danilov
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Maria Gancheva
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Varvara Tvorogova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia
| | - Nikita Galynin
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
| | - Lyudmila Lutova
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.D.); (L.D.); (V.T.); (N.G.); (L.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia
| |
Collapse
|
4
|
Lai D, Zhang K, He Y, Fan Y, Li W, Shi Y, Gao Y, Huang X, He J, Zhao H, Lu X, Xiao Y, Cheng J, Ruan J, Georgiev MI, Fernie AR, Zhou M. Multi-omics identification of a key glycosyl hydrolase gene FtGH1 involved in rutin hydrolysis in Tartary buckwheat (Fagopyrum tataricum). PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1206-1223. [PMID: 38062934 PMCID: PMC11022807 DOI: 10.1111/pbi.14259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 04/18/2024]
Abstract
Rutin, a flavonoid rich in buckwheat, is important for human health and plant resistance to external stresses. The hydrolysis of rutin to quercetin underlies the bitter taste of Tartary buckwheat. In order to identify rutin hydrolysis genes, a 200 genotypes mini-core Tartary buckwheat germplasm resource was re-sequenced with 30-fold coverage depth. By combining the content of the intermediate metabolites of rutin metabolism with genome resequencing data, metabolite genome-wide association analyses (GWAS) eventually identified a glycosyl hydrolase gene FtGH1, which could hydrolyse rutin to quercetin. This function was validated both in Tartary buckwheat overexpression hairy roots and in vitro enzyme activity assays. Mutation of the two key active sites, which were determined by molecular docking and experimentally verified via overexpression in hairy roots and transient expression in tobacco leaves, exhibited abnormal subcellular localization, suggesting functional changes. Sequence analysis revealed that mutation of the FtGH1 promoter in accessions of two haplotypes might be necessary for enzymatic activity. Co-expression analysis and GWAS revealed that FtbHLH165 not only repressed FtGH1 expression, but also increased seed length. This work reveals a potential mechanism behind rutin metabolism, which should provide both theoretical support in the study of flavonoid metabolism and in the molecular breeding of Tartary buckwheat.
Collapse
Affiliation(s)
- Dili Lai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yuqi He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yu Fan
- School of Food and Biological EngineeringChengdu UniversityChengduChina
| | - Wei Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yaliang Shi
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yuanfen Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xu Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jiayue He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Hui Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xiang Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yawen Xiao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | | | - Jingjun Ruan
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Milen I. Georgiev
- Laboratory of Metabolomics, Institute of MicrobiologyBulgarian Academy of SciencesPlovdivBulgaria
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
- Department of Molecular PhysiologyMax‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Meiliang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
5
|
Yu X, Wang Y, Yan X, Leng T, Xie J, Yu Q, Chen Y. Metabolomics Combined with Correlation Analysis Revealed the Differences in Antioxidant Activities of Lotus Seeds with Varied Cultivars. Foods 2024; 13:1084. [PMID: 38611388 PMCID: PMC11011491 DOI: 10.3390/foods13071084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Functional foods have potential health benefits for humans. Lotus seeds (LS) as functional foods have excellent antioxidant activities. However, the differences in chemical composition of different LS cultivars may affect their antioxidant activities. This study comprehensively analyzed the differences among five LS cultivars based on metabolomics and further revealed the effects of metabolites on antioxidant activities by correlation analysis. A total of 125 metabolites were identified in LS using UPLC-Q/TOF-MS. Then, 15 metabolites were screened as differential metabolites of different LS cultivars by chemometrics. The antioxidant activities of LS were evaluated by DPPH•, FRAP, and ABTS•+ assays. The antioxidant activities varied among different LS cultivars, with the cultivar Taikong 66 showing the highest antioxidant activities. The correlation analysis among metabolites and antioxidant activities highlighted the important contribution of phenolics and alkaloids to the antioxidant activities of LS. Particularly, 11 metabolites such as p-coumaric acid showed significant positive correlation with antioxidant activities. Notably, 6 differential metabolites screened in different LS cultivars showed significant effects on antioxidant activities. These results revealed the important effects of phytochemicals on the antioxidant activities of different LS cultivars. This study provided evidence for the health benefits of different LS cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
6
|
Li J, Li X, Jia C, Liu D. Gene Cloning and Characterization of Transcription Factor FtNAC10 in Tartary Buckwheat ( Fagopyrum tataricum (L.) Gaertn.). Int J Mol Sci 2023; 24:16317. [PMID: 38003506 PMCID: PMC10671190 DOI: 10.3390/ijms242216317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
NAC transcription factors play a significant role in plant stress responses. In this study, an NAC transcription factor, with a CDS of 792 bp encoding 263 amino acids, was cloned from Fagopyrum tataricum (L.) Gaertn. (F. tataricum), a minor cereal crop, which is rich in flavonoids and highly stress resistant. The transcription factor was named FtNAC10 (NCBI accession number: MK614506.1) and characterized as a member of the NAP subgroup of NAC transcriptions factors. The gene exhibited a highly conserved N-terminal, encoding about 150 amino acids, and a highly specific C-terminal. The resulting protein was revealed to be hydrophilic, with strong transcriptional activation activity. FtNAC10 expression occurred in various F. tataricum tissues, most noticeably in the root, and was regulated differently under various stress treatments. The over-expression of FtNAC10 in transgenic Arabidopsis thaliana (A. thaliana) seeds inhibited germination, and the presence of FtNAC10 enhanced root elongation under saline and drought stress. According to phylogenetic analysis and previous reports, our experiments indicate that FtNAC10 may regulate the stress response or development of F. tataricum through ABA-signaling pathway, although the mechanism is not yet known. This study provides a reference for further analysis of the regulatory function of FtNAC10 and the mechanism that underlies stress responses in Tartary buckwheat.
Collapse
Affiliation(s)
- Jinghuan Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China; (J.L.); (D.L.)
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohua Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China; (J.L.); (D.L.)
| | - Caihua Jia
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Dahui Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China; (J.L.); (D.L.)
| |
Collapse
|
7
|
Fang X, Wang Y, Cui J, Yue L, Jiang A, Liu J, Wu Y, He X, Li C, Zhang J, Ding M, Yi Z. Transcriptome and metabolome analyses reveal the key genes related to grain size of big grain mutant in Tartary Buckwheat ( Fagopyrum tartaricum). FRONTIERS IN PLANT SCIENCE 2022; 13:1079212. [PMID: 36618631 PMCID: PMC9815120 DOI: 10.3389/fpls.2022.1079212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Grain size with high heritability and stability is an important selection target during Tartary buckwheat breeding. However, the mechanisms that regulate Tartary buckwheat grain development are unknown. We generated transcriptome and metabolome sequencing from 10 and 15 days past anthesis (DPA) grains of big grain mutant (bg1) and WT, and identified 4108 differentially expressed genes (DEGs) including 93 significantly up-regulated differential genes and 85 significantly down-regulated genes in both stages, simultaneously. Meanwhile, we identified DEGs involved in ubiquitin-proteasome pathway, HAI-KU (IKU) pathway, mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone (auxin, brassinosteroids and cytokinins) transduction pathway and five transcription factor families, including APETALA (AP2), GROWTH-REGULATING FACTORS (GRF), AUXIN RESPONSE FACTOR (ARF), WRKY and MYB. Weighted gene co-expression network analysis (WGCNA) was performed and obtained 9 core DEGs. Conjoint analyses of transcriptome and metabolome sequencing screened out 394 DEGs. Using a combined comprehensive analysis, we identified 24 potential candidate genes that encode E3 ubiquitin-protein ligase HIP1, EMBRYO-DEFECTIVE (EMB) protein, receptor-like protein kinase FERONIA (FER), kinesin-4 protein SRG1, and so on, which may be associated with the big-grain mutant bg1. Finally, a quantitative real-time Polymerase Chain Reaction (qRT-PCR) assay was conducted to validate the identified DEGs. Our results provide additional knowledge for identification and functions of causal candidate genes responsible for the variation in grain size and will be an invaluable resource for the genetic dissection of Tartary buckwheat high-yield molecular breeding.
Collapse
Affiliation(s)
- Xiaomei Fang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yingqian Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jingbin Cui
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Linqing Yue
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Aohua Jiang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiaqi Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yichao Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xingxing He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Chunhua Li
- Baicheng Academy of Agricultural Sciences of Jilin Province, Baicheng, Jilin, China
| | - Jian Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Mengqi Ding
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Zelin Yi
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
8
|
Zhang Z, Zhang J, Lu P, Wu B, Liu M, Gao J, Wang C, Bai K, Guo G. Six Underutilized Grain Crops for Food and Nutrition in China. PLANTS 2022; 11:plants11192451. [PMID: 36235316 PMCID: PMC9572796 DOI: 10.3390/plants11192451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Underutilized grain crops are an essential part of the food system that supports humankind. A number of these crops can be found in China, such as barley, buckwheat, broomcorn millet, foxtail millet, oat, and sorghum, which have characteristics such as containing more nutritional elements, being resistant to biotic and abiotic stresses, and having strong adaptability to poor environments. The diversity of these crops provides options for farmers’ livelihoods and healthy food for the population. Although some mentioned crops such as barley, oat, and sorghum are not underutilized crops globally, they could be considered underutilized in China as they were more important in the past and could be revitalized for food and nutrition in the future. This paper reviews current progress in research and development in the areas of germplasm resource conservation, variety improvement, cultivation technologies, processing, and the nutrition and benefits of six underutilized grain crops in China. It is concluded that underutilized grain crops could play a critical role in food and nutritional security in China.
Collapse
Affiliation(s)
- Zongwen Zhang
- Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Alliance of Bioversity International and International Centre for Tropical Agriculture, Beijing 100081, China
- Correspondence: (Z.Z.); (G.G.)
| | - Jing Zhang
- Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ping Lu
- Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Wu
- Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minxuan Liu
- Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Gao
- Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunchao Wang
- Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Keyu Bai
- Alliance of Bioversity International and International Centre for Tropical Agriculture, Beijing 100081, China
- Institute of Agricultural Resources and Regional Planning of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ganggang Guo
- Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Z.Z.); (G.G.)
| |
Collapse
|
9
|
Jiang L, Liu C, Fan Y, Wu Q, Ye X, Li Q, Wan Y, Sun Y, Zou L, Xiang D, Lv Z. Dynamic transcriptome analysis suggests the key genes regulating seed development and filling in Tartary buckwheat (Fagopyrum tataricum Garetn.). Front Genet 2022; 13:990412. [PMID: 36072657 PMCID: PMC9441574 DOI: 10.3389/fgene.2022.990412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tartary buckwheat is highly attractive for the richness of nutrients and quality, yet post-embryonic seed abortion greatly halts the yield. Seed development is crucial for determining grain yield, whereas the molecular basis and regulatory network of Tartary buckwheat seed development and filling is not well understood at present. Here, we assessed the transcriptional dynamics of filling stage Tartary buckwheat seeds at three developmental stages by RNA sequencing. Among the 4249 differentially expressed genes (DEGs), genes related to seed development were identified. Specifically, 88 phytohormone biosynthesis signaling genes, 309 TFs, and 16 expansin genes participating in cell enlargement, 37 structural genes involved in starch biosynthesis represented significant variation and were candidate key seed development genes. Cis-element enrichment analysis indicated that the promoters of differentially expressed expansin genes and starch biosynthesis genes are rich of hormone-responsive (ABA-, AUX-, ET-, and JA-), and seed growth-related (MYB, MYC and WRKY) binding sites. The expansin DEGs showed strong correlations with DEGs in phytohormone pathways and transcription factors (TFs). In total, phytohormone ABA, AUX, ET, BR and CTK, and related TFs could substantially regulate seed development in Tartary buckwheat through targeting downstream expansin genes and structural starch biosynthetic genes. This transcriptome data could provide a theoretical basis for improving yield of Tartary buckwheat.
Collapse
Affiliation(s)
- Liangzhen Jiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yanxia Sun
- College of Tourism and Culture Industry, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Dabing Xiang, ; Zhibin Lv,
| | - Zhibin Lv
- Department of Medical Instruments and Information, College of Biomedical Engineering, Sichuan University, Chengdu, China
- *Correspondence: Dabing Xiang, ; Zhibin Lv,
| |
Collapse
|
10
|
Variation in Phenolic Compounds and Antioxidant Activity of Various Organs of African Cabbage ( Cleome gynandra L.) Accessions at Different Growth Stages. Antioxidants (Basel) 2021; 10:antiox10121952. [PMID: 34943055 PMCID: PMC8750509 DOI: 10.3390/antiox10121952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 01/18/2023] Open
Abstract
The presence of nutritional and health-benefiting compounds has increased awareness of orphan leafy vegetables such as Cleome gynandra (CG), whose phytochemicals vary among accessions and organs during growth. This study investigated the polyphenol accumulation and antioxidant activities (AOA) of eight CG accessions from the vegetative stage to the seed set stage. Plants were separated into leaves and stem (LS), flowers, and silique organs, and extracts were analyzed for total phenolic content (TPC), total flavonoid content (TFC), rutin and astragalin content, and AOA using 2,2-diphenyl-1-picrylhydrazyl-hydrate (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). There were significant interaction effects of growth stages and accessions that contributed to changes in compounds content and AOA. TPC accumulated in plant generative parts, whereas flavonoids accumulated in young plant organs. HPLC profiling revealed that rutin was the most abundant compound in all organs, with flowers having the highest levels, while astragalin was only found in flowers. Silique extracts, particularly accession KF-14, recorded the highest TPC, which corresponded to the strongest radical scavenging activity in ABTS and DPPH assays and a strong linear correlation. The germplasm contained accessions with significantly different and varying levels of bioactive compounds and AOA. These findings potentiate the exploitation of CG organs such as siliques for AOA, flowers for rutin and astragalin, and young shoots for flavonoids. Moreover, the significant accumulation of the compounds in particular accessions of the germplasms suggest that such superior accessions may be useful candidates in genetic breeding programs to improve CG vegetable.
Collapse
|
11
|
Liu M, Yang L, Cai M, Feng C, Zhao Z, Yang D, Ding P. Transcriptome analysis reveals important candidate gene families related to oligosaccharides biosynthesis in Morindaofficinalis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:1061-1071. [PMID: 34601436 DOI: 10.1016/j.plaphy.2021.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Morinda officinalis How (MO) is one of the best-known traditional herbs and is widely cultivated in subtropical and tropical areas for many years, especially in southern China. Oligosaccharides are the major constituents in the roots of MO, which is well known for its therapeutic effects with anti-depression, anti-osteoporosis, memory-enhancing, ect. To date, the main gene families that regulate the biosynthetic pathway of MO oligosaccharides metabolism yet have been published. In our study, six cDNA libraries generated from six plants of MO were sequenced utilizing an Illumina HiSeq 4000 platform. Corresponding totals of more than 132.60 million clean reads were obtained from the six libraries and assembled into 25,812 unigenes with an average length of 1288 bp. Moreover, 6036 unigenes were found to be allocated to 26 pathways maps using several public databases, and 2538 differential expression genes (DEGs) were screened. Among them, 25 genes from three families were selected as the mainly candidate genes related to MO oligosaccharides biosynthesis. Then, the expression patterns of six DEGs closely related to MO oligosaccharides biosynthesis were verified by quantitative real-time PCR (qRT-PCR). Besides, the MO was clustered more closely to Coffea arabica of Rubiaceae. In summary, the transcriptomic analysis was used to investigate the differences in expression genes of oligosaccharides biosynthesis, with the notable outcome that several key gene families were closely linked to oligosaccharides biosynthesis.
Collapse
Affiliation(s)
- Mengyun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Li Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Miaomiao Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chong Feng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhimin Zhao
- School of Pharmacy, Sun Yat-sen University, Guangzhou, 510006, China
| | - Depo Yang
- School of Pharmacy, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Li H, Meng H, Sun X, Deng J, Shi T, Zhu L, Lv Q, Chen Q. Integrated microRNA and transcriptome profiling reveal key miRNA-mRNA interaction pairs associated with seed development in Tartary buckwheat (Fagopyrum tataricum). BMC PLANT BIOLOGY 2021; 21:132. [PMID: 33750309 PMCID: PMC7941931 DOI: 10.1186/s12870-021-02914-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/01/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Tartary buckwheat seed development is an extremely complex process involving many gene regulatory pathways. MicroRNAs (miRNAs) have been identified as the important negative regulators of gene expression and performed crucial regulatory roles in various plant biological processes. However, whether miRNAs participate in Tartary buckwheat seed development remains unexplored. RESULTS In this study, we first identified 26 miRNA biosynthesis genes in the Tartary buckwheat genome and described their phylogeny and expression profiling. Then we performed small RNA (sRNA) sequencing for Tartary buckwheat seeds at three developmental stages to identify the miRNAs associated with seed development. In total, 230 miRNAs, including 101 conserved and 129 novel miRNAs, were first identified in Tartary buckwheat, and 3268 target genes were successfully predicted. Among these miRNAs, 76 exhibited differential expression during seed development, and 1534 target genes which correspond to 74 differentially expressed miRNAs (DEMs) were identified. Based on integrated analysis of DEMs and their targets expression, 65 miRNA-mRNA interaction pairs (25 DEMs corresponding to 65 target genes) were identified that exhibited significantly opposite expression during Tartary buckwheat seed development, and 6 of the miRNA-mRNA pairs were further verified by quantitative real-time polymerase chain reaction (qRT-PCR) and ligase-mediated rapid amplification of 5' cDNA ends (5'-RLM-RACE). Functional annotation of the 65 target mRNAs showed that 56 miRNA-mRNA interaction pairs major involved in cell differentiation and proliferation, cell elongation, hormones response, organogenesis, embryo and endosperm development, seed size, mineral elements transport, and flavonoid biosynthesis, which indicated that they are the key miRNA-mRNA pairs for Tartary buckwheat seed development. CONCLUSIONS Our findings provided insights for the first time into miRNA-mediated regulatory pathways in Tartary buckwheat seed development and suggested that miRNAs play important role in Tartary buckwheat seed development. These findings will be help to study the roles and regulatory mechanism of miRNAs in Tartary buckwheat seed development.
Collapse
Affiliation(s)
- Hongyou Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China.
| | - Hengling Meng
- Key Laboratory of High-Quality Crops Cultivation and Safety Control of Yunnan Province, Honghe University, Honghe, 661100, China
| | - Xiaoqian Sun
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Liwei Zhu
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Qiuyu Lv
- School of Big Data and Computer Science, Guizhou Normal University, Guiyang, 550025, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
13
|
Shi TX, Li RY, Zheng R, Chen QF, Li HY, Huang J, Zhu LW, Liang CG. Mapping QTLs for 1000-grain weight and genes controlling hull type using SNP marker in Tartary buckwheat (Fagopyrum tataricum). BMC Genomics 2021; 22:142. [PMID: 33639857 PMCID: PMC7913328 DOI: 10.1186/s12864-021-07449-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tartary buckwheat (Fagopyrum tataricum), an important pseudocereal crop, has high economic value due to its nutritional and medicinal properties. However, dehulling of Tartary buckwheat is difficult owing to its thick and tough hull, which has greatly limited the development of the Tartary buckwheat processing industry. The construction of high-resolution genetic maps serves as a basis for identifying quantitative trait loci (QTLs) and qualitative trait genes for agronomic traits. In this study, a recombinant inbred lines (XJ-RILs) population derived from a cross between the easily dehulled Rice-Tartary type and Tartary buckwheat type was genotyped using restriction site-associated DNA (RAD) sequencing to construct a high-density SNP genetic map. Furthermore, QTLs for 1000-grain weight (TGW) and genes controlling hull type were mapped in multiple environments. RESULTS In total, 4151 bin markers comprising 122,185 SNPs were used to construct the genetic linkage map. The map consisted of 8 linkage groups and covered 1444.15 cM, with an average distance of 0.35 cM between adjacent bin markers. Nine QTLs for TGW were detected and distributed on four loci on chromosome 1 and 4. A major locus detected in all three trials was mapped in 38.2-39.8 cM region on chromosome 1, with an LOD score of 18.1-37.0, and explained for 23.6-47.5% of the phenotypic variation. The genes controlling hull type were mapped to chromosome 1 between marker Block330 and Block331, which was closely followed by the major locus for TGW. The expression levels of the seven candidate genes controlling hull type present in the region between Block330 and Block336 was low during grain development, and no significant difference was observed between the parental lines. Six non-synonymous coding SNPs were found between the two parents in the region. CONCLUSIONS We constructed a high-density SNP genetic map for the first time in Tartary buckwheat. The mapped major loci controlling TGW and hull type will be valuable for gene cloning and revealing the mechanism underlying grain development and easy dehulling, and marker-assisted selection in Tartary buckwheat.
Collapse
Affiliation(s)
- Tao-Xiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, Guizhou, China.
| | - Rui-Yuan Li
- Key Laboratory of Information and Computing Science of Guizhou Province, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Ran Zheng
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Qing-Fu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Hong-You Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Juan Huang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Li-Wei Zhu
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| | - Cheng-Gang Liang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, Guizhou, China
| |
Collapse
|
14
|
Comparative transcriptome analysis of Rheum australe, an endangered medicinal herb, growing in its natural habitat and those grown in controlled growth chambers. Sci Rep 2021; 11:3702. [PMID: 33580100 PMCID: PMC7881009 DOI: 10.1038/s41598-020-79020-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/02/2020] [Indexed: 01/30/2023] Open
Abstract
Rheum australe is an endangered medicinal herb of high altitude alpine region of Himalayas and is known to possess anti-cancerous properties. Unlike many herbs of the region, R. australe has broad leaves. The species thrives well under the environmental extremes in its niche habitat, therefore an understanding of transcriptome of R. australe to environmental cues was of significance. Since, temperature is one of the major environmental variables in the niche of R. australe, transcriptome was studied in the species growing in natural habitat and those grown in growth chambers maintained at 4 °C and 25 °C to understand genes associated with different temperatures. A total of 39,136 primarily assembled transcripts were obtained from 10,17,74,336 clean read, and 21,303 unigenes could match to public databases. An analysis of transcriptome by fragments per kilobase of transcript per million, followed by validation through qRT-PCR showed 22.4% up- and 22.5% down-regulated common differentially expressed genes in the species growing under natural habitat and at 4 °C as compared to those at 25 °C. These genes largely belonged to signaling pathway, transporters, secondary metabolites, phytohormones, and those associated with cellular protection, suggesting their importance in imparting adaptive advantage to R. australe in its niche.
Collapse
|
15
|
Luthar Z, Germ M, Likar M, Golob A, Vogel-Mikuš K, Pongrac P, Kušar A, Pravst I, Kreft I. Breeding Buckwheat for Increased Levels of Rutin, Quercetin and Other Bioactive Compounds with Potential Antiviral Effects. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1638. [PMID: 33255469 PMCID: PMC7760024 DOI: 10.3390/plants9121638] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022]
Abstract
Common buckwheat (Fagopyrum esculentum Moench) and Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) are sources of many bioactive compounds, such as rutin, quercetin, emodin, fagopyrin and other (poly)phenolics. In damaged or milled grain under wet conditions, most of the rutin in common and Tartary buckwheat is degraded to quercetin by rutin-degrading enzymes (e.g., rutinosidase). From Tartary buckwheat varieties with low rutinosidase activity it is possible to prepare foods with high levels of rutin, with the preserved initial levels in the grain. The quercetin from rutin degradation in Tartary buckwheat grain is responsible in part for inhibition of α-glucosidase in the intestine, which helps to maintain normal glucose levels in the blood. Rutin and emodin have the potential for antiviral effects. Grain embryos are rich in rutin, so breeding buckwheat with the aim of producing larger embryos may be a promising strategy to increase the levels of rutin in common and Tartary buckwheat grain, and hence to improve its nutritional value.
Collapse
Affiliation(s)
- Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (Z.L.); (M.G.); (M.L.); (A.G.); (K.V.-M.); (P.P.)
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (Z.L.); (M.G.); (M.L.); (A.G.); (K.V.-M.); (P.P.)
| | - Matevž Likar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (Z.L.); (M.G.); (M.L.); (A.G.); (K.V.-M.); (P.P.)
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (Z.L.); (M.G.); (M.L.); (A.G.); (K.V.-M.); (P.P.)
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (Z.L.); (M.G.); (M.L.); (A.G.); (K.V.-M.); (P.P.)
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Paula Pongrac
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (Z.L.); (M.G.); (M.L.); (A.G.); (K.V.-M.); (P.P.)
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Anita Kušar
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia; (A.K.); (I.P.)
| | - Igor Pravst
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia; (A.K.); (I.P.)
| | - Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia; (A.K.); (I.P.)
| |
Collapse
|
16
|
Joshi DC, Zhang K, Wang C, Chandora R, Khurshid M, Li J, He M, Georgiev MI, Zhou M. Strategic enhancement of genetic gain for nutraceutical development in buckwheat: A genomics-driven perspective. Biotechnol Adv 2019; 39:107479. [PMID: 31707074 DOI: 10.1016/j.biotechadv.2019.107479] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/15/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022]
Abstract
Buckwheat (Fagopyrum spp.) under the family Polygonaceae is an ancient pseudocereal with stupendous but less studied nutraceutical properties. The gluten free nature of protein, balanced amino acid profile and health promoting bioactive flavonoids make it a golden crop of future. Besides a scanty basic research, not much attention has been paid to the improvement of plant type and breeding of nutraceutical traits. Scanning of scientific literature indicates that adequate genetic variation exists for agronomic and nutritional traits in mainstream and wild gene pool of buckwheat. However, the currently employed conventional approaches together with poorly understood genetic mechanisms restrict effective utilization of the existing genetic variation in nutraceutical breeding of buckwheat. The latest trends in buckwheat genomics, particularly avalilabity of draft genome sequences for both the cultivated species (F. esculentum and F.tataricum) hold immense potential to overcome these limitations. Utilizing the transgenic hairy rot cultures, role of various transcription factors and gene families have been deduced in production and biosynthesis of bioactive flavonoids. Further, the acquisition of high-density genomics data coupled with the next-generation phenotyping will certainly improve our understanding of underlying genetic regulation of nutraceutical traits. The present paper highlights the application of multilayered omics interventions for tailoring a nutrient rich buckwheat cultivar and nutraceutical product development.
Collapse
Affiliation(s)
- Dinesh C Joshi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; Indian Council of Agricultural Research-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenglong Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rahul Chandora
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, Regional Station, Shimla, HP, India
| | - Muhammad Khurshid
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Jinbo Li
- Luoyang Normal University, Luoyang, China
| | - Ming He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Milen I Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
17
|
Transcriptome Analysis Reveals Key Seed-Development Genes in Common Buckwheat ( Fagopyrum esculentum). Int J Mol Sci 2019; 20:ijms20174303. [PMID: 31484314 PMCID: PMC6747174 DOI: 10.3390/ijms20174303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Seed development is an essential and complex process, which is involved in seed size change and various nutrients accumulation, and determines crop yield and quality. Common buckwheat (Fagopyrum esculentum Moench) is a widely cultivated minor crop with excellent economic and nutritional value in temperate zones. However, little is known about the molecular mechanisms of seed development in common buckwheat (Fagopyrum esculentum). In this study, we performed RNA-Seq to investigate the transcriptional dynamics and identify the key genes involved in common buckwheat seed development at three different developmental stages. A total of 4619 differentially expressed genes (DEGs) were identified. Based on the results of Gene Ontology (GO) and KEGG analysis of DEGs, many key genes involved in the seed development, including the Ca2+ signal transduction pathway, the hormone signal transduction pathways, transcription factors (TFs), and starch biosynthesis-related genes, were identified. More importantly, 18 DEGs were identified as the key candidate genes for seed size through homologous query using the known seed size-related genes from different seed plants. Furthermore, 15 DEGs from these identified as the key genes of seed development were selected to confirm the validity of the data by using quantitative real-time PCR (qRT-PCR), and the results show high consistency with the RNA-Seq results. Taken together, our results revealed the underlying molecular mechanisms of common buckwheat seed development and could provide valuable information for further studies, especially for common buckwheat seed improvement.
Collapse
|
18
|
Yi TG, Yeoung YR, Choi IY, Park NI. Transcriptome analysis of Asparagus officinalis reveals genes involved in the biosynthesis of rutin and protodioscin. PLoS One 2019; 14:e0219973. [PMID: 31329616 PMCID: PMC6645489 DOI: 10.1371/journal.pone.0219973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/05/2019] [Indexed: 12/24/2022] Open
Abstract
Garden asparagus (Asparagus officinalis L.) is a popular vegetable cultivated worldwide. The secondary metabolites in its shoot are helpful for human health. We analyzed A. officinalis transcriptomes and identified differentially expressed genes (DEGs) involved in the biosynthesis of rutin and protodioscin, which are health-promoting functional compounds, and determined their association with stem color. We sequenced the complete mRNA transcriptome using the Illumina high-throughput sequencing platform in one white, three green, and one purple asparagus cultivars. A gene set was generated by de novo assembly of the transcriptome sequences and annotated using a BLASTx search. To investigate the relationship between the contents of rutin and protodioscin and their gene expression levels, rutin and protodioscin were analyzed using high-performance liquid chromatography. A secondary metabolite analysis using high-performance liquid chromatography showed that the rutin content was higher in green asparagus, while the protodioscin content was higher in white asparagus. We studied the genes associated with the biosynthesis of the rutin and protodioscin. The transcriptomes of the five cultivars generated 336 599 498 high-quality clean reads, which were assembled into 239 873 contigs with an average length of 694 bp, using the Trinity v2.4.0 program. The green and white asparagus cultivars showed 58 932 DEGs. A comparison of rutin and protodioscin biosynthesis genes revealed that 12 of the 57 genes associated with rutin and two of the 50 genes associated with protodioscin showed more than four-fold differences in expression. These DEGs might have caused a variation in the contents of these two metabolites between green and white asparagus. The present study is possibly the first to report transcriptomic gene sets in asparagus. The DEGs putatively involved in rutin and protodioscin biosynthesis might be useful for molecular engineering in asparagus.
Collapse
Affiliation(s)
- Tae Gyu Yi
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Young Rog Yeoung
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Republic of Korea
- * E-mail: (IYC); (NIP)
| | - Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
- * E-mail: (IYC); (NIP)
| |
Collapse
|