1
|
Troha LU, Narvaez CA, Russell MP. Effects of Rock Type and Food Availability on Bioerosion by the Purple Sea Urchin, Strongylocentrotus purpuratus. Integr Comp Biol 2024; 64:1527-1535. [PMID: 38830805 PMCID: PMC11659677 DOI: 10.1093/icb/icae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Purple sea urchins (Strongylocentrotus purpuratus) profoundly impact nearshore rocky coasts through their feeding habits. Their intense grazing sculpts substrates through bioerosion using their teeth and spines and controls the alternative stable state dynamic between kelp bed and urchin barrens. These states have contrasting food availability for sea urchins, with abundant food in kelp beds and scarce food in barren grounds. However, the relationship between food availability and bioerosion is unknown. We predicted that when kelp is available, it would ameliorate the action of teeth on the substrate. Our 11-week long, 2 × 2 factorial experiment, crossed community state (kelp present vs absent) and rock type (sandstone vs mudstone). We also quantified the contribution of spine abrasion to bioerosion on the two rock types. The bioerosion rates did not differ between treatments with and without kelp. Although there was no significant difference in net bioerosion between the rock types, there was a large difference between the proportion of bioerosion from teeth vs spine abrasion. Approximately a third of the sandstone bioerosion was from spines whereas less than 2% of mudstone bioerosion could be attributed to spines. As anticipated, growth of sea urchins fed kelp ad-libitum was higher than food-limited sea urchins. Surprisingly, sea urchins on mudstone (which has a higher organic component) grew faster than sea urchins on sandstone. Although bioerosion rates may not differ on a per-urchin basis between community states, the sea urchin population densities between kelp beds and urchin barrens likely causes a difference in net bioerosion between these communities. Our results point to the importance of lithology on the mechanics of sea urchin bioerosion. Differences in texture, grain size, and hardness of rock substrates undoubtedly contribute to bioerosion rates and dynamics.
Collapse
Affiliation(s)
- Lukas U Troha
- Department of Biology, Villanova University, Villanova, PA 19085, USA
- Marine Resources Division, South Carolina Department of Natural Resources, Charleston, SC 29412, USA
| | - Carla A Narvaez
- Department of Biology, Villanova University, Villanova, PA 19085, USA
- Department of Biology, Rhode Island College, Providence, RI 02908, USA
| | - Michael P Russell
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
2
|
Narvaez CA, Stark AY, Russell MP. Morphological and Mechanical Tube Feet Plasticity among Populations of Sea Urchin ( Strongylocentrotus purpuratus). Integr Org Biol 2024; 6:obae022. [PMID: 38988590 PMCID: PMC11234643 DOI: 10.1093/iob/obae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/14/2024] [Indexed: 07/12/2024] Open
Abstract
Sea urchins rely on an adhesive secreted by their tube feet to cope with the hydrodynamic forces of dislodgement common in nearshore, high wave-energy environments. Tube feet adhere strongly to the substrate and detach voluntarily for locomotion. In the purple sea urchin, Strongylocentrotus purpuratus, adhesive performance depends on both the type of substrate and the population of origin, where some substrates and populations are more adhesive than others. To explore the source of this variation, we evaluated tube foot morphology (disc surface area) and mechanical properties (maximum disc tenacity and stem breaking force) of populations native to substrates with different lithologies: sandstone, mudstone, and granite. We found differences among populations, where sea urchins native to mudstone substrates had higher disc surface area and maximum disc tenacity than sea urchins native to sandstone substrates. In a lab-based reciprocal transplant experiment, we attempted to induce a plastic response in tube foot morphology. We placed sea urchins on nonnative substrates (i.e., mudstone sea urchins were placed on sandstone and vice versa), while keeping a subgroup of both populations on their original substrates as a control. Instead of a reciprocal morphological response, we found that all treatments, including the control, reduced their disc area in laboratory conditions. The results of this study show differences in morphology and mechanical properties among populations, which explains population differences in adhesive performance. Additionally, this work highlights the importance of considering the impact of phenotypic plasticity in response to captivity when interpreting the results of laboratory studies.
Collapse
Affiliation(s)
- C A Narvaez
- Department of Biology, Rhode Island College, 600 Mt Pleasant Ave., Providence, RI 02908, USA
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, USA
| | - A Y Stark
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, USA
| | - M P Russell
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, USA
| |
Collapse
|
3
|
Cortese MR, Freestone AL. When species don't move together: Non-concurrent range shifts in Eastern Pacific kelp forest communities. PLoS One 2024; 19:e0303536. [PMID: 38787811 PMCID: PMC11125554 DOI: 10.1371/journal.pone.0303536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Species range shifts due to changing ocean conditions are occurring around the world. As species move, they build new interaction networks as they shift from or into new ecological communities. Typically, species ranges are modeled individually, but biotic interactions have been shown to be important to creating more realistic modeling outputs for species. To understand the importance of consumer interactions in Eastern Pacific kelp forest species distributions, we used a Maxent framework to model a key foundation species, giant kelp (Macrocystis pyrifera), and a dominant herbivore, purple sea urchins (Strongylocentrotus purpuratus). With neither species having previously been modeled in the Eastern Pacific, we found evidence for M. pyrifera expansion in the northern section of its range, with no projected contraction at the southern range edge. Despite its known co-occurrence with M. pyrifera, models of S. purpuratus showed a non-concurrent southern range contraction and a co-occurring northern range expansion. While the co-occurring shifts may lead to increased spatial competition for suitable substrate, this non-concurrent contraction could result in community wide impacts such as herbivore release, tropicalization, or ecosystem restructuring.
Collapse
Affiliation(s)
- Mary R. Cortese
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Amy L. Freestone
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Randell Z, Kenner M, Tomoleoni J, Yee J, Novak M. Kelp-forest dynamics controlled by substrate complexity. Proc Natl Acad Sci U S A 2022; 119:e2103483119. [PMID: 35181602 PMCID: PMC8872774 DOI: 10.1073/pnas.2103483119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022] Open
Abstract
The factors that determine why ecosystems exhibit abrupt shifts in state are of paramount importance for management, conservation, and restoration efforts. Kelp forests are emblematic of such abruptly shifting ecosystems, transitioning from kelp-dominated to urchin-dominated states around the world with increasing frequency, yet the underlying processes and mechanisms that control their dynamics remain unclear. Here, we analyze four decades of data from biannual monitoring around San Nicolas Island, CA, to show that substrate complexity controls both the number of possible (alternative) states and the velocity with which shifts between states occur. The superposition of community dynamics with reconstructions of system stability landscapes reveals that shifts between alternative states at low-complexity sites reflect abrupt, high-velocity events initiated by pulse perturbations that rapidly propel species across dynamically unstable state-space. In contrast, high-complexity sites exhibit a single state of resilient kelp-urchin coexistence. Our analyses suggest that substrate complexity influences both top-down and bottom-up regulatory processes in kelp forests, highlight its influence on kelp-forest stability at both large (island-wide) and small (<10 m) spatial scales, and could be valuable for holistic kelp-forest management.
Collapse
Affiliation(s)
- Zachary Randell
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331;
| | - Michael Kenner
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA 95060
| | - Joseph Tomoleoni
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA 95060
| | - Julie Yee
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA 95060
| | - Mark Novak
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
5
|
Narvaez CA, Moura AJ, Scutella DF, Cucchiara JP, Stark AY, Russell MP. Plasticity in fluctuating hydrodynamic conditions: Tube feet regeneration in sea urchins. J Exp Biol 2022; 225:274209. [PMID: 35044457 DOI: 10.1242/jeb.242848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
Regenerating structures critical for survival provide excellent model systems for the study of phenotypic plasticity. These body components must regenerate their morphology and functionality quickly while subjected to different environmental stressors. Sea urchins live in high energy environments where hydrodynamic conditions pose significant challenges. Adhesive tube feet provide secure attachment to the substratum but can be amputated by predation and hydrodynamic forces. Tube feet display functional and morphological plasticity in response to environmental conditions, but regeneration to their pre-amputation status has not been achieved under quiescent laboratory settings. In this study, we assessed the effect of turbulent water movement, periodic emersion, and quiescent conditions on the regeneration process of tube feet morphology (length, disc area) and functionality (maximum disc tenacity, stem breaking force). Disc area showed significant plasticity in response to the treatments; when exposed to emersion and turbulent water movement, disc area was larger than tube feet regenerated in quiescent conditions. However, no treatment stimulated regeneration to pre-amputation sizes. Tube feet length was unaffected by treatments and remained shorter than non-amputated tube feet. Stem breaking force for amputated and not amputated treatments increased in all cases when compared to pre-amputation values. Maximum tenacity (force per unit area) was similar among tube feet subjected to simulated field conditions and amputation treatments. Our results suggest the role of active plasticity of tube feet functional morphology in response to field-like conditions and demonstrate the plastic response of invertebrates to laboratory conditions.
Collapse
Affiliation(s)
- Carla A Narvaez
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| | - Andrew J Moura
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| | - Daniel F Scutella
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| | - Jack P Cucchiara
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| | - Alyssa Y Stark
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| | - Michael P Russell
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| |
Collapse
|
6
|
Ma KCK, Redelinghuys S, Gusha MNC, Dyantyi SB, McQuaid CD, Porri F. Intertidal estimates of sea urchin abundance reveal congruence in spatial structure for a guild of consumers. Ecol Evol 2021; 11:11930-11944. [PMID: 34522351 PMCID: PMC8427589 DOI: 10.1002/ece3.7958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/27/2022] Open
Abstract
We hypothesized congruence in the spatial structure of abundance data sampled across multiple scales for an ecological guild of consumers that exploit similar nutritional and habitat resources. We tested this hypothesis on the spatial organization of abundance of an herbivorous guild of sea urchins. We also examined whether the amount of local along-shore rocky habitat can explain the observed spatial patterns of abundance. Standardized estimates of abundance of four intertidal sea urchins-Diadema cf. savignyi, Echinometra mathaei, Parechinus angulosus, and Stomopneustes variolaris-were determined by six observers at 105 sites across 2,850 km of coast of South Africa. For each species and observer, wavelet analysis was used on abundance estimates, after controlling for potential biases, to examine their spatial structure. The relationship between local sea urchin abundance and the amount of upstream and downstream rocky habitat, as defined by the prevailing ocean current, was also investigated. All species exhibited robust structure at scales of 75-220 km, despite variability among observers. Less robust structure in the abundances of three species was detected at larger scales of 430-898 km. Abundance estimates of sympatric populations of two species (D. cf. savignyi and E. mathaei) were positively correlated with the amount of rocky habitat upstream of the site, suggesting that upstream populations act as larval sources across a wide range of scales. No relationship between abundance and habitat size was found for P. angulosus or S. variolaris. Within the range of scales examined, we found robust congruence in spatial structure in abundance at the lower, but not the larger, range of scales for all four species. The relationship between abundance and upstream habitat availability in two species suggests that larval supply from upstream populations was probably the mechanism linking habitat size and abundance.
Collapse
Affiliation(s)
- Kevin C. K. Ma
- Department of Zoology and EntomologyRhodes UniversityGrahamstownSouth Africa
| | - Suzanne Redelinghuys
- Department of Zoology and EntomologyRhodes UniversityGrahamstownSouth Africa
- South African Institute for Aquatic BiodiversityGrahamstownSouth Africa
| | - Molline N. C. Gusha
- Department of Zoology and EntomologyRhodes UniversityGrahamstownSouth Africa
| | | | | | - Francesca Porri
- Department of Zoology and EntomologyRhodes UniversityGrahamstownSouth Africa
- South African Institute for Aquatic BiodiversityGrahamstownSouth Africa
| |
Collapse
|
7
|
Bradley DJ, Boada J, Gladstone W, Glasby TM, Gribben PE. Sublethal effects of a rapidly spreading native alga on a key herbivore. Ecol Evol 2021; 11:12605-12616. [PMID: 34594524 PMCID: PMC8462141 DOI: 10.1002/ece3.8005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 11/10/2022] Open
Abstract
Multiple anthropogenic stressors are causing a global decline in foundation species, including macrophytes, often resulting in the expansion of functionally different, more stressor-tolerant macrophytes. Previously subdominant species may experience further positive demographic feedback if they are exposed to weaker plant-herbivore interactions, possibly via decreased palatability or being structurally different from the species they are replacing. However, the consequences of the spread of opportunistic macrophytes for the local distribution and life history of herbivores are unknown.The green alga, Caulerpa filiformis, previously a subdominant macrophyte on low intertidal-shallow subtidal rock shores, is becoming locally more abundant and has spread into warmer waters across the coast of New South Wales, Australia.In this study, we measured (a) the distribution and abundance of a key consumer, the sea urchin Heliocidaris erythrogramma, across a seascape at sites where C. filiformis has become dominant, (b) performed behavioral field experiments to test the role of habitat selection in determining the local distribution of H. erythrogramma, and (c) consumer experiments to test differential palatability between previously dominant higher quality species like Ecklonia radiata and Sargassum sp. and C. filiformis and the physiological consequences of consuming it.At all sites, urchin densities were positively correlated with distance away from C. filiformis beds, and they actively moved away from beds. Feeding experiments showed that, while urchins consumed C. filiformis, sometimes in equal amounts to higher quality algae, there were strong sublethal consequences associated with C. filiformis consumption, mainly on reproductive potential (gonad size). Specifically, the gonad size of urchins that fed on C. filiformis was equivalent to that in starved urchins. There was also a tendency for urchin mortality to be greater when fed C. filiformis.Overall, strong negative effects on herbivore life-history traits and potentially their survivorship may establish further positive feedback on C. filiformis abundance that contributes to its spread and may mediate shifts from top-down to bottom-up control at locations where C. filiformis has become dominant.
Collapse
Affiliation(s)
- Daniel J. Bradley
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
- Centre for Marine Science and InnovationBiological, Earth and Environmental SciencesUniversity of New South Wales (UNSW)KensingtonNSWAustralia
| | - Jordi Boada
- Centre for Marine Science and InnovationBiological, Earth and Environmental SciencesUniversity of New South Wales (UNSW)KensingtonNSWAustralia
- Institute of Aquatic EcologyFaculty of SciencesUniversity of GironaGironaSpain
| | - William Gladstone
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
| | - Timothy M. Glasby
- NSW Department of Primary IndustriesPort Stephens Fisheries InstituteTaylors BeachNSWAustralia
| | - Paul E. Gribben
- Centre for Marine Science and InnovationBiological, Earth and Environmental SciencesUniversity of New South Wales (UNSW)KensingtonNSWAustralia
- Sydney Institute of Marine ScienceMosmanNSWAustralia
| |
Collapse
|
8
|
Crofts SB, Stankowich T. Stabbing Spines: A review of the Biomechanics and Evolution of Defensive Spines. Integr Comp Biol 2021; 61:655-667. [PMID: 34038530 DOI: 10.1093/icb/icab099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spines are ubiquitous in both plants and animals, and while most spines were likely originally used for defense, over time many have been modified in a variety of ways. Here we take an integrative approach to review the form, function, and evolution of spines as a defensive strategy in order to make new connections between physical mechanisms and functional behavior. While this review focuses on spines in mammals, we reference and draw ideas from the literature on spines in other taxa, including plants. We begin by exploring the biomechanics of defensive spines, their varied functions, and nondefensive modifications. We pay particular attention to the mechanics involved in passive puncture and the ways organisms have overcome limitations associated with the low energy input. We then focus on the ecological, physiological, and behavioral factors that promote the evolution of spiny defenses, including predator- and habitat-mediated hypotheses. While there is considerable evidence to support both, studies have generally found that (1) defensive spines are usually effective against one class of attacker (e.g., larger predators) but ineffective against or even facilitate predation by others and (2) species that are more visible or exposed to predators are under much stronger selection to evolve defensive spines or some other robust defense. What type of defensive morphology that evolves, however, is less predictable and probably strongly dependent on both the dominant source of predation and the habitat structure of the organism (e.g., arboreal, terrestrial, and fossorial). We then explore traits that often are correlated with defensive spines and armor, potentially forming armor syndromes, suites of traits that evolve together with body armor in a correlated fashion. In mammals, these include aposematic warning coloration, locomotion style, diet, metabolic rate, and relative brain size. Finally, we encourage integration of mechanistic, behavioral, and evolutionary studies of defensive spines and suggest future avenues of research in the biomechanics, evolution, and behavior of spines and spiny organisms.
Collapse
Affiliation(s)
| | - Theodore Stankowich
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| |
Collapse
|
9
|
Janetzki N, Benkendorff K, Fairweather PG. Lack of general associations between intertidal assemblages and rock hardness. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan Janetzki
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia5001Australia
| | - Kirsten Benkendorff
- Marine Ecology Research Centre School of Environment, Science and Engineering Southern Cross University Lismore New South Wales Australia
| | - Peter G. Fairweather
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia5001Australia
| |
Collapse
|
10
|
Kołbuk D, Di Giglio S, M'Zoudi S, Dubois P, Stolarski J, Gorzelak P. Effects of seawater Mg 2+ /Ca 2+ ratio and diet on the biomineralization and growth of sea urchins and the relevance of fossil echinoderms to paleoenvironmental reconstructions. GEOBIOLOGY 2020; 18:710-724. [PMID: 32772500 DOI: 10.1111/gbi.12409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
It has been argued that skeletal Mg/Ca ratio in echinoderms is mostly governed by Mg2+ and Ca2+ concentrations in the ambient seawater. Accordingly, well-preserved fossil echinoderms were used to reconstruct Phanerozoic seawater Mg2+ /Ca2+ ratio. However, Mg/Ca ratio in echinoderm skeleton can be affected by a number of environmental and physiological factors, the effects of which are still poorly understood. Notably, experimental data supporting the applicability of echinoderms in paleoenvironmental reconstructions remain limited. Here, we investigated the effect of ambient Mg2+ /Ca2+ seawater ratio and diet on skeletal Mg/Ca ratio and growth rate in two echinoid species (Psammechinus miliaris and Prionocidaris baculosa). Sea urchins were tagged with manganese and then cultured in different Mg2+ /Ca2+ conditions to simulate fluctuations in the Mg2+ /Ca2+ seawater ratios in the Phanerozoic. Simultaneously, they were fed on a diet containing different amounts of magnesium. Our results show that the skeletal Mg/Ca ratio in both species varied not only between ossicle types but also between different types of stereom within a single ossicle. Importantly, the skeletal Mg/Ca ratio in both species decreased proportionally with decreasing seawater Mg2+ /Ca2+ ratio. However, sea urchins feeding on Mg-enriched diet produced a skeleton with a higher Mg/Ca ratio. We also found that although incubation in lower ambient Mg2+ /Ca2+ ratio did not affect echinoid respiration rates, it led to a decrease or inhibition of their growth. Overall, these results demonstrate that although skeletal Mg/Ca ratios in echinoderms can be largely determined by seawater chemistry, the type of diet may also influence skeletal geochemistry, which imposes constraints on the application of fossil echinoderms as a reliable proxy. The accuracy of paleoseawater Mg2+ /Ca2+ calculations is further limited by the fact that Mg partition coefficients vary significantly at different scales (between species, specimens feeding on different types of food, different ossicle types, and stereom types within a single ossicle).
Collapse
Affiliation(s)
- Dorota Kołbuk
- Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
| | - Sarah Di Giglio
- Laboratoire de Biologie Marine, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Saloua M'Zoudi
- Laboratoire de Biologie Marine, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Philippe Dubois
- Laboratoire de Biologie Marine, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
| | | | | |
Collapse
|
11
|
Stark AY, Narvaez CA, Russell MP. Adhesive plasticity among populations of purple sea urchin ( Strongylocentrotus purpuratus). J Exp Biol 2020; 223:jeb228544. [PMID: 32587066 DOI: 10.1242/jeb.228544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/19/2020] [Indexed: 12/30/2022]
Abstract
Sea urchins native to the nearshore open coast experience periods of high, repeated wave forces that can result in dislodgement. To remain attached while clinging and locomoting across rocky substrates, sea urchins use adhesive tube feet. Purple sea urchins (Strongylocentrotus purpuratus) adhere to a variety of rock substrates (e.g. sandstone, mudstone, granite), and display morphological plasticity (skeletal morphology) to native substrate. We tested the hypothesis that their adhesive system is also plastic and varies as a function of native population and substrate. The results of our study support our hypothesis. Sea urchins from sandstone adhere less strongly to most substrates than those native to mudstone and granite rock. Sandstone produced the lowest whole animal adhesive force values across all populations, suggesting that this rock type is particularly challenging for sea urchins to adhere to. The number of adhesive tube feet that failed during experimental trials and the area used by sea urchins to attach, matches closely with whole animal adhesive force values: higher forces resulted in more tube foot failure and larger attachment area. On artificial substrates (glass and Plexiglass), differences in adhesion among populations was consistent with differences in adhesion on rock substrates except on glass, where sea urchins native to sandstone adhered more strongly to glass than any other substrate tested. To our knowledge, this study is the first to describe population-level plasticity in a biological adhesive system related to native substrate, and has significant implications for sea urchin ecology, behavior and functional morphology.
Collapse
Affiliation(s)
- Alyssa Y Stark
- Department of Biology, Villanova University, 800 E. Lancaster Avenue, Villanova, Pennsylvania 19085, USA
| | - Carla A Narvaez
- Department of Biology, Villanova University, 800 E. Lancaster Avenue, Villanova, Pennsylvania 19085, USA
| | - Michael P Russell
- Department of Biology, Villanova University, 800 E. Lancaster Avenue, Villanova, Pennsylvania 19085, USA
| |
Collapse
|
12
|
Kołbuk D, Dubois P, Stolarski J, Gorzelak P. Effects of seawater chemistry (Mg 2+/Ca 2+ ratio) and diet on the skeletal Mg/Ca ratio in the common sea urchin Paracentrotus lividus. MARINE ENVIRONMENTAL RESEARCH 2019; 145:22-26. [PMID: 30777345 DOI: 10.1016/j.marenvres.2019.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
It has been argued that concentration of major metallic ions such as Mg2+ and Ca2+ plays a role in determining the composition of the echinoderm skeleton. Consequently, in several studies Mg/Ca ratio from modern and fossil echinoderm ossicles was used as a proxy of secular Mg2+/Ca2+ changes of Phanerozoic seawater. However, although significant progress has been made in understanding biomineralization of echinoderms, it is still largely unknown what are the sources and physiological pathways of major ions that contribute to skeleton formation. Herein we tested the effects of modifications of ambient seawater Mg2+/Ca2+ ratio (which is typically ∼5) and Mg-enrichment of the diet on the Mg/Ca ratio in regenerating spines of sea urchin Paracentrotus lividus under experimental conditions. We found that sea urchins cultured in seawater with Mg2+/Ca2+ ratio decreased to ∼1.9 produced a skeleton with also decreased Mg/Ca ratio. However, the skeleton of specimens fed on a Mg-enriched diet showed significantly higher Mg/Ca ratio. This suggests that the seawater is an important but not the only source of ions that contributes to the Mg/Ca ratio of the skeleton. Consequently, the reliability of geochemical models that link directly seawater chemistry with the Mg/Ca ratio of the skeleton should be reevaluated.
Collapse
Affiliation(s)
- Dorota Kołbuk
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, PL-00-818, Warsaw, Poland
| | - Philippe Dubois
- Université Libre de Bruxelles, Faculté des Sciences, Laboratoire de Biologie Marine, CP 160/15, av. F.D. Roosevelt, 50 B-1050, Bruxelles, Belgium
| | - Jarosław Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, PL-00-818, Warsaw, Poland
| | - Przemysław Gorzelak
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, PL-00-818, Warsaw, Poland.
| |
Collapse
|