1
|
Zhang M, Wang X, Chen W, Liu W, Xin J, Yang D, Zhang Z, Zheng X. Integrated bioinformatics analysis for identifying key genes and pathways in female and male patients with dilated cardiomyopathy. Sci Rep 2023; 13:8977. [PMID: 37268658 DOI: 10.1038/s41598-023-36117-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure, and males are more likely to suffer from DCM than females. This research aimed at exploring possible DCM-associated genes and their latent regulatory effects in female and male patients. WGCNA analysis found that in the yellow module, 341 and 367 key DEGs were identified in females and males, respectively. A total of 22 hub genes in females and 17 hub genes in males were identified from the PPI networks of the key DEGs based on Metascape database. And twelve and eight potential TFs of the key DEGs were also identified in females and males, respectively. Eight miRNAs of 15 key DEGs were screened in both females and males, which may be differentially expressed in females and males. Dual-luciferase reporter assay demonstrated that miR-21-5P could directly target the key gene MATN2. Furthermore, Sex differences in KEGG pathways were identified. Both KOBAS and GSEA analysis identified 19 significantly enriched pathways related to immune response in both females and males, and the TGF-β signaling pathway was exclusively identified in males. Network pharmacology analysis revealed that seven key DEGs were potential targets for the treatment of DCM, of which the OLR1 gene was only identified in males, the expression levels of the seven genes were verified by RT-PCR. The above results could offer a novel understanding of sex differences in key genes and pathways in DCM progression.
Collapse
Affiliation(s)
- Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xinzhou Wang
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Wenbo Chen
- School of Medicine, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jile Xin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Debao Yang
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Zhongyuan Zhang
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Zawadzka K, Dziedzic R, Surdacki A, Chyrchel B. Thyroid Hormones-An Underestimated Player in Dilated Cardiomyopathy? J Clin Med 2021; 10:jcm10163618. [PMID: 34441915 PMCID: PMC8397026 DOI: 10.3390/jcm10163618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is the most prevalent cardiomyopathy, typified by left ventricular dilation and systolic dysfunction. Many patients with DCM have altered thyroid status, especially lower levels of free triiodothyronine (T3) and elevated levels of thyroid-stimulating hormone. Moreover, growing evidence indicates that even subtle changes in thyroid status (especially low T3) are linked with a worse long-term prognosis and a higher risk of mortality. Notably, recent discoveries have shown that not only local myocardial thyroid hormones (THs) bioavailability could be diminished due to impaired expression of the activating deiodinase, but virtually all genes involved in TH biosynthesis are also expressed in the myocardium of DCM patients. Importantly, some studies have suggested beneficial effects of TH therapy in patients suffering from DCM. Our aim was to discuss new insights into the association between TH status and prognosis in DCM, abnormal expression of genes involved in the myocardial synthesis of TH in DCM, and the potential for TH use in the future treatment of DCM.
Collapse
Affiliation(s)
- Karolina Zawadzka
- Students’ Scientific Group at the Second Department of Cardiology, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688 Cracow, Poland; (K.Z.); (R.D.)
| | - Radosław Dziedzic
- Students’ Scientific Group at the Second Department of Cardiology, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688 Cracow, Poland; (K.Z.); (R.D.)
| | - Andrzej Surdacki
- Second Department of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688 Cracow, Poland;
| | - Bernadeta Chyrchel
- Second Department of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688 Cracow, Poland;
- Correspondence: ; Tel.: +48-12-400-2250
| |
Collapse
|
3
|
Abstract
Background The association between free triiodothyronine (FT3) and long-term prognosis in dilated cardiomyopathy (DCM) patients has not been evaluated. The purpose of this study was to determine whether the level of FT3 could provide prognostic value in patients with DCM. Methods Data of consecutive patients diagnosed with DCM were collected from October 2009 to December 2014. FT3 was measured by fluoroimmunoassay. Other biochemical markers, such as free thyroxin (FT4), thyroid-stimulating hormone, red blood cell, hemoglobin, blood urea nitrogen, and serum creatinine, were tested at the same time. Follow-up was performed every 3 months. The primary endpoint was all-cause mortality. Pearson analysis was used to evaluate the correlation of FT3 and other lab metrics with DCM patients’ prognosis. The association of long-term mortality in DCM and FT3 was compared using Cox hazards model. Results Data of 176 patients diagnosed with DCM were collected. Of them, 24 patients missed FT3 values and six patients were lost to follow-up. Altogether, data of 146 patients were analyzed. During the median follow-up time of 79.9 (53.5–159.6) months, nine patients lost, 61 patients died (non-survival group), and 85 patients survived (survival group). FT3 was significantly lower in non-survival group than that in survival group (3.65 ± 0.83 pmol/L vs. 4.36 ± 1.91 pmol/L; P = 0.003). FT3 also showed a significantly positive correlation with red blood cell and hemoglobin, negatively correlated with age, blood urea nitrogen and serum creatinine (P < 0.05), respectively. Patients in the group of lower FT3 levels (FT3 ≤3.49 pmol/L) suffered from a higher risk of all-cause mortality (P for log-rank = 0.001). In multivariate Cox regression analysis, FT3 level was significantly associated with all-cause mortality (hazard ratio: 0.70, 95% confidence interval 0.52–0.95, P for trend = 0.021). Conclusion Low levels of FT3 were associated with increased all-cause mortality in patients with DCM.
Collapse
|
4
|
Charles S, Natarajan J. Integrated regulatory network based on lncRNA-miRNA-mRNA-TF reveals key genes and sub-networks associated with dilated cardiomyopathy. Comput Biol Chem 2021; 92:107500. [PMID: 33940530 DOI: 10.1016/j.compbiolchem.2021.107500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022]
Abstract
Dilated Cardiomyopathy (DCM) is a multifactorial condition often leading to heart failure in many clinical cases. Due to the high number of DCMincidence reported as familial, a gene level network based study was conducted utilizing high throughput next generation sequencing data. We exploited the exome and transcriptome sequencing data in NCBI-SRA database to construct a high confidence scale-free regulatory network consisting of lncRNA, miRNA, mRNA and Transcription Factors (TFs). Analysis of RNA-Seq data revealed 477 differentially expressed coding transcripts and 77 lncRNAs. 268 miRNAs regulated either lncRNAs or mRNAs. Out of the 477 coding transcripts that are deregulated, 82 were TFs. We identified three major hub nodeslncRNA (XIST), miRNA (hsa-miR-195-5p) and mRNA (NOVA1) from the network. We also found putative disease associations of DCM with diabetes and DCM with hypoventillation syndrome. Five highly connected modules were also identified from the network. The hubs showed significant connectivity with the modules.Through this study we were able to gain insights into the underlying lncRNA-miRNA-mRNA-TF network. From a high throughput dataset we have isolated a handful of probable targets that may be utilized for studying the mechanisms of DCM development and progression to heart failure.
Collapse
Affiliation(s)
- Sona Charles
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu, India.
| |
Collapse
|
5
|
Yang N, Parker LE, Yu J, Jones JW, Liu T, Papanicolaou KN, Talbot CC, Margulies KB, O’Rourke B, Kane MA, Foster DB. Cardiac retinoic acid levels decline in heart failure. JCI Insight 2021; 6:137593. [PMID: 33724958 PMCID: PMC8119182 DOI: 10.1172/jci.insight.137593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/10/2021] [Indexed: 12/17/2022] Open
Abstract
Although low circulating levels of the vitamin A metabolite, all-trans retinoic acid (ATRA), are associated with increased risk of cardiovascular events and all-cause mortality, few studies have addressed whether cardiac retinoid levels are altered in the failing heart. Here, we showed that proteomic analyses of human and guinea pig heart failure (HF) were consistent with a decline in resident cardiac ATRA. Quantitation of the retinoids in ventricular myocardium by mass spectrometry revealed 32% and 39% ATRA decreases in guinea pig HF and in patients with idiopathic dilated cardiomyopathy (IDCM), respectively, despite ample reserves of cardiac vitamin A. ATRA (2 mg/kg/d) was sufficient to mitigate cardiac remodeling and prevent functional decline in guinea pig HF. Although cardiac ATRA declined in guinea pig HF and human IDCM, levels of certain retinoid metabolic enzymes diverged. Specifically, high expression of the ATRA-catabolizing enzyme, CYP26A1, in human IDCM could dampen prospects for an ATRA-based therapy. Pertinently, a pan-CYP26 inhibitor, talarozole, blunted the impact of phenylephrine on ATRA decline and hypertrophy in neonatal rat ventricular myocytes. Taken together, we submit that low cardiac ATRA attenuates the expression of critical ATRA-dependent gene programs in HF and that strategies to normalize ATRA metabolism, like CYP26 inhibition, may have therapeutic potential.
Collapse
Affiliation(s)
- Ni Yang
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lauren E. Parker
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jianshi Yu
- Mass Spectrometry Center and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Jace W. Jones
- Mass Spectrometry Center and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Ting Liu
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - C. Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth B. Margulies
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian O’Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maureen A. Kane
- Mass Spectrometry Center and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - D. Brian Foster
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Cutie S, Huang GN. Vertebrate cardiac regeneration: evolutionary and developmental perspectives. CELL REGENERATION 2021; 10:6. [PMID: 33644818 PMCID: PMC7917145 DOI: 10.1186/s13619-020-00068-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Cardiac regeneration is an ancestral trait in vertebrates that is lost both as more recent vertebrate lineages evolved to adapt to new environments and selective pressures, and as members of certain species developmentally progress towards their adult forms. While higher vertebrates like humans and rodents resolve cardiac injury with permanent fibrosis and loss of cardiac output as adults, neonates of these same species can fully regenerate heart structure and function after injury - as can adult lower vertebrates like many teleost fish and urodele amphibians. Recent research has elucidated several broad factors hypothesized to contribute to this loss of cardiac regenerative potential both evolutionarily and developmentally: an oxygen-rich environment, vertebrate thermogenesis, a complex adaptive immune system, and cancer risk trade-offs. In this review, we discuss the evidence for these hypotheses as well as the cellular participators and molecular regulators by which they act to govern heart regeneration in vertebrates.
Collapse
Affiliation(s)
- Stephen Cutie
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA. .,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
7
|
Wang K, Ojamaa K, Samuels A, Gilani N, Zhang K, An S, Zhang Y, Tang YD, Askari B, Gerdes AM. BNP as a New Biomarker of Cardiac Thyroid Hormone Function. Front Physiol 2020; 11:729. [PMID: 32733267 PMCID: PMC7363952 DOI: 10.3389/fphys.2020.00729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cardiac re-expression of fetal genes in patients with heart failure (HF) suggests the presence of low cardiac tissue thyroid hormone (TH) function. However, serum concentrations of T3 and T4 are often normal or subclinically low, necessitating an alternative serum biomarker for low cardiac TH function to guide treatment of these patients. The clinical literature suggests that serum Brain Natriuretic Peptide (BNP) levels are inversely associated with serum triiodo-L-thyronine (T3) levels. The objective of this study was to investigate BNP as a potential serum biomarker for TH function in the heart. Methods Two animal models of thyroid hormone deficiency: (1) 8-weeks of propyl thiouracil-induced hypothyroidism (Hypo) in adult female rats were subsequently treated with oral T3 (10 μg/kg/d) for 3, 6, or 14 days; (2) HF induced by coronary artery ligation (myocardial infarction, MI) in adult female rats was treated daily with low dose oral T3 (5 μg/kg/d) for 8 or 16 wks. Results Six days of T3 treatment of Hypo rats normalized most cardiac functional parameters. Serum levels of BNP increased 5-fold in Hypo rats, while T3 treatment normalized BNP by day 14, showing a significant inverse relationship between serum BNP and free or total T3 concentrations. Myocardial BNP mRNA was increased 2.5-fold in Hypo rats and its expression was decreased to normal values by 14 days of T3 treatment. Measurements of hemodynamic function showed significant dysfunction in MI rats after 16 weeks, with serum BNP increased by 4.5-fold and serum free and total T3 decreased significantly. Treatment with T3 decreased serum BNP while increasing total T3 indicating an inverse correlation between these two biologic factors (r 2 = 0.676, p < 0.001). Myocardial BNP mRNA was increased 5-fold in MI rats which was significantly decreased by T3 over 8 to 16 week treatment periods. Conclusions Results from the two models of TH dysfunction confirmed an inverse relationship between tissue and serum T3 and BNP, such that the reduction in serum BNP could potentially be utilized to monitor efficacy and dosing of T3 treatment. Thus, serum BNP may serve as a reliable biomarker for cardiac TH function.
Collapse
Affiliation(s)
- Kaihao Wang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States.,Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaie Ojamaa
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Abigail Samuels
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Nimra Gilani
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Kuo Zhang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States.,Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shimin An
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States.,Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Yi-Da Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bardia Askari
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Anthony Martin Gerdes
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| |
Collapse
|
8
|
Li M, Parker BL, Pearson E, Hunter B, Cao J, Koay YC, Guneratne O, James DE, Yang J, Lal S, O'Sullivan JF. Core functional nodes and sex-specific pathways in human ischaemic and dilated cardiomyopathy. Nat Commun 2020; 11:2843. [PMID: 32487995 PMCID: PMC7266817 DOI: 10.1038/s41467-020-16584-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Poor access to human left ventricular myocardium is a significant limitation in the study of heart failure (HF). Here, we utilise a carefully procured large human heart biobank of cryopreserved left ventricular myocardium to obtain direct molecular insights into ischaemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM), the most common causes of HF worldwide. We perform unbiased, deep proteomic and metabolomic analyses of 51 left ventricular (LV) samples from 44 cryopreserved human ICM and DCM hearts, compared to age-, gender-, and BMI-matched, histopathologically normal, donor controls. We report a dramatic reduction in serum amyloid A1 protein in ICM hearts, perturbed thyroid hormone signalling pathways and significant reductions in oxidoreductase co-factor riboflavin-5-monophosphate and glycolytic intermediate fructose-6-phosphate in both; unveil gender-specific changes in HF, including nitric oxide-related arginine metabolism, mitochondrial substrates, and X chromosome-linked protein and metabolite changes; and provide an interactive online application as a publicly-available resource.
Collapse
Affiliation(s)
- Mengbo Li
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Evangeline Pearson
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Benjamin Hunter
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jacob Cao
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yen Chin Koay
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Oneka Guneratne
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Sydney Medical School, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Jean Yang
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sean Lal
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia. .,Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia. .,Central Clinical School, Sydney Medical School, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia. .,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| | - John F O'Sullivan
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia. .,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia. .,Heart Research Institute, The University of Sydney, Sydney, NSW, Australia. .,Central Clinical School, Sydney Medical School, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia. .,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| |
Collapse
|
9
|
Godlewska M, Banga PJ. Thyroid peroxidase as a dual active site enzyme: Focus on biosynthesis, hormonogenesis and thyroid disorders of autoimmunity and cancer. Biochimie 2019; 160:34-45. [DOI: 10.1016/j.biochi.2019.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/05/2019] [Indexed: 01/02/2023]
|
10
|
Gil-Cayuela C, López A, Martínez-Dolz L, González-Juanatey JR, Lago F, Roselló-Lletí E, Rivera M, Portolés M. The altered expression of autophagy-related genes participates in heart failure: NRBP2 and CALCOCO2 are associated with left ventricular dysfunction parameters in human dilated cardiomyopathy. PLoS One 2019; 14:e0215818. [PMID: 31009519 PMCID: PMC6476534 DOI: 10.1371/journal.pone.0215818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/09/2019] [Indexed: 02/02/2023] Open
Abstract
This study aimed to analyze changes in the expression of autophagy- and phagocytosis-related genes in patients with dilated cardiomyopathy (DCM), especially in relation to left ventricular (LV) dysfunction. Furthermore, transmission electron microscopy of the diseased tissue was carried out to investigate if the gene expression changes are translated into ultrastructural alterations. LV tissue samples from patients with DCM (n = 13) and from controls (CNT; n = 10) were analyzed by RNA-sequencing, whereupon the altered expression (P < 0.05) of 13 autophagy- and 3 phagocytosis-related genes was observed. The expression changes of the autophagy-related genes NRBP2 and CALCOCO2 were associated with cardiac dysfunction and remodeling (P < 0.05). The affected patients had a higher activity of these degradation processes, as evidenced by the greater number of autophagic structures in the DCM tissue (P < 0.001). Differences in the ultrastructural distribution were also found between the DCM and CNT tissues. These results show that in patients with DCM, the altered expression of NRBP2 and CALCOCO2 is related to LV dysfunction and remodeling. Clarification of the molecular mechanisms of cardiac autophagy would help in the future development of therapies to improve LV performance.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adrenergic beta-Antagonists/therapeutic use
- Adult
- Angiotensin-Converting Enzyme Inhibitors/therapeutic use
- Autophagy/genetics
- Autophagy-Related Proteins/genetics
- Autophagy-Related Proteins/metabolism
- Cardiomyopathy, Dilated/drug therapy
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/physiopathology
- Case-Control Studies
- Diuretics/therapeutic use
- Female
- Gene Expression Profiling
- Gene Expression Regulation
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Humans
- Male
- Middle Aged
- Mineralocorticoid Receptor Antagonists/therapeutic use
- Myocardium/metabolism
- Myocardium/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sequence Analysis, RNA
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
Collapse
Affiliation(s)
- Carolina Gil-Cayuela
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Alejandro López
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Luis Martínez-Dolz
- Heart Failure and Transplantation Unit, Cardiology Department, La Fe University Hospital, Valencia, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Esther Roselló-Lletí
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
- * E-mail: (MPS); (ERL)
| | - Miguel Rivera
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Manuel Portolés
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
- * E-mail: (MPS); (ERL)
| |
Collapse
|
11
|
Forini F, Nicolini G, Pitto L, Iervasi G. Novel Insight Into the Epigenetic and Post-transcriptional Control of Cardiac Gene Expression by Thyroid Hormone. Front Endocrinol (Lausanne) 2019; 10:601. [PMID: 31555215 PMCID: PMC6727178 DOI: 10.3389/fendo.2019.00601] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormone (TH) signaling is critically involved in the regulation of cardiovascular physiology. Even mild reductions of myocardial TH levels, as occur in hypothyroidism or low T3 state conditions, are thought to play a role in the progression of cardiac disorders. Due to recent advances in molecular mechanisms underlying TH action, it is now accepted that TH-dependent modulation of gene expression is achieved at multiple transcriptional and post-transcriptional levels and involves the cooperation of many processes. Among them, the epigenetic remodeling of chromatin structure and the interplay with non-coding RNA have emerged as novel TH-dependent pathways that add further degrees of complexity and broaden the network of genes controlled by TH signaling. Increasing experimental and clinical findings indicate that aberrant function of these regulatory mechanisms promotes the evolution of cardiac disorders such as post-ischemic injury, pathological hypertrophy, and heart failure, which may be reversed by the correction of the underlying TH dyshomeostasis. To encourage the clinical implementation of a TH replacement strategy in cardiac disease, here we discuss the crucial effect of epigenetic modifications and control of non-coding RNA in TH-dependent regulation of biological processes relevant for cardiac disease evolution.
Collapse
|
12
|
Soler Arias EA, Castillo VA, Garcia JD, Fyfe JC. Congenital dyshormonogenic hypothyroidism with goiter caused by a sodium/iodide symporter (SLC5A5) mutation in a family of Shih-Tzu dogs. Domest Anim Endocrinol 2018; 65:1-8. [PMID: 29777899 DOI: 10.1016/j.domaniend.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/20/2018] [Accepted: 04/17/2018] [Indexed: 01/09/2023]
Abstract
An iodide transport defect (ITD) in the thyroid gland was determined to cause congenital dyshormonogenic hypothyroidism with goiter (CDHG) in 2 members of a family of Shih-Tzu dogs. Strikingly, both dogs were also diagnosed with dilated cardiomyopathy at 24 and 1.5 mo of age. The only sign of hypothyroidism was a moderate growth delay in the adult dog. The ITD was recognized by the absence of uptake of technetium-99m in the salivary glands (sg) and goiter observed by scintigraphy. In the same scan, radiopharmaceutical uptake was found in the anterior mediastinum of both dogs and in the right axillary lymph node in the oldest dog. A follicular thyroid carcinoma was diagnosed by histopathology after thyroidectomy of the older dog. An adenomatous goiter with ectopic thyroid tissue, and degenerative changes in myocardium were the findings after necropsy in the youngest dog. A homozygous mutation of the intron 9 splice acceptor site of SLC5A5 gene, encoding the sodium/iodine symporter (NIS), was found in the DNA of one of the affected dogs. The mutation was a single base transition of guanine > adenine (G > A) at position 45,024,672 of dog chromosome 20 (CFA20). Five of eight healthy dogs, including both parents of one of the dogs exhibiting CDHG, were heterozygous A/G, and the other 3 were homozygous for the wild-type allele G/G. No sequence variant was found in thyroid peroxidase of the affected dog. Congenital dyshormonogenic hypothyroidism with goiter in this family is an autosomal recessive trait. Our findings are the first evidence of an SLC5A5 mutation in dogs and establish a new genetic cause of CDHG.
Collapse
Affiliation(s)
- E A Soler Arias
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Hospital Escuela de Medicina Veterinaria, Unidad de Endocrinología, Buenos Aires, Argentina.
| | - V A Castillo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Hospital Escuela de Medicina Veterinaria, Unidad de Endocrinología, Buenos Aires, Argentina
| | - J D Garcia
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Hospital Escuela de Medicina Veterinaria, Unidad de Endocrinología, Buenos Aires, Argentina
| | - J C Fyfe
- Laboratory of Comparative Medical Genetics and Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|