1
|
Bassett S, Suganda JC, Da Silva NA. Engineering peroxisomal surface display for enhanced biosynthesis in the emerging yeast Kluyveromyces marxianus. Metab Eng 2024; 86:326-336. [PMID: 39489214 DOI: 10.1016/j.ymben.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The non-conventional yeast Kluyveromyces marxianus is a promising microbial host for industrial biomanufacturing. With the recent development of Cas9-based genome editing systems and other novel synthetic biology tools for K. marxianus, engineering of this yeast has become far more accessible. Enzyme colocalization is a proven approach to increase pathway flux and the synthesis of non-native products. Here, we engineer K. marxianus to enable peroxisomal surface display, an enzyme colocalization technique for displaying enzymes on the peroxisome membrane via an anchoring motif from the peroxin Pex15. The native KmPex15 anchoring motif was identified and fused to GFP, resulting in successful localization to the surface of the peroxisomes. To demonstrate the advantages for pathway localization, the Pseudomonas savastanoi IaaM and IaaH enzymes were co-displayed on the peroxisome surface; this increased production of indole-3-acetic acid 7.9-fold via substrate channeling effects. We then redirected pathway flux by displaying the violacein pathway enzymes VioE and VioD from Chromobacterium violaceum, increasing selectivity of proviolacein to prodeoxyviolacein by 2.5-fold. Finally, we improved direct access to peroxisomal acetyl-CoA and increased titers of the polyketide triacetic acid lactone (TAL) by 2-fold through concurrent display of the proteins Cat2, Acc1, and the type III PKS 2-pyrone synthase from Gerbera hybrida relative to the same three enzymes diffusing in the cytosol. We further improved TAL production by up to 2.1-fold through engineering peroxisome morphology and lifespan. Our findings demonstrate that peroxisomal surface display is an efficient enzyme colocalization strategy in K. marxianus and applicable for improving production of a wide range of non-native products.
Collapse
Affiliation(s)
- Shane Bassett
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, 92697-2580, USA
| | - Jonathan C Suganda
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, 92697-2580, USA
| | - Nancy A Da Silva
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, 92697-2580, USA.
| |
Collapse
|
2
|
Flores-Cosío G, García-Béjar JA, Sandoval-Nuñez D, Amaya-Delgado L. Stress response and adaptation mechanisms in Kluyveromyces marxianus. ADVANCES IN APPLIED MICROBIOLOGY 2024; 126:27-62. [PMID: 38637106 DOI: 10.1016/bs.aambs.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Kluyveromyces marxianus is a non-Saccharomyces yeast that has gained importance due to its great potential to be used in the food and biotechnology industries. In general, K. marxianus is a known yeast for its ability to assimilate hexoses and pentoses; even this yeast can grow in disaccharides such as sucrose and lactose and polysaccharides such as agave fructans. Otherwise, K. marxianus is an excellent microorganism to produce metabolites of biotechnological interest, such as enzymes, ethanol, aroma compounds, organic acids, and single-cell proteins. However, several studies highlighted the metabolic trait variations among the K. marxianus strains, suggesting genetic diversity within the species that determines its metabolic functions; this diversity can be attributed to its high adaptation capacity against stressful environments. The outstanding metabolic characteristics of K. marxianus have motivated this yeast to be a study model to evaluate its easy adaptability to several environments. This chapter will discuss overview characteristics and applications of K. marxianus and recent insights into the stress response and adaptation mechanisms used by this non-Saccharomyces yeast.
Collapse
Affiliation(s)
- G Flores-Cosío
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, Camino Arenero, Col. El Bajio, C.P., Zapopan Jalisco, A.C, Mexico
| | - J A García-Béjar
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, Camino Arenero, Col. El Bajio, C.P., Zapopan Jalisco, A.C, Mexico
| | - D Sandoval-Nuñez
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, Camino Arenero, Col. El Bajio, C.P., Zapopan Jalisco, A.C, Mexico
| | - L Amaya-Delgado
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, Camino Arenero, Col. El Bajio, C.P., Zapopan Jalisco, A.C, Mexico.
| |
Collapse
|
3
|
Gómez-Márquez C, Sandoval-Nuñez D, Gschaedler A, Romero-Gutiérrez T, Amaya-Delgado L, Morales JA. Diploid genome assembly of Kluyveromyces marxianus NRRL Y-50883 (SLP1). G3-GENES GENOMES GENETICS 2021; 12:6395360. [PMID: 34718545 PMCID: PMC8728037 DOI: 10.1093/g3journal/jkab347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022]
Abstract
The yeast Kluyveromyces marxianus SLP1 has the potential for application in biotechnological processes because it can metabolize several sugars and produce high-value metabolites. K. marxianus SLP1 is a thermotolerant yeast isolated from the mezcal process, and it is tolerant to several cell growth inhibitors such as saponins, furan aldehydes, weak acids, and phenolics compounds. The genomic differences between dairy and nondairy strains related to K. marxianus variability are a focus of research attention, particularly the pathways leading this species toward polyploidy. We report the diploid genome assembly of K. marxianus SLP1 nonlactide strain into 32 contigs to reach a size of ∼12 Mb (N50 = 1.3 Mb) and a ∼39% GC content. Genome size is consistent with the k-mer frequency results. Genome annotation by Funannotate estimated 5000 genes in haplotype A and 4910 in haplotype B. The enriched annotated genes by ontology show differences between alleles in biological processes and cellular component. The analysis of variants related to DMKU3 and between haplotypes shows changes in LAC12 and INU1, which we hypothesize can impact carbon source performance. This report presents the first polyploid K. marxianus strain recovered from nonlactic fermenting medium.
Collapse
Affiliation(s)
- Carolina Gómez-Márquez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, México
| | - Dania Sandoval-Nuñez
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Zapopan 45019, México
| | - Anne Gschaedler
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Zapopan 45019, México
| | - Teresa Romero-Gutiérrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, México
| | - Lorena Amaya-Delgado
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Zapopan 45019, México
| | - J Alejandro Morales
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, México
| |
Collapse
|
4
|
Leonel LV, Arruda PV, Chandel AK, Felipe MGA, Sene L. Kluyveromyces marxianus: a potential biocatalyst of renewable chemicals and lignocellulosic ethanol production. Crit Rev Biotechnol 2021; 41:1131-1152. [PMID: 33938342 DOI: 10.1080/07388551.2021.1917505] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Kluyveromyces marxianus is an ascomycetous yeast which has shown promising results in cellulosic ethanol and renewable chemicals production. It can survive on a variety of carbon sources under industrially favorable conditions due to its fast growth rate, thermotolerance, and acid tolerance. K. marxianus, is generally regarded as a safe (GRAS) microorganism, is widely recognized as a powerhouse for the production of heterologous proteins and is accepted by the US Food and Drug Administration (USFDA) for its pharmaceutical and food applications. Since lignocellulosic hydrolysates are comprised of diverse monomeric sugars, oligosaccharides and potential metabolism inhibiting compounds, this microorganism can play a pivotal role as it can grow on lignocellulosic hydrolysates coping with vegetal cell wall derived inhibitors. Furthermore, advancements in synthetic biology, for example CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats with Cas9)-mediated genome editing, will enable development of an engineered yeast for the production of biochemicals and biopharmaceuticals having a myriad of industrial applications. Genetic engineering companies such as Cargill, Ginkgo Bioworks, DuPont, Global Yeast, Genomatica, and several others are actively working to develop designer yeasts. Given the important traits and properties of K. marxianus, these companies may find it to be a suitable biocatalyst for renewable chemicals and fuel production on the large scale. This paper reviews the recent progress made with K. marxianus biotechnology for sustainable production of ethanol, and other products utilizing lignocellulosic sugars.
Collapse
Affiliation(s)
- L V Leonel
- Center of Exact and Technological Sciences - CCET, State University of West Paraná, Cascavel, Brazil
| | - P V Arruda
- Department of Bioprocess Engineering and Biotechnology - COEBB/TD, Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - A K Chandel
- Department of Biotechnology, School of Engineering of Lorena - EEL, University of São Paulo, Lorena, Brazil
| | - M G A Felipe
- Department of Biotechnology, School of Engineering of Lorena - EEL, University of São Paulo, Lorena, Brazil
| | - L Sene
- Center of Exact and Technological Sciences - CCET, State University of West Paraná, Cascavel, Brazil
| |
Collapse
|
5
|
Nurcholis M, Lertwattanasakul N, Rodrussamee N, Kosaka T, Murata M, Yamada M. Integration of comprehensive data and biotechnological tools for industrial applications of Kluyveromyces marxianus. Appl Microbiol Biotechnol 2019; 104:475-488. [PMID: 31781815 DOI: 10.1007/s00253-019-10224-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 12/17/2022]
Abstract
Among the so-called non-conventional yeasts, Kluyveromyces marxianus has extremely potent traits that are suitable for industrial applications. Indeed, it has been used for the production of various enzymes, chemicals, and macromolecules in addition to utilization of cell biomass as nutritional materials, feed and probiotics. The yeast is expected to be an efficient ethanol producer with advantages over Saccharomyces cerevisiae in terms of high growth rate, thermotolerance and a wide sugar assimilation spectrum. Results of comprehensive analyses of its genome and transcriptome may accelerate studies for applications of the yeast and may further increase its potential by combination with recent biotechnological tools including the CRISPR/Cas9 system. We thus review published studies by merging with information obtained from comprehensive data including genomic and transcriptomic data, which would be useful for future applications of K. marxianus.
Collapse
Affiliation(s)
- Mochamad Nurcholis
- Graduate School of Medicine, Yamaguchi University, Ube, 755-8505, Japan.,Department of Food Science and Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, 65145, Indonesia
| | - Noppon Lertwattanasakul
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Nadchanok Rodrussamee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tomoyuki Kosaka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Masayuki Murata
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Mamoru Yamada
- Graduate School of Medicine, Yamaguchi University, Ube, 755-8505, Japan. .,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan. .,Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan. .,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
6
|
Corona RI, Morales-Burgos A, Pelayo C, Arias JA, García-Sandoval JP. Substrates' and products' inhibition in fructanase production by a new Kluyveromyces marxianus CF15 from Agave tequilana fructan in a batch reactor. Bioprocess Biosyst Eng 2019; 42:1779-1791. [PMID: 31385035 DOI: 10.1007/s00449-019-02174-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/15/2019] [Indexed: 11/26/2022]
Abstract
This study focuses on fructanase production in a batch reactor by a new strain isolated from agave juice (K. marxianus var. drosophilarum) employing different Agave tequilana fructan (ATF) concentrations as substrate. The experimental data suggest that the fructanase production may be inhibited or repressed by high substrate (50 g/L) and ethanol (20.7 g/L) concentrations present in culture medium. To further analyze these phenomena an unstructured kinetic mathematical model taking into account substrate and products inhibition was proposed and fitted. The mathematical model considers six reaction kinetics and the ethanol evaporation, and predicts satisfactorily the biomass, fructan, glucose, fructose, ethanol, and fructanase behavior for different raw material initial concentrations. The proposed model is the first to satisfactorily describe the production of fructanase from branched ATF with a new strain of K. marxianus.
Collapse
Affiliation(s)
- R I Corona
- Chemical Engineering Department, University of Guadalajara, Blvd. M. García Barragán 1451, Guadalajara, Jalisco, 44430, Mexico
| | - A Morales-Burgos
- Chemical Engineering Department, University of Guadalajara, Blvd. M. García Barragán 1451, Guadalajara, Jalisco, 44430, Mexico
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Blvd. Universitarios S/N, Culiacán, Sinaloa, 80010, Mexico
| | - C Pelayo
- Chemical Engineering Department, University of Guadalajara, Blvd. M. García Barragán 1451, Guadalajara, Jalisco, 44430, Mexico
| | - J A Arias
- Laboratory of Biotechnology (CUCBA), University of Guadalajara, Km. 15.5 Carretera Guadalajara-Nogales, Zapopan, Jalisco, 45110, Mexico
| | - J P García-Sandoval
- Chemical Engineering Department, University of Guadalajara, Blvd. M. García Barragán 1451, Guadalajara, Jalisco, 44430, Mexico.
| |
Collapse
|
7
|
MIG1 as a positive regulator for the histidine biosynthesis pathway and as a global regulator in thermotolerant yeast Kluyveromyces marxianus. Sci Rep 2019; 9:9926. [PMID: 31289320 PMCID: PMC6617469 DOI: 10.1038/s41598-019-46411-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/27/2019] [Indexed: 11/08/2022] Open
Abstract
Kmmig1 as a disrupted mutant of MIG1 encoding a regulator for glucose repression in Kluyveromyces marxianus exhibits a histidine-auxotrophic phenotype. Genome-wide expression analysis revealed that only HIS4 in seven HIS genes for histidine biosynthesis was down-regulated in Kmmig1. Consistently, introduction of HIS4 into Kmmig1 suppressed the requirement of histidine. Considering the fact that His4 catalyzes four of ten steps in histidine biosynthesis, K. marxianus has evolved a novel and effective regulation mechanism via Mig1 for the control of histidine biosynthesis. Moreover, RNA-Seq analysis revealed that there were more than 1,000 differentially expressed genes in Kmmig1, suggesting that Mig1 is directly or indirectly involved in the regulation of their expression as a global regulator.
Collapse
|