1
|
Luo Q, Duan F, Song W. Transcriptomics integrated with metabolomics reveals the defense response of insect-resistant Zea mays infested with Spodoptera exigua. Heliyon 2025; 11:e42565. [PMID: 40034323 PMCID: PMC11872508 DOI: 10.1016/j.heliyon.2025.e42565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Maize (Zea mays) is one of the most important cereal crops worldwide. Insect control through host plant resistance plays an important part in improving both yield and quality of maize. Spodoptera exigua is a common insect pest causing destructive damages to maize. To comprehensively understand molecular mechanism of maize defense against S. exigua, integrated transcriptomics and metabolomics analyses were conducted in the insect-resistant maize inbred line CML139 infested with S. exigua for 24 h. 9845 differentially expressed genes and 34 significantly changed metabolites were identified in infested leaves. Maize transcriptional response to S. exigua infestation involved in genes encoding enzymes in biosynthetic process (ribosome, glycerolipid, glycerophospholipid metabolism), genes in valine, leucine and isoleucine degradation, phenylpropanoid pathway and transcription factors. By metabolism analysis, accumulations of amino acids, organic acids, phenylpropanoids and benzoxazinoids (Bxs) were significantly enhanced, with the exception of salicylic acid (SA) and jasmonic acid (JA). The integrated analysis of transcriptomic and metabolic data demonstrated that both transcripts and metabolites involved in phenylpropanoid and Bxs biosynthesis were differentially modulated in S. exigua infested leaves. This study is valuable in understanding the complex mechanism of interaction between plants and insect herbivores and provide a potential strategy to maize pest control.
Collapse
Affiliation(s)
- Qiulan Luo
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, People's Republic of China
| | - Fangmeng Duan
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Wenwen Song
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| |
Collapse
|
2
|
Xu S, Ren S, Bao W, Li X, Zhang Y, Yu B, Li W, Li C, Dong W, Yang G. Identification of the toxin components of Rhizoctonia solani AG1-IA and its destructive effect on plant cell membrane structure. FRONTIERS IN PLANT SCIENCE 2024; 15:1348257. [PMID: 38414644 PMCID: PMC10896845 DOI: 10.3389/fpls.2024.1348257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Rice sheath blight is a fungal disease caused mainly by Rhizoctonia solani AG1-IA. Toxins are a major pathogenic factor of R. solani, and some studies have reported their toxin components; however, there is no unified conclusion. In this study, we reported the toxin components and their targets that play a role in R. solani AG1-IA. First, toxins produced by R. solani AG1-IA were examined. Several important phytotoxins, including benzoic acid (BZA), 5-hydroxymethyl-2-furanic aid (HFA), and catechol (CAT), were identified by comparative analysis of secondary metabolites from AG1-IA, AG1-IB, and healthy rice. Follow-up studies have shown that the toxin components of this fungus can rapidly disintegrate the biofilm structure while maintaining the content of host plant membrane components, thereby affecting the organelles, which may also explain the lack of varieties highly resistant to sheath blight.
Collapse
Affiliation(s)
- Shanshan Xu
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shaofeng Ren
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Wenjing Bao
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiaoguang Li
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yumei Zhang
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan, China
| | - Buzhu Yu
- Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Weiqi Li
- Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chengyun Li
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wenhan Dong
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Genhua Yang
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Serag A, Salem MA, Gong S, Wu JL, Farag MA. Decoding Metabolic Reprogramming in Plants under Pathogen Attacks, a Comprehensive Review of Emerging Metabolomics Technologies to Maximize Their Applications. Metabolites 2023; 13:424. [PMID: 36984864 PMCID: PMC10055942 DOI: 10.3390/metabo13030424] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
In their environment, plants interact with a multitude of living organisms and have to cope with a large variety of aggressions of biotic or abiotic origin. What has been known for several decades is that the extraordinary variety of chemical compounds the plants are capable of synthesizing may be estimated in the range of hundreds of thousands, but only a fraction has been fully characterized to be implicated in defense responses. Despite the vast importance of these metabolites for plants and also for human health, our knowledge about their biosynthetic pathways and functions is still fragmentary. Recent progress has been made particularly for the phenylpropanoids and oxylipids metabolism, which is more emphasized in this review. With an increasing interest in monitoring plant metabolic reprogramming, the development of advanced analysis methods should now follow. This review capitalizes on the advanced technologies used in metabolome mapping in planta, including different metabolomics approaches, imaging, flux analysis, and interpretation using bioinformatics tools. Advantages and limitations with regards to the application of each technique towards monitoring which metabolite class or type are highlighted, with special emphasis on the necessary future developments to better mirror such intricate metabolic interactions in planta.
Collapse
Affiliation(s)
- Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Mohamed A. Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom 32511, Menoufia, Egypt
| | - Shilin Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| |
Collapse
|
4
|
de Moraes Pontes JG, da Silva Pinheiro MS, Fill TP. Unveiling Chemical Interactions Between Plants and Fungi Using Metabolomics Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:1-20. [PMID: 37843803 DOI: 10.1007/978-3-031-41741-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Metabolomics has been extensively used in clinical studies in the search for new biomarkers of human diseases. However, this approach has also been highlighted in agriculture and biological sciences, once metabolomics studies have been assisting researchers to deduce new chemical mechanisms involved in biological interactions that occur between microorganisms and plants. In this sense, the knowledge of the biological role of each metabolite (virulence factors, signaling compounds, antimicrobial metabolites, among others) and the affected biochemical pathways during the interaction contribute to a better understand of different ecological relationships established in nature. The current chapter addresses five different applications of the metabolomics approach in fungal-plant interactions research: (1) Discovery of biomarkers in pathogen-host interactions, (2) plant diseases diagnosis, (3) chemotaxonomy, (4) plant defense, and (5) plant resistance; using mass spectrometry and/or nuclear magnetic resonance spectroscopy, which are the techniques most used in metabolomics.
Collapse
Affiliation(s)
- João Guilherme de Moraes Pontes
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil
| | - Mayra Suelen da Silva Pinheiro
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil
| | - Taícia Pacheco Fill
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil.
| |
Collapse
|
5
|
Nanosheet-Facilitated Spray Delivery of dsRNAs Represents a Potential Tool to Control Rhizoctonia solani Infection. Int J Mol Sci 2022; 23:ijms232112922. [DOI: 10.3390/ijms232112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Rhizoctonia solani is one of the important pathogenic fungi causing several serious crop diseases, such as maize and rice sheath blight. Current methods used to control the disease mainly depend on spraying fungicides because there is no immunity or high resistance available in crops. Spraying double-strand RNA (dsRNA) for induced-gene silencing (SIGS) is a new potentially sustainable and environmentally friendly tool to control plant diseases. Here, we found that fluorescein-labelled EGFP-dsRNA could be absorbed by R. solani in co-incubation. Furthermore, three dsRNAs, each targeting one of pathogenicity-related genes, RsPG1, RsCATA, and RsCRZ1, significantly downregulated the transcript levels of the target genes after co-incubation, leading to a significant reduction in the pathogenicity of the fungus. Only the spray of RsCRZ1 dsRNA, but not RsPG1 or RsCATA dsRNA, affected fungal sclerotium formation. dsRNA stability on leaf surfaces and its efficiency in entering leaf cells were significantly improved when dsRNAs were loaded on layered double hydroxide (LDH) nanosheets. Notably, the RsCRZ1-dsRNA-LDH approach showed stronger and more lasting effects than using RsCRZ1-dsRNA alone in controlling pathogen development. Together, this study provides a new potential method to control crop diseases caused by R. solani.
Collapse
|
6
|
Genome Analyses of the Less Aggressive Rhizoctonia solani AG1-IB Isolates 1/2/21 and O8/2 Compared to the Reference AG1-IB Isolate 7/3/14. J Fungi (Basel) 2021; 7:jof7100832. [PMID: 34682252 PMCID: PMC8537455 DOI: 10.3390/jof7100832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 01/26/2023] Open
Abstract
Rhizoctonia solani AG1-IB of the phylum Basidiomycota is known as phytopathogenic fungus affecting various economically important crops, such as bean, rice, soybean, figs, cabbage and lettuce. The isolates 1/2/21 and O8/2 of the anastomosis group AG1-IB originating from lettuce plants with bottom rot symptoms represent two less aggressive R. solani isolates, as confirmed in a pathogenicity test on lettuce. They were deeply sequenced on the Illumina MiSeq system applying the mate-pair and paired-end mode to establish their genome sequences. Assemblies of obtained sequences resulted in 2092 and 1492 scaffolds, respectively, for isolate 1/2/21 and O8/2, amounting to a size of approximately 43 Mb for each isolate. Gene prediction by applying AUGUSTUS (v. 3.2.1.) yielded 12,827 and 12,973 identified genes, respectively. Based on automatic functional annotation, genes potentially encoding cellulases and enzymes involved in secondary metabolite synthesis were identified in the AG1-IB genomes. The annotated genome sequences of the less aggressive AG1-IB isolates were compared with the isolate 7/3/14, which is highly aggressive on lettuce and other vegetable crops such as bean, cabbage and carrot. This analysis revealed the first insights into core genes of AG1-IB isolates and unique determinants of each genome that may explain the different aggressiveness levels of the strains.
Collapse
|
7
|
Li D, Li S, Wei S, Sun W. Strategies to Manage Rice Sheath Blight: Lessons from Interactions between Rice and Rhizoctonia solani. RICE (NEW YORK, N.Y.) 2021; 14:21. [PMID: 33630178 PMCID: PMC7907341 DOI: 10.1186/s12284-021-00466-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Rhizoctonia solani is an important phytopathogenic fungus with a wide host range and worldwide distribution. The anastomosis group AG1 IA of R. solani has been identified as the predominant causal agent of rice sheath blight, one of the most devastating diseases of crop plants. As a necrotrophic pathogen, R. solani exhibits many characteristics different from biotrophic and hemi-biotrophic pathogens during co-evolutionary interaction with host plants. Various types of secondary metabolites, carbohydrate-active enzymes, secreted proteins and effectors have been revealed to be essential pathogenicity factors in R. solani. Meanwhile, reactive oxygen species, phytohormone signaling, transcription factors and many other defense-associated genes have been identified to contribute to sheath blight resistance in rice. Here, we summarize the recent advances in studies on molecular interactions between rice and R. solani. Based on knowledge of rice-R. solani interactions and sheath blight resistance QTLs, multiple effective strategies have been developed to generate rice cultivars with enhanced sheath blight resistance.
Collapse
Affiliation(s)
- Dayong Li
- College of Plant Protection, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Shuai Li
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China
| | - Songhong Wei
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
8
|
Adeniji AA, Babalola OO, Loots DT. Metabolomic applications for understanding complex tripartite plant-microbes interactions: Strategies and perspectives. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 25:e00425. [PMID: 32099821 PMCID: PMC7031126 DOI: 10.1016/j.btre.2020.e00425] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 12/13/2022]
Abstract
Phytopathogens from the Alternaria sp., Fusarium sp., Penicillium sp., and Pseudomonas sp. and their toxigenic metabolites - alternariol, fumonisin, citrinin, and coronatine respectively, negatively impact crop yields and sales by eliciting plant diseases and/or causing human and veterinary toxicoses upon the consumption of contaminated food. These phytopathogens and their associated toxins, however, are present and most likely in undetectable concentrations pre-harvest and post-harvest of many major staple crops. Metabolomic approaches have been used extensively for better characterizing and diagnosing human disease, plant disease and, their etiological agents. Their use in agro-industrial research focusing specifically on tripartite (plant - toxicogenic microbe - beneficial microbe) interactions is, however, limited. Since new approaches for eradicating food-borne pathogens, increasing crop productivity and improving agro-international trade are being sought worldwide, the consequent integration of metabolomic approaches and perspectives in crop protection strategies for better understanding plant - toxicogenic microbe - beneficial microbe interaction in tandem is discussed.
Collapse
Affiliation(s)
- Adetomiwa Ayodele Adeniji
- Faculty of Natural and Agricultural Science, North-West University, Human Metabolomics Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa
| | - Olubukola Oluranti Babalola
- Faculty of Natural and Agricultural Science, North-West University, Food Security and Safety Private Bag X2046, Mmabatho, 2735, South Africa
| | - Du Toit Loots
- Faculty of Natural and Agricultural Science, North-West University, Human Metabolomics Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa
| |
Collapse
|
9
|
Castro-Moretti FR, Gentzel IN, Mackey D, Alonso AP. Metabolomics as an Emerging Tool for the Study of Plant-Pathogen Interactions. Metabolites 2020; 10:E52. [PMID: 32013104 PMCID: PMC7074241 DOI: 10.3390/metabo10020052] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Plants defend themselves from most microbial attacks via mechanisms including cell wall fortification, production of antimicrobial compounds, and generation of reactive oxygen species. Successful pathogens overcome these host defenses, as well as obtain nutrients from the host. Perturbations of plant metabolism play a central role in determining the outcome of attempted infections. Metabolomic analyses, for example between healthy, newly infected and diseased or resistant plants, have the potential to reveal perturbations to signaling or output pathways with key roles in determining the outcome of a plant-microbe interaction. However, application of this -omic and its tools in plant pathology studies is lagging relative to genomic and transcriptomic methods. Thus, it is imperative to bring the power of metabolomics to bear on the study of plant resistance/susceptibility. This review discusses metabolomics studies that link changes in primary or specialized metabolism to the defense responses of plants against bacterial, fungal, nematode, and viral pathogens. Also examined are cases where metabolomics unveils virulence mechanisms used by pathogens. Finally, how integrating metabolomics with other -omics can advance plant pathology research is discussed.
Collapse
Affiliation(s)
- Fernanda R. Castro-Moretti
- BioDiscovery Institute, University of North Texas, TX 76201, USA;
- Department of Biological Sciences, University of North Texas, TX 76201, USA
| | - Irene N. Gentzel
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA;
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA;
| | - Ana P. Alonso
- BioDiscovery Institute, University of North Texas, TX 76201, USA;
- Department of Biological Sciences, University of North Texas, TX 76201, USA
| |
Collapse
|
10
|
Integrative transcriptome analysis discloses the molecular basis of a heterogeneous fungal phytopathogen complex, Rhizoctonia solani AG-1 subgroups. Sci Rep 2019; 9:19626. [PMID: 31873088 PMCID: PMC6928066 DOI: 10.1038/s41598-019-55734-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Rhizoctonia solani is a fungal species complex that causes necrotrophic crop diseases. It comprises several anastomosis groups, some of which include intra-subgroups, such as AG-1 IA and AG-1 IB, exhibiting varying pathogenicity. Owing to its heterozygous and multinucleate features, genomic analyses of R. solani are still challenging, and understanding of its genetic diversity and genic components is limited. In this study, in order to elucidate the molecular basis of this phytopathogen complex, an integrated transcriptome analysis was undertaken for three subgroups of AG-1, i.e. AG-1 IA, AG-1 IB, and AG-1 IC. Sequence variations suggested substantial evolutionary distances within AG-1. Transcript simple sequence repeats showed comparable characteristics among AG-1, but contained polymorphic sites. Intra-subgroup polymorphisms suggested varying genic heterozygosity within AG-1, suggesting their independent evolutionary trajectory. Sequences of pathogenic factors, phytotoxin biosynthesis pathway enzymes, secreted lignocellulosic enzymes, secreted reactive oxygen species detoxification enzymes, apoplastic/cytoplasmic effector candidates, were conserved among those subgroups. dN/dS ratios of a secretome subset suggested core secreted proteins in AG-1 and distinct evolution of Cys-rich small secreted proteins after differentiation of AG-1 subgroups. Identification of likely pathogenic factors including allergen protein homologues, oxidative phosphorylation and ethylene biosynthesis pathways, and diversification of polysaccharide monooxygenases provides molecular insight into key genomic components that play a role in R. solani pathogenesis.
Collapse
|
11
|
Wang Z, Liu J, Zhong X, Li J, Wang X, Ji L, Shang X. Rapid Characterization of Chemical Components in Edible Mushroom Sparassis crispa by UPLC-Orbitrap MS Analysis and Potential Inhibitory Effects on Allergic Rhinitis. Molecules 2019; 24:E3014. [PMID: 31434231 PMCID: PMC6720900 DOI: 10.3390/molecules24163014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/28/2022] Open
Abstract
Sparassis crispa is a kind of edible fungus widely grows in the north temperate zone, which shows various medicinal properties. Due to the complexity of chemical constitutes of this species, few investigations have acquired a comprehensive configuration for the chemical profile of it. In this study, a strategy based on ultra-high performance liquid chromatography (UPLC) combined with Orbitrap mass spectrometer (MS) was established for rapidly characterizing various chemical components in S. crispa. Through the summarized MS/MS fragmentation patterns of reference compounds and systematic identification strategy, a total of 110 components attributed to six categories were identified for the first time. Moreover, allergic rhinitis (AR) is a worldwide inflammatory disease seriously affecting human health, and the development of drugs to treat AR has been a topic of interest. It has been reported that the extracts of S. crispa showed obvious inhibitory effects on degranulation of mast cell- and allergen-induced IgE and proinflammatory mediators, but the active components and specific mechanism were still not clear. Src family kinases (SFKs) participate in the initial stage of allergy occurrence, which are considered the targets of AR treatment. Herein, on the basis of that self-built chemical database, virtual screening was applied to predict the potential SFKs inhibitors in S. crispa, using known crystal structures of Hck, Lyn, Fyn, and Syk as receptors, followed by the anti-inflammatory activity evaluation for screened hits by intracellular calcium mobilization assay. As results, sparoside A was directly confirmed to have strong anti-inflammatory activity with an IC50 value of 5.06 ± 0.60 μM. This study provides a useful elucidation for the chemical composition of S. crispa, and demonstrated its potential inhibitory effects on AR, which could promote the research and development of effective agents from natural resources.
Collapse
Affiliation(s)
- Zhixin Wang
- Beijing Key Laboratory of Bioactive Substance and Functional Food, Beijing Union University, No.191 Beitucheng West Road, Haidian District, Beijing 100191, China.
| | - Jingyu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1 Mingxian South Road, Taigu County, Jinzhong 030801, China
| | - Xiangjian Zhong
- Beijing Key Laboratory of Bioactive Substance and Functional Food, Beijing Union University, No.191 Beitucheng West Road, Haidian District, Beijing 100191, China
| | - Jinjie Li
- Beijing Key Laboratory of Bioactive Substance and Functional Food, Beijing Union University, No.191 Beitucheng West Road, Haidian District, Beijing 100191, China
| | - Xin Wang
- Beijing Key Laboratory of Bioactive Substance and Functional Food, Beijing Union University, No.191 Beitucheng West Road, Haidian District, Beijing 100191, China
| | - Linlin Ji
- Beijing Key Laboratory of Bioactive Substance and Functional Food, Beijing Union University, No.191 Beitucheng West Road, Haidian District, Beijing 100191, China
| | - Xiaoya Shang
- Beijing Key Laboratory of Bioactive Substance and Functional Food, Beijing Union University, No.191 Beitucheng West Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
12
|
Chen F, Ma R, Chen XL. Advances of Metabolomics in Fungal Pathogen-Plant Interactions. Metabolites 2019; 9:metabo9080169. [PMID: 31443304 PMCID: PMC6724083 DOI: 10.3390/metabo9080169] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/02/2023] Open
Abstract
Plant disease caused by fungus is one of the major threats to global food security, and understanding fungus-plant interactions is important for plant disease control. Research devoted to revealing the mechanisms of fungal pathogen-plant interactions has been conducted using genomics, transcriptomics, proteomics, and metabolomics. Metabolomics research based on mass spectrometric techniques is an important part of systems biology. In the past decade, the emerging field of metabolomics in plant pathogenic fungi has received wide attention. It not only provides a qualitative and quantitative approach for determining the pathogenesis of pathogenic fungi but also helps to elucidate the defense mechanisms of their host plants. This review focuses on the methods and progress of metabolomics research in fungal pathogen-plant interactions. In addition, the prospects and challenges of metabolomics research in plant pathogenic fungi and their hosts are addressed.
Collapse
Affiliation(s)
- Fangfang Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ruijing Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiao-Lin Chen
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|