1
|
Gholamrezapour M, Taghizadeh Ghavamabadi R, Taghavi MM, Dehghani Soltani S, Shabanizadeh A, Vazirinejad R, Taghipour Z. Efect of N-acetylcysteine on HepG2 cells which were induced into fatty liver cells. J Mol Histol 2024; 56:27. [PMID: 39630170 DOI: 10.1007/s10735-024-10313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/25/2024] [Indexed: 02/07/2025]
Abstract
Non-alcoholic fatty liver disease is a prevalent liver condition that can progress to fibrosis and cirrhosis. It also poses a risk for hepatocellular carcinoma, underscoring the importance of identifying effective treatments. N-acetylcysteine, an inhibitor of glutathione depletion, shows promise in modulating intracellular glutathione biosynthesis and combating oxidative stress, making it a potentially beneficial therapy for liver fibrosis in non-alcoholic fatty liver disease. This study assesses the impact of N-acetylcysteine on HepG2 cells which were induced into fatty liver cells was evaluated. HepG2 cells were cultured in DMEM and seeded onto six-well plates at a density of 5 × 105 cells. Following a 24-h incubation period, the cells were exposed to a medium inducing fat accumulation. Subsequently, the cells were treated with varying concentrations of N-acetylcysteine for 48 h. Some plates were utilized for Real-Time-PCR tests, while others underwent Oil Red staining. The findings indicated a significant increase in the expression of fatty acid β-oxidation genes in the group treated with 10mM N-acetylcysteine (p < 0.05), along with reduced expression of lipogenesis-related genes (p < 0.05) in N-acetylcysteine-treated groups. Analysis of apoptotic gene expression revealed decreased BAX expression but increased BCL2 expression in the N-acetylcysteine-treated groups. Oil Red staining demonstrated a dose-dependent reduction in lipid droplets compared to the control group. This study's results suggest that N-acetylcysteine has the potential to decrease lipid droplets and modulate lipid metabolism effectively.
Collapse
Affiliation(s)
- Mohammadreza Gholamrezapour
- Department of Internal Medicine, School of Medicine Ali Ibn Abitaleb Educational and Treatment Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Mohammad Mohsen Taghavi
- Department of Anatomical Sciences, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samereh Dehghani Soltani
- Department of Anatomical Sciences, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ahmad Shabanizadeh
- Department of Anatomical Sciences, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Vazirinejad
- Department of Community Medicine, School of Medicine, Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Taghipour
- Department of Anatomical Sciences, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
2
|
Sanfeliu-Redondo D, Gibert-Ramos A, Gracia-Sancho J. Cell senescence in liver diseases: pathological mechanism and theranostic opportunity. Nat Rev Gastroenterol Hepatol 2024; 21:477-492. [PMID: 38485755 DOI: 10.1038/s41575-024-00913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 06/30/2024]
Abstract
The liver is not oblivious to the passage of time, as ageing is a major risk factor for the development of acute and chronic liver diseases. Ageing produces alterations in all hepatic cells, affecting their phenotype and function and worsening the prognosis of liver disease. The ageing process also implies the accumulation of a cellular state characterized by a persistent proliferation arrest and a specific secretory phenotype named cellular senescence. Indeed, senescent cells have key roles in many physiological processes; however, their accumulation owing to ageing or pathological conditions contributes to the damage occurring in chronic diseases. The aim of this Review is to provide an updated description of the pathophysiological events in which hepatic senescent cells are involved and their role in liver disease progression. Finally, we discuss novel geroscience therapies that could be applied to prevent or improve liver diseases and age-mediated hepatic deregulations.
Collapse
Affiliation(s)
- David Sanfeliu-Redondo
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain
| | - Albert Gibert-Ramos
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain.
- Department of Visceral Surgery and Medicine, Inselspital - University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Wang X, Deng H, Lin J, Zhang K, Ni J, Li L, Fan G. Distinct roles of telomerase activity in age-related chronic diseases: An update literature review. Biomed Pharmacother 2023; 167:115553. [PMID: 37738798 DOI: 10.1016/j.biopha.2023.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
Although telomerase has low activity in somatic quiescent cells, it plays an significant roles in regenerative cells such as endothelial cells, hepatocytes, epithelial cells, and hemocytes. Telomerase activity and telomere length are critical factors in age-related chronic diseases as they are closely related to cell senescence. However, whether telomerase activity plays a key role in disease progression or whether the role of telomerase is unified among different diseases are unresolved. Considering that aging is the most important risk factor for neurodegenerative and metabolic diseases, this article will analyze the evidence, mechanism, and therapeutic potential of telomerase activity in several chronic disease, including type 2 diabetes, neurodegenerative diseases, atherosclerosis, heart failure and non-alcoholic fatty liver disease, in order to provide clues for the use of telomerase activity to target the treatment of age-related chronic diseases.
Collapse
Affiliation(s)
- Xiaodan Wang
- Medical Experiment Center, Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China
| | - Hao Deng
- Medical Experiment Center, Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China
| | - Jingyi Lin
- Medical Experiment Center, Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China
| | - Kai Zhang
- Medical Experiment Center, Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China
| | - Jingyu Ni
- Medical Experiment Center, Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China
| | - Lan Li
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guanwei Fan
- Medical Experiment Center, Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300381 Tianjin, China.
| |
Collapse
|
4
|
Yang K, Kim HH, Shim YR, Ryu T, Kim CW. Comprehensive transcriptomic analysis and meta-analysis identify therapeutic effects of N-acetylcysteine in nonalcoholic fatty liver disease. Front Pharmacol 2023; 14:1186582. [PMID: 37256235 PMCID: PMC10225598 DOI: 10.3389/fphar.2023.1186582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: The continuous rise in the prevalence of nonalcoholic fatty liver disease (NAFLD) is emerging as a global health issue. Although the protective effects of N-acetylcysteine (NAC), an antioxidant, against various diseases have been reported, it is still unclear whether NAC has therapeutic potential in NAFLD. Thus, the present meta-analysis aimed to investigate the efficacy of NAC on NAFLD in preclinical studies. Methods: By searching PubMed, Web of Science, and Cochrane Library, 13 studies were included. The methodological quality was assessed based on the SYstematic Review Centre for Laboratory animal Experimentation guideline, and heterogeneity was evaluated with I 2 and p values. Publication bias was assessed by Egger's test and sensitivity analysis was performed. Results: The results showed that NAC treatment significantly improved systemic and hepatic lipid metabolism (p < 0.01), inflammation-related liver injury (p < 0.01), glucose intolerance (p < 0.05), and hepatic steatosis (p < 0.01) by restoring hepatic glutathione (GSH) (p < 0.05) and GSH reductase (p < 0.05) levels compared to controls in NAFLD-induced animals. Consistently, in bulk, single-cell, and spatial transcriptomics data, the abovementioned target pathways of NAC were strongly associated with NAFLD development in mice and patients. Conclusion: Our study suggests that NAC has therapeutic potential for NAFLD and should be considered for future clinical trials.
Collapse
Affiliation(s)
- Keungmo Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Hoon Kim
- Life Science Research Institute, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Young-Ri Shim
- Life Science Research Institute, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Tom Ryu
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Chang Wook Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Karimi M, Ghasemzadeh Rahbardar M, Razavi BM, Hosseinzadeh H. Amifostine inhibits acrylamide-induced hepatotoxicity by inhibiting oxidative stress and apoptosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:662-668. [PMID: 37275759 PMCID: PMC10237170 DOI: 10.22038/ijbms.2023.67815.14837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/15/2023] [Indexed: 06/07/2023]
Abstract
Objectives Acrylamide (ACR) is a toxic chemical agent that can induce hepatotoxicity through different mechanisms including oxidative stress and apoptosis. Amifostine is an important hepatoprotective and anti-oxidant compound. In this research, the hepatoprotective effect of amifostine on ACR-induced hepatotoxicity in rats has been investigated. Materials and Methods Male Wistar rats were randomly divided into 7 groups, including: 1. Control group, 2. ACR (50 mg/kg, 11 days, IP), 3-5. ACR+ amifostine (25, 50, 100 mg/kg, 11 days, IP), 6. ACR+ N-acetyl cysteine (NAC) (200 mg/kg, 11 days, IP), and 7. Amifostine (100 mg/kg, 11 days, IP). At the end of the injection period, animals' liver samples were collected to determine the content of glutathione (GSH), malondialdehyde (MDA), and apoptotic proteins (B-cell lymphoma 2 (Bcl2), Bcl-2-associated X protein (Bax), and cleaved caspase-3. Serum samples were also collected to measure alanine transaminase (ALT) and aspartate transaminase (AST) levels. Results Administration of ACR increased MDA, Bax/Bcl2 ratio, cleaved caspase-3, ALT, and AST levels, and decreased GSH content compared with the control group. The administration of amifostine with ACR decreased MDA, Bax/Bcl2 ratio, cleaved caspase-3, ALT, and AST levels, and increased GSH content compared with the ACR group. Receiving NAC along with ACR reversed the alterations induced by ACR. Conclusion This study shows that pretreatment with amifostine can reduce ACR-induced toxicity in the liver tissue of rats. Since oxidative stress is one of the most important mechanisms in ACR toxicity, amifostine probably reduces the toxicity of ACR by increasing the anti-oxidant and anti-apoptotic capacity of the hepatic cells.
Collapse
Affiliation(s)
- Mostafa Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Conde de la Rosa L, Goicoechea L, Torres S, Garcia-Ruiz C, Fernandez-Checa JC. Role of Oxidative Stress in Liver Disorders. LIVERS 2022; 2:283-314. [DOI: 10.3390/livers2040023] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Oxygen is vital for life as it is required for many different enzymatic reactions involved in intermediate metabolism and xenobiotic biotransformation. Moreover, oxygen consumption in the electron transport chain of mitochondria is used to drive the synthesis of ATP to meet the energetic demands of cells. However, toxic free radicals are generated as byproducts of molecular oxygen consumption. Oxidative stress ensues not only when the production of reactive oxygen species (ROS) exceeds the endogenous antioxidant defense mechanism of cells, but it can also occur as a consequence of an unbalance between antioxidant strategies. Given the important role of hepatocytes in the biotransformation and metabolism of xenobiotics, ROS production represents a critical event in liver physiology, and increasing evidence suggests that oxidative stress contributes to the development of many liver diseases. The present review, which is part of the special issue “Oxidant stress in Liver Diseases”, aims to provide an overview of the sources and targets of ROS in different liver diseases and highlights the pivotal role of oxidative stress in cell death. In addition, current antioxidant therapies as treatment options for such disorders and their limitations for future trial design are discussed.
Collapse
Affiliation(s)
- Laura Conde de la Rosa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
- Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - José C. Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
- Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Yu Y, Ye SM, Liu DY, Yang LQ. AP39 ameliorates high fat diet-induced liver injury in young rats via alleviation of oxidative stress and mitochondrial impairment. Exp Anim 2021; 70:553-562. [PMID: 34305077 PMCID: PMC8614011 DOI: 10.1538/expanim.21-0056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complication of childhood obesity and an oxidative stress-related multisystem disease. A mitochondria-targeting hydrogen sulfide
(H2S) donor AP39 has antioxidant property, while the mechanism underlying the function of AP39 on pediatric NAFLD remains undefined. Here, 3-week-old SD rats were received a
high-fat diet (HFD) feeding and injected with AP39 (0.05 or 0.1 mg/kg/day) via the tail vein for up to 7 weeks. AP39 reduced weight gain of HFD rats and improved HFD-caused liver injury, as
evidenced by reduced liver index, improved liver pathological damage, decreased NAFLD activity score, as well as low alanine transaminase (ALT) and aspartate transaminase (AST) activities.
AP39 also reduced serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C) concentrations but increased high-density lipoprotein-cholesterol (HDL-C).
Moreover, AP39 prevented reactive oxygen species (ROS) generation, reduced MDA content and increased glutathione (GSH) level and superoxide dismutase (SOD) activity. Furthermore, AP39
increased H2S level, protected mitochondrial DNA (mtDNA), reduced mitochondrial swelling, and restored mitochondrial membrane potential (MMP) alteration. Notably, AP39 diminished
HIF-1α mRNA and protein level, possibly indicating the alleviation in mitochondrial damage. In short, AP39 protects against HFD-induced liver injury in young rats probably through
attenuating lipid accumulation, oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yue Yu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University
| | - Shu-Ming Ye
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Anhui Medical University
| | - De-Yun Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University
| | - Li-Qi Yang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University
| |
Collapse
|
8
|
Tang LJ, Rios RS, Zhang H, Byrne CD, Targher G, Zheng MH. Telomerase: a key player in the pathogenesis of non-alcoholic fatty liver disease? Expert Rev Gastroenterol Hepatol 2021; 15:811-819. [PMID: 33709875 DOI: 10.1080/17474124.2021.1903318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Introduction: Telomerase is a basic nuclear protein reverse transcriptase, which plays a key role in maintaining telomere stability, genome integrity, long-term cell activity, and potential continued proliferation.Area covered: This narrative review discusses key research advances involving telomerase in the development and progression of nonalcoholic fatty liver disease (NAFLD). The review evaluates 9a) whether the assessment of telomerase can be used as a noninvasive diagnostic tool; and (b) whether modification of telomerase function might be a useful potential therapeutic target for treatment of NAFLD. Furthermore, the relationship between telomerase and other chronic metabolic diseases is evaluated.Expert opinion: Several experimental and preclinical studies have suggested that telomerase plays an important role in the development of NAFLD. However, further mechanistic studies are needed to prove a causal relationship and to better elucidate whether the measurement of telomerase has utility as a diagnostic tool or whether pharmacological manipulation of telomerase has therapeutic potential in NAFLD treatment.
Collapse
Affiliation(s)
- Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rafael S Rios
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huai Zhang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
9
|
Alipour M, Firouzi N, Aghazadeh Z, Samiei M, Montazersaheb S, Khoshfetrat AB, Aghazadeh M. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules. BMC Biotechnol 2021; 21:6. [PMID: 33430842 PMCID: PMC7802203 DOI: 10.1186/s12896-020-00666-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background Microcapsule is considered as a promising 3D microenvironment for Bone Tissue Engineering (BTE) applications. Microencapsulation of cells in an appropriate scaffold not only protected the cells against excess stress but also promoted cell proliferation and differentiation. Through the current study, we aimed to microcapsulate the human Dental Pulp Stem Cells (hDPSCs) and evaluated the proliferation and osteogenic differentiation of those cells by using MTT assay, qRT-PCR, Alkaline phosphatase, and Alizarine Red S. Results The SEM results revealed that Alg/Gel microcapsules containing nHA showed a rough and more compact surface morphology in comparison with the Alg/Gel microcapsules. Moreover, the microencapsulation by Alg/Gel/nHA could improve cell proliferation and induce osteogenic differentiation. The cells cultured in the Alg/Gel and Alg/Gel/nHA microcapsules showed 1.4-fold and 1.7-fold activity of BMP-2 gene expression more in comparison with the control group after 21 days. The mentioned amounts for the BMP-2 gene were 2.5-fold and 4-fold more expression for the Alg/Gel and Alg/Gel/nHA microcapsules after 28 days. The nHA, addition to hDPSCs-laden Alg/Gel microcapsule, could up-regulate the bone-related gene expressions of osteocalcin, osteonectin, and RUNX-2 during the 21 and 28 days through the culturing period, too. Calcium deposition and ALP activities of the cells were observed in accordance with the proliferation results as well as the gene expression analysis. Conclusion The present study demonstrated that microencapsulation of the hDPSCs inside the Alg/Gel/nHA hydrogel could be a potential approach for regenerative dentistry in the near future. Graphical abstract ![]()
Collapse
Affiliation(s)
- Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Firouzi
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center and Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Baradar Khoshfetrat
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran.
| | - Marziyeh Aghazadeh
- Stem Cell Research Center and Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Dludla PV, Nkambule BB, Mazibuko-Mbeje SE, Nyambuya TM, Marcheggiani F, Cirilli I, Ziqubu K, Shabalala SC, Johnson R, Louw J, Damiani E, Tiano L. N-Acetyl Cysteine Targets Hepatic Lipid Accumulation to Curb Oxidative Stress and Inflammation in NAFLD: A Comprehensive Analysis of the Literature. Antioxidants (Basel) 2020; 9:E1283. [PMID: 33339155 PMCID: PMC7765616 DOI: 10.3390/antiox9121283] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Impaired adipose tissue function and insulin resistance remain instrumental in promoting hepatic lipid accumulation in conditions of metabolic syndrome. In fact, enhanced lipid accumulation together with oxidative stress and an abnormal inflammatory response underpin the development and severity of non-alcoholic fatty liver disease (NAFLD). There are currently no specific protective drugs against NAFLD, and effective interventions involving regular exercise and healthy diets have proved difficult to achieve and maintain. Alternatively, due to its antioxidant and anti-inflammatory properties, there has been growing interest in understanding the therapeutic effects of N-acetyl cysteine (NAC) against metabolic complications, including NAFLD. Here, reviewed evidence suggests that NAC blocks hepatic lipid accumulation in preclinical models of NAFLD. This is in part through the effective regulation of a fatty acid scavenger molecule (CD36) and transcriptional factors such as sterol regulatory element-binding protein (SREBP)-1c/-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Importantly, NAC appears effective in improving liver function by reducing pro-inflammatory markers such as interleukin (IL)-6 IL-1β, tumour necrosis factor alpha (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). This was primarily through the attenuation of lipid peroxidation and enhancements in intracellular response antioxidants, particularly glutathione. Very few clinical studies support the beneficial effects of NAC against NAFLD-related complications, thus well-organized randomized clinical trials are still necessary to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.B.N.); (T.M.N.)
| | - Sithandiwe E. Mazibuko-Mbeje
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2745, South Africa; (S.E.M.-M.); (K.Z.)
| | - Tawanda M. Nyambuya
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.B.N.); (T.M.N.)
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2745, South Africa; (S.E.M.-M.); (K.Z.)
| | - Samukelisiwe C. Shabalala
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| |
Collapse
|
11
|
Prieto-Oliveira P. Telomerase activation in the treatment of aging or degenerative diseases: a systematic review. Mol Cell Biochem 2020; 476:599-607. [PMID: 33001374 DOI: 10.1007/s11010-020-03929-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Telomeres are protective structures that are shortened during the lifetime, resulting in aging and degenerative diseases. Subjects experiencing aging and degenerative disorders present smaller telomeres than young and healthy ones. The size of these structures can be stabilized by telomerase, an enzyme which is inactive in adult tissues but functional in fetal and newborn tissues and adult testes and ovaries. The aim of this study was to perform a systematic review to evaluate the effect of telomerase activation in the treatment of degenerative and aging disorders. We accomplished the search using the Pubmed interface for papers published from September 1985 to April 16th, 2020. We found twenty one studies that matched our eligibility criteria. I concluded that telomerase is probably a potential and safe treatment for aging and degenerative diseases, demonstrating neither side effects nor risk of cancer in the selected studies. Further studies in humans are needed to confirm safety and efficiency of this treatment.
Collapse
Affiliation(s)
- P Prieto-Oliveira
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Pedro de Toledo Street 781, 16th Floor, Retrovirology, Vila Clementino, São Paulo, SP, CEP: 04039-032, Brazil.
| |
Collapse
|
12
|
Liver-specific knockout of B cell lymphoma 6 suppresses progression of non-alcoholic steatohepatitis in mice. Sci Rep 2020; 10:9704. [PMID: 32546802 PMCID: PMC7297717 DOI: 10.1038/s41598-020-66539-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022] Open
Abstract
The prevalence of non-alcoholic steatohepatitis (NASH) rapidly increases with metabolic disorders such as dyslipidaemia, high blood pressure, and hyperglycaemia. B cell lymphoma 6 (Bcl6), a transcriptional repressor, is essential for the formation of germinal centre B cells. In this study, we analysed the role of Bcl6 in NASH progression-associated pathological changes, such as hepatic lipid accumulation, liver fibrosis, and hepatocarcinogenesis. The roles of Bcl6 in NASH were analysed using liver-specific Bcl6 knockout (Bcl6-LKO) and control wild-type (WT) mice. The murine NASH model was established by feeding the mice with choline-deficient, L-amino-acid-defined, high-fat diet (CDAHFD). Feeding the WT mice with CDAHFD for 7 weeks induced the formation of histopathological features resembling human NASH, such as hepatic lipid accumulation, hepatocellular injury, and fibrosis. These histopathological changes were significantly attenuated in Bcl6-LKO mice. Additionally, feeding the male WT mice with CDAHFD for 38 weeks induced the formation of liver tumours, which was suppressed in Bcl6-LKO mice. These findings indicate that Bcl6 is involved in the progression of NASH and NASH-derived tumours.
Collapse
|
13
|
N-Acetylcysteine Reduced Ischemia and Reperfusion Damage Associated with Steatohepatitis in Mice. Int J Mol Sci 2020; 21:ijms21114106. [PMID: 32526845 PMCID: PMC7313069 DOI: 10.3390/ijms21114106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/22/2023] Open
Abstract
N-acetylcysteine (NAC) is a pharmacological alternative with great potential for reducing the deleterious effects of surgical procedures on patients with steatohepatitis. We evaluated the effect of NAC on hepatic ischemia/reperfusion (I/R) injury in C57BL/6J mice, 8 weeks-old, weighing 25-30 g, with steatohepatitis induced by a methionine- and choline-deficient (MCD) diet. Groups: MCD group (steatohepatitis), MCD-I/R group (steatohepatitis plus 30 min of 70% liver ischemia and 24 h of reperfusion), MCD-I/R+NAC group (same as MCD-I/R group plus 150 mg/kg NAC 15 min before ischemia), and control group (normal AIN-93M diet). Liver enzymes and histopathology; nitrite and TBARS (thiobarbituric acid reactive substances) levels; pro-inflammatory cytokines; antioxidants enzymes; Nrf2 (nuclear factor erythroid-2-related factor 2) expression; and apoptosis were evaluated. In the group treated with NAC, reductions in inflammatory infiltration; AST (aspartate aminotransferase), nitrite, and TBARS levels; GPx (gutathione peroxidase) activity; cytokines synthesis; and number of apoptotic cells were observed while the GR (glutathione reductase) activity was increased. No differences were observed in Nfr2 expression or in SOD (superoxide dismutase), CAT (catalase), and GST (glutathione S-transferase) activities. Thus, it may be concluded that NAC exerts beneficial effects on mice livers with steatohepatitis submitted to I/R by reducing oxidative stress, inflammatory response, and cell death.
Collapse
|
14
|
Šalamon Š, Kramar B, Marolt TP, Poljšak B, Milisav I. Medical and Dietary Uses of N-Acetylcysteine. Antioxidants (Basel) 2019; 8:antiox8050111. [PMID: 31035402 PMCID: PMC6562654 DOI: 10.3390/antiox8050111] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
N-acetylcysteine (NAC), a plant antioxidant naturally found in onion, is a precursor to glutathione. It has been used as a drug since the 1960s and is listed on the World Health Organization (WHO) Model List of Essential Medicines as an antidote in poisonings. There are numerous other uses or proposed uses in medicine that are still in preclinical and clinical investigations. NAC is also used in food supplements and cosmetics. Despite its abundant use, there are projections that the NAC global market will grow in the next five years; therefore, the purpose of this work is to provide a balanced view of further uses of NAC as a dietary supplement. Although NAC is considered a safe substance, the results among clinical trials are sometimes controversial or incomplete, like for many other antioxidants. More clinical trials are underway that will improve our understanding of NAC applicability.
Collapse
Affiliation(s)
- Špela Šalamon
- Center for human molecular genetics and pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia.
| | - Barbara Kramar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Tinkara Pirc Marolt
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Borut Poljšak
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
15
|
Kanda T, Matsuoka S, Yamazaki M, Shibata T, Nirei K, Takahashi H, Kaneko T, Fujisawa M, Higuchi T, Nakamura H, Matsumoto N, Yamagami H, Ogawa M, Imazu H, Kuroda K, Moriyama M. Apoptosis and non-alcoholic fatty liver diseases. World J Gastroenterol 2018; 24:2661-2672. [PMID: 29991872 PMCID: PMC6034146 DOI: 10.3748/wjg.v24.i25.2661] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/04/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
The number of patients with nonalcoholic fatty liver diseases (NAFLD) including nonalcoholic steatohepatitis (NASH), has been increasing. NASH causes cirrhosis and hepatocellular carcinoma (HCC) and is one of the most serious health problems in the world. The mechanism through which NASH progresses is still largely unknown. Activation of caspases, Bcl-2 family proteins, and c-Jun N-terminal kinase-induced hepatocyte apoptosis plays a role in the activation of NAFLD/NASH. Apoptotic hepatocytes stimulate immune cells and hepatic stellate cells toward the progression of fibrosis in the liver through the production of inflammasomes and cytokines. Abnormalities in glucose and lipid metabolism as well as microbiota accelerate these processes. The production of reactive oxygen species, oxidative stress, and endoplasmic reticulum stress is also involved. Cell death, including apoptosis, seems very important in the progression of NAFLD and NASH. Recently, inhibitors of apoptosis have been developed as drugs for the treatment of NASH and may prevent cirrhosis and HCC. Increased hepatocyte apoptosis may distinguish NASH from NAFLD, and the improvement of apoptosis could play a role in controlling the development of NASH. In this review, the association between apoptosis and NAFLD/NASH are discussed. This review could provide their knowledge, which plays a role in seeing the patients with NAFLD/NASH in daily clinical practice.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Shunichi Matsuoka
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Motomi Yamazaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Toshikatsu Shibata
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Kazushige Nirei
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hiroshi Takahashi
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Tomohiro Kaneko
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Mariko Fujisawa
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Teruhisa Higuchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hitomi Nakamura
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Naoki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hiroaki Yamagami
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Masahiro Ogawa
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hiroo Imazu
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Kazumichi Kuroda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| |
Collapse
|