1
|
Roblero-Mejía DO, García-Ausencio C, Rodríguez-Sanoja R, Guzmán-Chávez F, Sánchez S. Embleporicin: A Novel Class I Lanthipeptide from the Actinobacteria Embleya sp. NF3. Antibiotics (Basel) 2024; 13:1179. [PMID: 39766569 PMCID: PMC11672506 DOI: 10.3390/antibiotics13121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Genome mining has emerged as a revolutionary tool for discovering new ribosomally synthesized and post-translationally modified peptides (RiPPs) in various genomes. Recently, these approaches have been used to detect and explore unique environments as sources of RiPP-producing microorganisms, particularly focusing on endophytic microorganisms found in medicinal plants. Some endophytic actinobacteria, especially strains of Streptomyces, are notable examples of peptide producers, as specific biosynthetic clusters encode them. To uncover the genetic potential of these organisms, we analyzed the genome of the endophytic actinobacterium Embleya sp. NF3 using genome mining and bioinformatics tools. Our analysis led to the identification of a putative class I lanthipeptide. We cloned the core biosynthetic genes of this putative lanthipeptide, named embleporicin, and expressed them in vitro using a cell-free protein system (CFPS). The resulting product demonstrated antimicrobial activity against Micrococcus luteus ATCC 9341. This represents the first RiPP reported in the genus Embleya and the first actinobacterial lanthipeptide produced through cell-free technology.
Collapse
Affiliation(s)
- Dora Onely Roblero-Mejía
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Carlos García-Ausencio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Fernando Guzmán-Chávez
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| |
Collapse
|
2
|
Ryabova OV, Gagarina AA. Actinomycetes as the Basis of Probiotics for Plants. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822070055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Khan K, Basharat Z, Jalal K, Mashraqi MM, Alzamami A, Alshamrani S, Uddin R. Identification of Therapeutic Targets in an Emerging Gastrointestinal Pathogen Campylobacter ureolyticus and Possible Intervention through Natural Products. Antibiotics (Basel) 2022; 11:antibiotics11050680. [PMID: 35625323 PMCID: PMC9137744 DOI: 10.3390/antibiotics11050680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Campylobacter ureolyticus is a Gram-negative, anaerobic, non-spore-forming bacteria that causes gastrointestinal infections. Being the most prevalent cause of bacterial enteritis globally, infection by this bacterium is linked with significant morbidity and mortality in children and immunocompromised patients. No information on pan-therapeutic drug targets for this species is available yet. In the current study, a pan-genome analysis was performed on 13 strains of C. ureolyticus to prioritize potent drug targets from the identified core genome. In total, 26 druggable proteins were identified using subtractive genomics. To the best of the authors’ knowledge, this is the first report on the mining of drug targets in C. ureolyticus. UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) was selected as a promiscuous pharmacological target for virtual screening of two bacterial-derived natural product libraries, i.e., postbiotics (n = 78) and streptomycin (n = 737) compounds. LpxC inhibitors from the ZINC database (n = 142 compounds) were also studied with reference to LpxC of C. ureolyticus. The top three docked compounds from each library (including ZINC26844580, ZINC13474902, ZINC13474878, Notoginsenoside St-4, Asiaticoside F, Paraherquamide E, Phytoene, Lycopene, and Sparsomycin) were selected based on their binding energies and validated using molecular dynamics simulations. To help identify potential risks associated with the selected compounds, ADMET profiling was also performed and most of the compounds were considered safe. Our findings may serve as baseline information for laboratory studies leading to the discovery of drugs for use against C. ureolyticus infections.
Collapse
Affiliation(s)
- Kanwal Khan
- PCMD, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (K.K.); (R.U.)
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence:
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (M.M.M.); (S.A.)
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, Al-Quwayiyah 11961, Saudi Arabia;
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (M.M.M.); (S.A.)
| | - Reaz Uddin
- PCMD, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (K.K.); (R.U.)
| |
Collapse
|
4
|
Rodríguez-Peña K, Gómez-Román MP, Macías-Rubalcava ML, Rocha-Zavaleta L, Rodríguez-Sanoja R, Sánchez S. Bioinformatic comparison of three Embleya species and description of steffimycins production by Embleya sp. NF3. Appl Microbiol Biotechnol 2022; 106:3173-3190. [PMID: 35403858 DOI: 10.1007/s00253-022-11915-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/24/2022]
Abstract
The Embleya genus is a new member of the Streptomycetaceae family formed by only two species isolated from soil (Embleya scabrispora and Embleya hyalina). Strain NF3 is an endophytic actinobacterium obtained from the medicinal tree Amphipterygium adstringens. By 16S rRNA gene analysis, NF3 strain was identified as Embleya sp., closely related to E. hyalina. In our interest to deep into the NF3 strain features, a bioinformatic study was performed on the Embleya genus based on their genome information to produce secondary metabolites. A comparative analysis of the biosynthetic gene clusters (BGCs) of NF3 with the two released Embleya genomes revealed that NF3 has 49 BGCs, E. scabrispora DSM41855 has 50 BGCs, and E. hyalina NBRC13850 has 46 BGCs. Although bearing similar cluster numbers, the three strains shared only 25% of the BGCs information. NF3 encoded the nybomycin cluster detected in E. hyalina NBRC13850 and lacked the hitachimycin cluster present in E. scabrispora DSM41855. On the contrary, strain NF3 contained a cluster for the anthracycline steffimycin, neither encoded by E. hyalina NBRC13850 nor by E. scabrispora DSM41855. Our results and previous characterization studies supported strain NF3 as a new member of the genus Embleya. The chemical analysis of the steffimycins produced by strain NF3 showed the production of eight compounds of the steffimycins and steffimycinone families. Four of these molecules have already been described: steffimycin B, steffimycin C, 8-demethoxy-10-deoxysteffimycinone, and 7-deoxiesteffimycinone, and four are new natural products: 8-demethoxysteffimycin B, 8-demethoxy-10-deoxysteffimycin B, 7-deoxy-8-demethoxysteffimycinone, and 7-deoxy-10-deoxysteffimycinone. With this information, we proposed an alternative pathway to produce StefB. Among steffimycins, StefB was the main compound produced by this strain (29.8%) and showed the best cytotoxic activity. KEY POINTS: • The Embleya genus and its biosynthetic potential • An alternative biosynthetic pathway for steffimycins biosynthesis • Four new natural products of the steffimycin family.
Collapse
Affiliation(s)
- Karol Rodríguez-Peña
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Tercer Circuito Exterior s/n, 04510, Ciudad de México, México.,Departamento de Biotecnología. Boulevard Cuauhnáhuac #566, Universidad Politécnica del Estado de Morelos, Col. Lomas del Texcal, Jiutepec, Morelos, CP, 62550, México
| | - Maria Paula Gómez-Román
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Tercer Circuito Exterior s/n, 04510, Ciudad de México, México
| | - Martha Lydia Macías-Rubalcava
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México (UNAM). Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, 04510, México
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Tercer Circuito Exterior s/n, 04510, Ciudad de México, México
| | - Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Tercer Circuito Exterior s/n, 04510, Ciudad de México, México
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Tercer Circuito Exterior s/n, 04510, Ciudad de México, México.
| |
Collapse
|
5
|
Salwan R, Kaur R, Sharma V. Genomic Organization of Streptomyces flavotricini NGL1 and Streptomyces erythrochromogenes HMS4 Reveals Differential Plant Beneficial Attributes and Laccase Production Capabilities. Mol Biotechnol 2021; 64:447-462. [PMID: 34782960 DOI: 10.1007/s12033-021-00424-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022]
Abstract
The genus Streptomyces has been explored in industrial sectors due to its endurance to environmental stresses, the production of a plethora of biomolecules, the biological remediation of soils, and alleviating plant stresses. The whole genome of NGL1 and HMS4 was sequenced due to the specific laccase activity against 2,6-dimethoxyphenol (2,6-DMP) and differential plant beneficial attributes. The deduced genome of 8.85 Mbp and 7.73 Mbp in size with a G+C content of 72.03% and 72.3% was obtained for NGL1 and HMS4, respectively. A total of 8438 and 7322 protein coding genes, 155 (130 tRNA, 25 rRNA) and 145 tRNA (121 tRNA, 24 rRNA) coding genes were predicted in NGL1 and HMS4, respectively. The comparative genomics of NGL1 and HMS4 showed 185 and 162 genes encoding for carbohydrate-active enzymes, respectively. The genomic ability of these strains to encode carbohydrate-active enzymes, laccase, and diversity of BGCs, along with plant beneficial attributes to suppress the plant pathogens can be used for several industrial and agricultural applications.
Collapse
Affiliation(s)
- Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture & Forestry, Neri, Hamirpur, HP, 177 001, India.
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, PB, 140 413, India
| | - Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, PB, 140 413, India.
| |
Collapse
|
6
|
Evolutionary genomics and biosynthetic potential of novel environmental Actinobacteria. Appl Microbiol Biotechnol 2021; 105:8805-8822. [PMID: 34716462 DOI: 10.1007/s00253-021-11659-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/19/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
Actinobacteria embroil Gram-positive microbes with high guanine and cytosine contents in their DNA. They are the source of most antimicrobials of bacterial origin utilized in medicine today. Their genomes are among the richest in novel secondary metabolites with high biotechnological potential. Actinobacteria reveal complex patterns of evolution, responses, and adaptations to their environment, which are not yet well understood. We analyzed three novel plant isolates and explored their habitat adaptation, evolutionary patterns, and potential secondary metabolite production. The phylogenomically characterized isolates belonged to Actinoplanes sp. TFC3, Streptomyces sp. L06, and Embleya sp. NF3. Positively selected genes, relevant in strain evolution, encoded enzymes for stress resistance in all strains, including porphyrin, chlorophyll, and ubiquinone biosynthesis in Embleya sp. NF3. Streptomyces sp. L06 encoded for pantothenate and proteins for CoA biosynthesis with evidence of positive selection; furthermore, Actinoplanes sp. TFC3 encoded for a c-di-GMP synthetase, with adaptive mutations. Notably, the genomes harbored many genes involved in the biosynthesis of at least ten novel secondary metabolites, with many avenues for future new bioactive compound characterization-specifically, Streptomyces sp. L06 could make new ribosomally synthesized and post-translationally modified peptides, while Embleya sp. NF3 could produce new non-ribosomal peptide synthetases and ribosomally synthesized and post-translationally modified peptides. At the same time, TFC3 has particularly enriched in terpene and polyketide synthases. All the strains harbored conserved genes in response to diverse environmental stresses, plant growth promotion factors, and degradation of various carbohydrates, which supported their endophytic lifestyle and showed their capacity to colonize other niches. This study aims to provide a comprehensive estimation of the genomic features of novel Actinobacteria. It sets the groundwork for future research into experimental tests with new bioactive metabolites with potential application in medicine, biofertilizers, and plant biomass residue utilization, with potential application in medicine, as biofertilizers and in plant biomass residues utilization. KEY POINTS: • Potential of novel environmental bacteria for secondary metabolites production • Exploring the genomes of three novel endophytes isolated from a medicinal tree • Pan-genome analysis of Actinobacteria genera.
Collapse
|
7
|
Insuk C, Kuncharoen N, Cheeptham N, Tanasupawat S, Pathom-Aree W. Bryophytes Harbor Cultivable Actinobacteria With Plant Growth Promoting Potential. Front Microbiol 2020; 11:563047. [PMID: 33133038 PMCID: PMC7550540 DOI: 10.3389/fmicb.2020.563047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/24/2020] [Indexed: 11/23/2022] Open
Abstract
This study was designed to investigate the cultivable actinobacteria associated with bryophytes and their plant growth promoting ability. Thirteen actinobacteria were isolated and tested for their ability to promote growth of plant in vitro and in planta. All isolates were able to produce IAA and siderophores. Six isolates were identified as members of the genus Micromonospora. Five isolates belonged to the genus Streptomyces and one each of Microbispora and Mycobacterium. Micromonospora sp. CMU55-4 was inoculated to rare moss [Physcomitrium sphaericum (C. Ludw.) Fürnr.] and could increase the amount of carotenoid, fresh weight, and dry weight of this moss. In addition, this strain promoted capsule production, and rescued P. sphaericum’s gametophytes during acclimatization to land. Strain CMU55-4 was identified as Micromonospora chalcea based on whole genome sequence analysis. Its plant growth promoting potential was further characterized through genome mining. The draft genome size was 6.6 Mb (73% GC). The genome contained 5,933 coding sequences. Functional annotation predicted encoded genes essential for siderophore production, phosphate solubilization that enable bacteria to survive under nutrient limited environment. Glycine-betaine accumulation and trehalose biosynthesis also aid plants under drought stress. M. chalcea CMU55-4 also exhibited genes for various carbohydrate metabolic pathways indicating those for efficient utilization of carbohydrates inside plant cells. Additionally, predictive genes for heat shock proteins, cold shock proteins, and oxidative stress such as glutathione biosynthesis were identified. In conclusion, our results demonstrate that bryophytes harbor plant growth promoting actinobacteria. A representative isolate, M. chalcea CMU55-4 promotes the growth of P. sphaericum moss and contains protein coding sequences related to plant growth promoting activities in its genome.
Collapse
Affiliation(s)
- Chadabhorn Insuk
- Master of Science Program in Applied Microbiology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nattakorn Kuncharoen
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Peng F, Zhang MY, Hou SY, Chen J, Wu YY, Zhang YX. Insights into Streptomyces spp. isolated from the rhizospheric soil of Panax notoginseng: isolation, antimicrobial activity and biosynthetic potential for polyketides and non-ribosomal peptides. BMC Microbiol 2020; 20:143. [PMID: 32493249 PMCID: PMC7271549 DOI: 10.1186/s12866-020-01832-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Background Streptomycetes from the rhizospheric soils are a rich resource of novel secondary metabolites with various biological activities. However, there is still little information related to the isolation, antimicrobial activity and biosynthetic potential for polyketide and non-ribosomal peptide discovery associated with the rhizospheric streptomycetes of Panax notoginseng. Thus, the aims of the present study are to (i) identify culturable streptomycetes from the rhizospheric soil of P. notoginseng by 16S rRNA gene, (ii) evaluate the antimicrobial activities of isolates and analyze the biosynthetic gene encoding polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) of isolates, (iii) detect the bioactive secondary metabolites from selected streptomycetes, (iv) study the influence of the selected isolate on the growth of P. notoginseng in the continuous cropping field. This study would provide a preliminary basis for the further discovery of the secondary metabolites from streptomycetes isolated from the rhizospheric soil of P. notoginseng and their further utilization for biocontrol of plants. Results A total of 42 strains representing 42 species of the genus Streptomyces were isolated from 12 rhizospheric soil samples in the cultivation field of P. notoginseng and were analyzed by 16S rRNA gene sequencing. Overall, 40 crude cell extracts out of 42 under two culture conditions showed antibacterial and antifungal activities. Also, the presence of biosynthesis genes encoding type I and II polyketide synthase (PKS I and PKS II) and nonribosomal peptide synthetases (NRPSs) in 42 strains were established. Based on characteristic chemical profiles screening by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD), the secondary metabolite profiles of strain SYP-A7257 were evaluated by High Performance Liquid Chromatography-High Resolution Mass Spectrometry (HPLC-HRMS). Finally, four compounds actinomycin X2 (F1), fungichromin (F2), thailandin B (F7) and antifungalmycin (F8) were isolated from strain SYP-A7257 by using chromatography techniques, UV, HR-ESI-MS and NMR, and their antimicrobial activities against the test bacteria and fungus were also evaluated. In the farm experiments, Streptomyces sp. SYP-A7257 showed healthy growth promotion and survival rate improvement of P. notoginseng in the continuous cropping field. Conclusions We demonstrated the P. notoginseng rhizospheric soil-derived Streptomyces spp. distribution and diversity with respect to their metabolic potential for polyketides and non-ribosomal peptides, as well as the presence of biosynthesis genes PKS I, PKS II and NRPSs. Our results showed that cultivatable Streptomyces isolates from the rhizospheric soils of P. notoginseng have the ability to produce bioactive secondary metabolites. The farm experiments suggested that the rhizospheric soil Streptomyces sp. SYP-A7257 may be a potential biological control agent for healthy growth promotion and survival rate improvement of P. notoginseng in the continuous cropping field.
Collapse
Affiliation(s)
- Fei Peng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.,Quanzhou Medical College, Quanzhou, People's Republic of China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Shao-Yang Hou
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Juan Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ying-Ying Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
9
|
Arumugaperumal A, Paul S, Lathakumari S, Balasubramani R, Sivasubramaniam S. The draft genome of a new Verminephrobacter eiseniae strain: a nephridial symbiont of earthworms. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01549-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Purpose
Verminephrobacter is a genus of symbiotic bacteria that live in the nephridia of earthworms. The bacteria are recruited during the embryonic stage of the worm and transferred from generation to generation in the same manner. The worm provides shelter and food for the bacteria. The bacteria deliver micronutrients to the worm. The present study reports the genome sequence assembly and annotation of a new strain of Verminephrobacter called Verminephrobacter eiseniae msu.
Methods
We separated the sequences of a new Verminephrobacter strain from the whole genome of Eisenia fetida using the sequence of V. eiseniae EF01-2, and the bacterial genome was assembled using the CLC Workbench. The de novo-assembled genome was annotated and analyzed for the protein domains, functions, and metabolic pathways. Besides, the multigenome comparison was performed to interpret the phylogenomic relationship of the strain with other proteobacteria.
Result
The FastqSifter sifted a total of 593,130 Verminephrobacter genomic reads. The de novo assembly of the reads generated 1832 contigs with a total genome size of 4.4 Mb. The Average Nucleotide Identity denoted the bacterium belongs to the species V. eiseniae, and the 16S rRNA analysis confirmed it as a new strain of V. eiseniae. The AUGUSTUS genome annotation predicted a total of 3809 protein-coding genes; of them, 3805 genes were identified from the homology search.
Conclusion
The bioinformatics analysis confirmed the bacterium is an isolate of V. eiseniae, and it was named Verminephrobacter eiseniae msu. The whole genome of the bacteria can be utilized as a useful resource to explore the area of symbiosis further.
Collapse
|
10
|
Salwan R, Sharma V, Sharma A, Singh A. Molecular imprints of plant beneficial Streptomyces sp. AC30 and AC40 reveal differential capabilities and strategies to counter environmental stresses. Microbiol Res 2020; 235:126449. [PMID: 32114361 DOI: 10.1016/j.micres.2020.126449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 10/24/2022]
Abstract
Streptomyces and their biomolecules are well explored for antibiotics production, bioremediation and alleviating the plant stresses due to their plant beneficial attributes. Therefore, due to plethora of biological attributes, the accurate portraying of molecular capabilities of these microorganisms at genomic level is of paramount importance. Here, we have evaluated biochemical attributes of two Streptomyces sp. AC30and AC40 for different plant beneficial activities which are antagonistic to Fusarium oxysporum, Alternaria solani, Sclerotinia sclerotium and Phytopthora infestans. In parallel, the draft genomes of these strains were deduced to understand their genomic capabilities using Illumina platform. The complete genome of AC30and AC40 were 11,284,599 bp and 12,636,188 bp in size with total G + C content of 62.36 and 54.75 %, respectively. Overall, higher number of genes (14,024) was reported for AC40 as compared to AC30 (12,476). The comparative genome organization revealed sharing of a few biosynthetic clusters as well as some exclusive biosynthetic clusters among both the strains. Further, expansion in the chitinases and glucanases was found in the genome of AC40. In addition, genes for 3-phytase and glycosyl hydrolase family 19 were restricted to AC40 only. The comparative genome study revealed presence of plant induced nitrilase in AC40 which is predicted for its role in IAA biosynthesis, release of ammonia, biotransformation of nitrile compounds to corresponding acids and bioremediation of soil containing nitrile compounds. For IAA and secondary metabolites biosynthesis, flavin-dependent monooxygenase, a rate limiting factor in Trp-dependent auxin biosynthesis pathway was found exclusive to AC30 genome. The comparative study revealed the diversification of few pathways/strategies to suppress plant pathogens and promote plant growth by Streptomyces strains.
Collapse
Affiliation(s)
- Richa Salwan
- College of Horticulture and Forestry, (Dr YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, 177 001, HP, India.
| | - Vivek Sharma
- University Centre for Research and Development, Chandigarh University, 140413, India.
| | - Anu Sharma
- University Centre for Research and Development, Chandigarh University, 140413, India
| | - Ankita Singh
- Bionivid Technology Private Limited Kasturi Nagar, Bangalore-560043, India
| |
Collapse
|
11
|
Fiore CL, Jarett JK, Steinert G, Lesser MP. Trait-Based Comparison of Coral and Sponge Microbiomes. Sci Rep 2020; 10:2340. [PMID: 32047192 PMCID: PMC7012828 DOI: 10.1038/s41598-020-59320-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Corals and sponges harbor diverse microbial communities that are integral to the functioning of the host. While the taxonomic diversity of their microbiomes has been well-established for corals and sponges, their functional roles are less well-understood. It is unclear if the similarities of symbiosis in an invertebrate host would result in functionally similar microbiomes, or if differences in host phylogeny and environmentally driven microhabitats within each host would shape functionally distinct communities. Here we addressed this question, using metatranscriptomic and 16S rRNA gene profiling techniques to compare the microbiomes of two host organisms from different phyla. Our results indicate functional similarity in carbon, nitrogen, and sulfur assimilation, and aerobic nitrogen cycling. Additionally, there were few statistical differences in pathway coverage or abundance between the two hosts. For example, we observed higher coverage of phosphonate and siderophore metabolic pathways in the star coral, Montastraea cavernosa, while there was higher coverage of chloroalkane metabolism in the giant barrel sponge, Xestospongia muta. Higher abundance of genes associated with carbon fixation pathways was also observed in M. cavernosa, while in X. muta there was higher abundance of fatty acid metabolic pathways. Metagenomic predictions based on 16S rRNA gene profiling analysis were similar, and there was high correlation between the metatranscriptome and metagenome predictions for both hosts. Our results highlight several metabolic pathways that exhibit functional similarity in these coral and sponge microbiomes despite the taxonomic differences between the two microbiomes, as well as potential specialization of some microbially based metabolism within each host.
Collapse
Affiliation(s)
- Cara L Fiore
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, School of Marine Science and Ocean Engineering, Durham, NH, USA.
- Appalachian State University, Biology Department, Boone, NC, USA.
| | - Jessica K Jarett
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, School of Marine Science and Ocean Engineering, Durham, NH, USA
- AnimalBiome, Oakland, CA, USA
| | - Georg Steinert
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Symbioses, Kiel, Germany
| | - Michael P Lesser
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, School of Marine Science and Ocean Engineering, Durham, NH, USA
| |
Collapse
|
12
|
Heinrichs L, Aytur SA, Bucci JP. Whole metagenomic sequencing to characterize the sediment microbial community within the Stellwagen Bank National Marine Sanctuary and preliminary biosynthetic gene cluster screening of Streptomyces scabrisporus. Mar Genomics 2019; 50:100718. [PMID: 31680056 DOI: 10.1016/j.margen.2019.100718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 10/25/2022]
Abstract
Understanding the marine sediment microbial community structure is of increasing importance to microbiologists since little is known of the diverse taxonomy that exists within this environment. Quantifying microbial species distribution patterns within marine sanctuaries is necessary to address conservation requirements. The objectives of this study were to characterize the relative abundance and biodiversity of metagenome samples of the sediment microbial community in the Stellwagen Bank National Marine Sanctuary (SBNMS). Related to the need for a comprehensive assessment of the microbial habitat within marine sanctuaries is the increased threat of antibiotic-resistant pathogens, coupled with multi-resistant bacterial strains. This has necessitated a renewed search for bioactive compounds in marine benthic habitat. An additional aim was to initiate quantification of biosynthetic gene clusters in species that have potential for natural product and drug discovery relevant to human health. Surficial sediment from 18 samples was collected in the summer and fall of 2017 from three benthic sites in the SBNMS. Microbial DNA was extracted from samples, and sequencing libraries were prepared for taxonomic analysis. Whole metagenome sequencing (WMGS) in combination with a bioinformatics pipeline was employed to delineate the taxa of bacteria present in each sample. Among all sampling sites, biodiversity was higher for summer compared to fall for class (p = 0.0013; F = 4.5) and genus (p = 0.0219; F = 4.4). Actinobacteria was the fifth most abundant class in both seasons (7.81%). Streptomyces was observed to be the fourth most abundant genus in both seasons with significantly higher prevalence in summer compared to fall samples. In summer, site 3 had the highest percentage of Streptomyces (1.71%) compared to sites 2 (1.62%) and 1 (1.37%). The results enabled preliminary quantification of the sequenced hits from the SBNMS sites with the highest potential for harboring secondary metabolite biosynthetic gene clusters for Streptomyces scabrisporus strain (NF3) genomic regions. This study is one of the first to use a whole metagenomics approach to characterize sediment microbial biodiversity in partnership with the SBNMS and demonstrates the potential for future ecological and biomedical research.
Collapse
Affiliation(s)
- Lina Heinrichs
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824, United States of America
| | - Semra A Aytur
- Department of Health Management and Policy, University of New Hampshire, 4 Library Way, Durham, NH 03824, United States of America
| | - John P Bucci
- Marine Microverse Institute, PO Box 59, Kittery Point, ME 03905, and the School of Marine Science and Ocean Engineering, University of New Hampshire, 8 College Road, Durham, NH 03824, United States of America.
| |
Collapse
|
13
|
Almeida EL, Carrillo Rincón AF, Jackson SA, Dobson ADW. Comparative Genomics of Marine Sponge-Derived Streptomyces spp. Isolates SM17 and SM18 With Their Closest Terrestrial Relatives Provides Novel Insights Into Environmental Niche Adaptations and Secondary Metabolite Biosynthesis Potential. Front Microbiol 2019; 10:1713. [PMID: 31404169 PMCID: PMC6676996 DOI: 10.3389/fmicb.2019.01713] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/11/2019] [Indexed: 12/28/2022] Open
Abstract
The emergence of antibiotic resistant microorganisms has led to an increased need for the discovery and development of novel antimicrobial compounds. Frequent rediscovery of the same natural products (NPs) continues to decrease the likelihood of the discovery of new compounds from soil bacteria. Thus, efforts have shifted toward investigating microorganisms and their secondary metabolite biosynthesis potential, from diverse niche environments, such as those isolated from marine sponges. Here we investigated at the genomic level two Streptomyces spp. strains, namely SM17 and SM18, isolated from the marine sponge Haliclona simulans, with previously reported antimicrobial activity against clinically relevant pathogens; using single molecule real-time (SMRT) sequencing. We performed a series of comparative genomic analyses on SM17 and SM18 with their closest terrestrial relatives, namely S. albus J1074 and S. pratensis ATCC 33331 respectively; in an effort to provide further insights into potential environmental niche adaptations (ENAs) of marine sponge-associated Streptomyces, and on how these adaptations might be linked to their secondary metabolite biosynthesis potential. Prediction of secondary metabolite biosynthetic gene clusters (smBGCs) indicated that, even though the marine isolates are closely related to their terrestrial counterparts at a genomic level; they potentially produce different compounds. SM17 and SM18 displayed a better ability to grow in high salinity medium when compared to their terrestrial counterparts, and further analysis of their genomes indicated that they possess a pool of 29 potential ENA genes that are absent in S. albus J1074 and S. pratensis ATCC 33331. This ENA gene pool included functional categories of genes that are likely to be related to niche adaptations and which could be grouped based on potential biological functions such as osmotic stress, defense; transcriptional regulation; symbiotic interactions; antimicrobial compound production and resistance; ABC transporters; together with horizontal gene transfer and defense-related features.
Collapse
Affiliation(s)
| | | | - Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
14
|
Kong W, Huang C, Shi J, Li Y, Jiang X, Duan Q, Huang Y, Duan Y, Zhu X. Recycling of Chinese herb residues by endophytic and probiotic fungus Aspergillus cristatus CB10002 for the production of medicinal valuable anthraquinones. Microb Cell Fact 2019; 18:102. [PMID: 31164126 PMCID: PMC6547571 DOI: 10.1186/s12934-019-1150-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Background The global prevalence of traditional Chinese medicine stimulates the prosperous development of herb medicines, but the annual generation of massive herb residues becomes big issues about environmental pollution and waste of resources. Microbes play important roles in the circulation of substances in nature, and endophytes represent an underexplored microbial resource possessing the unique symbiotic relationship with plants, not only for discovery of secondary metabolites, but also for potential green recycling of herb residues. Results The recycling capacities of several endophytic strains were respectively evaluated via solid state fermentation with herb residues of commercial Huazhenghuisheng oral-liquid (HOL). Among them, Aspergillus cristatus CB10002, a probiotic fungus isolated from Chinese Fu-brick tea, was competent to recycle HOL residues for the production of medicinal valuable anthraquinones, in which four of them, especially citreorosein with significant anti-obesity activity, were first discovered in A. cristatus. Subsequent quantitative analysis showed that about 2.0 mg/g citreorosein and 7.5 mg/g total anthraquinones could be obtained after 35-day fermentation, which was very competitive and economically beneficial. Further nutritional comparisons also revealed that the recycling process indeed ameliorated the nutrients of HOL residues, and thus proposed a possibility to directly dispose the final leftovers as a compost organic fertilizer. Conclusions The endophytic and probiotic fungus A. cristatus CB10002 isolated from Chinese Fu-brick tea was screened out to effectively reutilize HOL residues for the production of nine medicinal valuable anthraquinones, whose biosynthesis may be regulated by the induction of HOL residues. The competitive yields of these anthraquinones, as well as the certain composting properties of final leftovers, have made the microbial recycling of HOL residues economically beneficial. Our work demonstrated a promising applied potential of A. cristatus in reutilization of herb residues, and provided a practical strategy for sustainable and value-added microbial recycling of herb residues. Electronic supplementary material The online version of this article (10.1186/s12934-019-1150-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenping Kong
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Chengshuang Huang
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Jie Shi
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Yu Li
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China
| | - Xinxin Jiang
- Hayaocihang Pharmaceutical Co. Ltd, Changsha, 410205, Hunan, China
| | - Quwen Duan
- Hayaocihang Pharmaceutical Co. Ltd, Changsha, 410205, Hunan, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China. .,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410205, Hunan, China. .,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China.
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, 410013, Hunan, China. .,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410205, Hunan, China. .,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China.
| |
Collapse
|
15
|
Maldonado-Carmona N, Vázquez-Hernández M, Patiño Chávez OJ, Rodríguez-Luna SD, Jiménez Rodríguez O, Sanchez S, Ceapă CD. Impact of ∼omics in the detection and validation of potential anti-infective drugs. Curr Opin Pharmacol 2019; 48:1-7. [PMID: 30921690 DOI: 10.1016/j.coph.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/25/2022]
Abstract
New anti-infective drugs are an unmet necessity of modern medicine. The use of ∼omics technologies has exponentially increased the knowledge on active anti-infective structures, where to search for them and their mechanisms of action. Research involving extreme and unique environments (such as endophytes) revealed their potential for many yet unknown active molecules. This work intends to review a recent research involving discovery of secondary metabolites with an established anti-infective action which was mediated by one of the ∼omics sciences: genomics, proteomics, transcriptomics, metabolomics, glycomics or their combinations, as well as the software at the base of these discoveries.
Collapse
Affiliation(s)
- Nidia Maldonado-Carmona
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, Mexico
| | - Melissa Vázquez-Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, Mexico
| | - Osiris Jair Patiño Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, Mexico
| | - Stefany Daniela Rodríguez-Luna
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, Mexico
| | - Omar Jiménez Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, Mexico
| | - Sergio Sanchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, Mexico.
| | - Corina Diana Ceapă
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, Mexico.
| |
Collapse
|