1
|
Liu C, Wang Y, Du Y, Kang Z, Guo J, Guo J. Glycine-serine-rich effector PstGSRE4 in Puccinia striiformis f. sp. tritici targets and stabilizes TaGAPDH2 that promotes stripe rust disease. PLANT, CELL & ENVIRONMENT 2024; 47:947-960. [PMID: 38105492 DOI: 10.1111/pce.14786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Puccinia striiformis f. sp. tritici (Pst) secretes effector proteins that enter plant cells and manipulate host processes. In a previous study, we identified a glycine-serine-rich effector PstGSRE4, which was proven to regulate the reactive oxygen species (ROS) pathway by interacting with TaCZSOD2. In this study, we further demonstrated that PstGSRE4 interacts with wheat glyceraldehyde-3-phosphate dehydrogenase TaGAPDH2, which is related to ROS signalling. In wheat, silencing of TaGAPDH2 by virus-induced gene silencing increased the accumulation of ROS induced by the Pst virulent race CYR31. Overexpression of TaGAPDH2 decreased the accumulation of ROS induced by the avirulent Pst race CYR23. In addition, TaGAPDH2 suppressed Pst candidate elicitor Pst322-triggered cell death by decreasing ROS accumulation in Nicotiana benthamiana. Knocking down TaGAPDH2 expression attenuated Pst infection, whereas overexpression of TaGAPDH2 promoted Pst infection, indicating that TaGAPDH2 is a negative regulator of plant defence. In N. benthamiana, PstGSRE4 stabilized TaGAPDH2 through inhibition of the 26S proteasome-mediated destabilization. Overall, these results suggest that TaGAPDH2 is hijacked by the Pst effector as a negative regulator of plant immunity to promote Pst infection in wheat.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanyuan Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Yan K, Zhang J, Cai Y, Cao G, Meng L, Soaud SA, Heakel RMY, Ihtisham M, Zhao X, Wei Q, Dai T, Abbas M, El-Sappah AH. Comparative analysis of endophytic fungal communities in bamboo species Phyllostachys edulis, Bambusa rigida, and Pleioblastus amarus. Sci Rep 2023; 13:20910. [PMID: 38017106 PMCID: PMC10684524 DOI: 10.1038/s41598-023-48187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
Fungal endophytes in plant leaf mesophyll form mutually beneficial associations through carbon assimilation, synthesis of biologically active chemicals, and enhancement of aesthetic and nutritional value. Here, we compared community structure, diversity, and richness of endophytic fungi in the leaves of three bamboo species, including Phyllostachys edulis (MZ), Bambusa rigida (KZ), and Pleioblastus amarus (YT) via high-throughput Illumina sequencing. In total, 1070 operational taxonomic units (OTUs) were retrieved and classified into 7 phylum, 27 classes, 82 orders, 185 families, 310 genus, and 448 species. Dominant genera were Cladosporium, Trichomerium, Hannaella, Ascomycota, Sporobolomyces, Camptophora and Strelitziana. The highest fungal diversity was observed in Pleioblastus amarus, followed by Bambusa rigida, and Phyllostachys edulis. Comparatively, monopodial species Ph. edulis and sympodial B. rigida, mixed P. amarus revealed the highest richness of endophytic fungi. We retrieved a few biocontrol agents, Sarocladium and Paraconiothyrium, and unique Sporobolomyces, Camptophora, and Strelitziana genera. FUNGuild analysis revealed the surrounding environment (The annual average temperature is between 15 and 25 °C, and the relative humidity of the air is above 83% all year round) as a source of fungal accumulation in bamboo leaves and their pathogenic nature. Our results provide precise knowledge for better managing bamboo forests and pave the way for isolating secondary metabolites and potential bioactive compounds.
Collapse
Affiliation(s)
- Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Jian Zhang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Yu Cai
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Guiling Cao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Lina Meng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Salma A Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Rania M Y Heakel
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Muhammad Ihtisham
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Xianming Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Qin Wei
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Tainfei Dai
- Sichuan Green Food Development Center, Chengdu, 610041, China.
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China.
| | - Ahmed H El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China.
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China.
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
3
|
Liu Y, Zhou J, Qiu Z, Hu P, Chen X, Yang Z. Identification and Validation of Reference Genes for Expression Analysis Using RT-qPCR in Leptocybe invasa Fisher and La Salle (Hymenoptera: Eulophidae). INSECTS 2023; 14:insects14050456. [PMID: 37233084 DOI: 10.3390/insects14050456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Leptocybe invasa (Hymenoptera: Eulophidae) is a globally intrusive pest. Despite extensive research into the physiological responses of this pest, our understanding of the molecular mechanisms still needs to be improved. We want to accurately investigate the expression of L. invasa's target genes, so it is imperative to select fitting reference genes. In this study, eight housekeeping genes' stability (RPS30, ACTR, 18S rRNA, ACT, RPL18, GAPDH, 28S rRNA, and TUB) was tested under five different experimental conditions, including male or female adults, somites (head, thorax, and abdomen), temperatures (0 °C, 25 °C, and 40 °C), diets (starvation, clear water, 10% honey water, Eucalyptus sap), and pesticides (acetone was used as a control, imidacloprid, monosultap). Gene stability was calculated using RefFinder, which integrates four algorithms (the ∆Ct method, geNorm, NormFinder, and BestKeeper). The findings implied that ACT and ACTR were the most accurate when comparing sexes. For analyzing different somites, 28S rRNA and RPL18 were ideal; the 28S rRNA and RRS30 were perfect for analyzing at different temperatures. The combination of ACT and GAPDH helped to analyze gene expression in different diets, and GAPDH and 28S rRNA were suitable for various pesticide conditions. Overall, this research offers a complete list of reference genes from L. invasa for precise analysis of target gene expression, which can improve the trustworthiness of RT-qPCR and lay the foundation for further investigations into the gene function of this pest.
Collapse
Affiliation(s)
- Ya Liu
- College of Forestry, Guangxi University, Nanning 530004, China
| | - Jing Zhou
- College of Forestry, Guangxi University, Nanning 530004, China
| | - Zhisong Qiu
- College of Forestry, Guangxi University, Nanning 530004, China
| | - Ping Hu
- College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
| | - Xiao Chen
- College of Forestry, Guangxi University, Nanning 530004, China
| | - Zhende Yang
- College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Chauhan AS, Tiwari M, Indoliya Y, Mishra SK, Lavania UC, Chauhan PS, Chakrabarty D, Tripathi RD. Identification and validation of reference genes in vetiver ( Chrysopogon zizanioides) root transcriptome. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:613-627. [PMID: 37363421 PMCID: PMC10284770 DOI: 10.1007/s12298-023-01315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/27/2023]
Abstract
UNLABELLED Vetiver [Vetiveria zizanioides (L.) Roberty] is a perennial C-4 grass traditionally valued for its aromatic roots/root essential oil. Owing to its deep penetrating web-forming roots, the grass is now widely used across the globe for phytoremediation and the conservation of soil and water. This study has used the transcriptome data of vetiver roots in its two distinct geographic morphotypes (North Indian type A and South Indian type B) for reference gene(s) identification. Further, validation of reference genes using various abiotic stresses such as heat, cold, salt, and drought was carried out. The de novo assembly based on differential genes analysis gave 1,36,824 genes (PRJNA292937). Statistical tests like RefFinder, NormFinder, BestKeeper, geNorm, and Delta-Ct software were applied on 346 selected contigs. Eleven selected genes viz., GAPs, UBE2W, RP, OSCam2, MUB, RPS, Core histone 1, Core histone 2, SAMS, GRCWSP, PLDCP along with Actin were used for qRT-PCR analysis. Finally, the study identified the five best reference genes GAPs, OsCam2, MUB, Core histone 1, and SAMS along with Actin. The two optimal reference genes SAMS and Core histone 1 were identified with the help of qbase + software. The findings of the present analyses have value in the identification of suitable reference gene(s) in transcriptomic and molecular data analysis concerning various phenotypes related to abiotic stress and developmental aspects, as well as a quality control measure in gene expression experiments. Identifying reference genes in vetiver appears important as it allows for accurate normalization of gene expression data in qRT-PCR experiments. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-023-01315-7.
Collapse
Affiliation(s)
- Abhishek Singh Chauhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
- Molecular Biology and Biotechnology Division, CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Madhu Tiwari
- Molecular Biology and Biotechnology Division, CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Yuvraj Indoliya
- Molecular Biology and Biotechnology Division, CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Shashank Kumar Mishra
- Microbial Technologies Division, CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Umesh Chandra Lavania
- CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Puneet Singh Chauhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
- Microbial Technologies Division, CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Debasis Chakrabarty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
- Molecular Biology and Biotechnology Division, CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Rudra Deo Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
- Plant Ecology and Environmental Science Division, CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| |
Collapse
|
5
|
Lin Y, Liu G, Rao Y, Wang B, Tian R, Tan Y, Peng T. Identification and validation of reference genes for qRT-PCR analyses under different experimental conditions in Allium wallichii. JOURNAL OF PLANT PHYSIOLOGY 2023; 281:153925. [PMID: 36657231 DOI: 10.1016/j.jplph.2023.153925] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Himalayan onion (Allium wallichii) is a perennial bulbous herb with high ornamental value and has long been used as traditional medicines in Nepal and China because of the anti-cancer and anti-microbial activities. Wild Allium wallichii features different flower colors, including purple, pink, deep purple and white. However, little is known about the molecular mechanisms of color formation during A. wallichii flower development stages due to the lack of optimal reference genes. Quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful tool for quantifying expression levels of target genes. The accuracy of qRT-PCR analyses is largely dependent on the identification of stable reference genes for data normalization. The stability of reference gene expression may vary with plant species and environmental conditions. The aim of this study was to select stable reference genes for qRT-PCR analyses of target genes at flower development stages, in different flower colors and organs for Allium wallichii. The CDSs of eight potential reference genes (TUB2, ACT1, GAPC, EF1α, UBQ, UBC, SAND and CYP1) were cloned and their stability was evaluated by four programs (Delta Ct, geNorm, NormFinder and BestKeeper), and the results were further integrated into a comprehensive rank by RefFinder. The results showed that TUB2 and GAPC were the most stable two reference genes at different developmental stages of purple- and white-flower genotypes and across all samples. UBC and TUB2 expression was stable at different developmental stages of purple flowers. CYP1 and TUB2 were stably expressed at different developmental stages of white flowers. GAPC and SAND showed the highest rankings in different flower colors. TUB2 and EF1α performed the best in different tissues. ACT1 was the least stable gene in all tested samples. Moreover, DIHYDROFLAVONOL-4-REDUCTASE (DFR) gene that involved in anthocyanin synthesis was used to evaluate the effectiveness of the selected candidates. This study identified the first set of suitable reference genes for qRT-PCR analyses, which will lay the foundation for gene function study in A. wallichii.
Collapse
Affiliation(s)
- Ying Lin
- College of Agriculture/Key Laboratory Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Guofeng Liu
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, China
| | - Ying Rao
- College of Agriculture/Key Laboratory Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Bo Wang
- College of Plant Science&Technology of Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruifeng Tian
- Human Resources Development Center of the Ministry of Agriculture and Rural Affairs/China Association of Agricultural Science Societies, Beijing, 100125, China
| | - Yuanyuan Tan
- College of Agriculture/Key Laboratory Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Ting Peng
- College of Agriculture/Key Laboratory Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
6
|
Yan K, Pei Z, Meng L, Zheng Y, Wang L, Feng R, Li Q, Liu Y, Zhao X, Wei Q, El-Sappah AH, Abbas M. Determination of Community Structure and Diversity of Seed-Vectored Endophytic Fungi in Alpinia zerumbet. Front Microbiol 2022; 13:814864. [PMID: 35295292 PMCID: PMC8918987 DOI: 10.3389/fmicb.2022.814864] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Endophytic fungi act as seed endosymbiont, thereby playing a very crucial role in the growth and development of seeds. Seed-vectored endophytic fungi establish an everlasting association with seeds and travel from generation to generation. To explore the composition and diversity of endophytic fungi in Alpinia zerumbet seeds, high-throughput Illumina MiSeq sequencing was employed for the following stages: fruit formation period (YSJ1), young fruit period (YSJ2), early mature period (YSJ3), middle mature period (YSJ4), and late mature period (YSJ5). A total of 906,694 sequence reads and 745 operational taxonomic units (OTUs) were obtained and further classified into 8 phyla, 30 classes, 73 orders, 163 families, 302 genera, and 449 species. The highest endophytic fungal diversity was observed at YSJ5. The genera with the highest abundance were Cladosporium, Kodamaea, Hannaella, Mycothermus, Gibberella, Sarocladium, and Neopestalotiopsis. Functional Guild (FUNGuild) analysis revealed that endophytic fungi were undefined saprotroph, plant pathogens, animal pathogen–endophyte–lichen parasite–plant pathogen–wood saprotroph, and soil saprotrophs. Alternaria, Fusarium, Cladosporium, and Sarocladium, which are potential probiotics and can be used as biocontrol agents, were also abundant. This study is part of the Sustainable Development Goals of United Nations Organization (UNO) to “Establish Good Health and Well-Being.”
Collapse
Affiliation(s)
- Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Zihao Pei
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Lina Meng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Yu Zheng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Lian Wang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Ruizhang Feng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Yang Liu
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xianming Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Qin Wei
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
- Qin Wei,
| | - Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Ahmed H. El-Sappah,
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
- *Correspondence: Manzar Abbas,
| |
Collapse
|
7
|
Selection and Validation of Reference Genes for RT-qPCR Analysis in Aegilops tauschii (Coss.) under Different Abiotic Stresses. Int J Mol Sci 2021; 22:ijms222011017. [PMID: 34681677 PMCID: PMC8541341 DOI: 10.3390/ijms222011017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 02/02/2023] Open
Abstract
Aegilops tauschii (Coss.) is an aggressive and serious annual grass weed in China. Its DD genome is a rich source of genetic material and performs better under different abiotic stress conditions (salinity, drought, temperature, etc.). Reverse-transcribed quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for reference gene selection and validation. This work aimed to evaluate the stability of reference gene expression in Ae. tauschii under different abiotic stresses (salinity, drought, hot, and cold) and developmental stages (seedling and development). The results show that the ubiquitin-conjugating enzyme E2 36-like (UBC36) and protein microrchidia 2-like (HSP) are the most stable genes under control and salinity conditions, respectively. Under drought stress conditions, UBC36 is more stable as compared with others. Glyceraldehyde-3-phosphate dehydrogenase (GADPH) is the most stable reference gene during heat stress conditions and thioredoxin-like protein (YLS) under cold stress condition. Phosphate2A serine/threonine-protein phosphatase 2A (PP2A) and eukaryotic translation initiation factor 3 (ETIF3) are the most stable genes at seedling and developmental stages. Intracellular transport protein (CAC) is recommended as the most stable gene under different abiotic stresses and at developmental stages. Furthermore, the relative expression levels of NHX1 and DREB under different levels of salinity and drought stress conditions varied with the most (HSP and UBC36) and least (YLS and ACT) stable genes. This study provides reliable reference genes for understanding the tolerance mechanisms in Ae. tauschii under different abiotic stress conditions.
Collapse
|
8
|
Yan K, Abbas M, Meng L, Cai H, Peng Z, Li Q, El-Sappah AH, Yan L, Zhao X. Analysis of the Fungal Diversity and Community Structure in Sichuan Dark Tea During Pile-Fermentation. Front Microbiol 2021; 12:706714. [PMID: 34421866 PMCID: PMC8375752 DOI: 10.3389/fmicb.2021.706714] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
The fungi present during pile-fermentation of Sichuan dark tea play a pivotal role in the development of its aroma and physical characteristics. Samples of tea leaves were collected on days 0 (YC-raw material), 8 (W1-first turn), 16 (W2-second turn), 24 (W3-third turn), and 32 (W4-out of pile) during pile-fermentation. High-throughput sequencing revealed seven phyla, 22 classes, 41 orders, 85 families, 128 genera, and 184 species of fungi. During fermentation, the fungal diversity index declined from the W1 to W3 stages and then increased exponentially at the W4 stage. A bar plot and heatmap revealed that Aspergillus, Thermomyces, Candida, Debaryomyces, Rasamsonia, Rhizomucor, and Thermoascus were abundant during piling, of which Aspergillus was the most abundant. Cluster analysis revealed that the W4 stage of fermentation is critical for fungal growth, diversity, and the community structure in Sichuan dark tea. This study revealed the role of fungi during pile-fermentation in the development of the essence and physical characteristics of Sichuan dark tea. This study comes under one of the Sustainable Development Goals of United Nations Organization (UNO) to "Establish Good Health and Well-Being."
Collapse
Affiliation(s)
- Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Lina Meng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Hongbing Cai
- Sichuan Province Tea Industry Group Co., Ltd., Yibin, China
| | - Zhang Peng
- Sichuan Province Tea Industry Group Co., Ltd., Yibin, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Linfeng Yan
- Sichuan Province Tea Industry Group Co., Ltd., Yibin, China
| | - Xianming Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
9
|
Cheng Y, Wang L, Abbas M, Huang X, Wang Q, Wu A, Wei H, Peng S, Dai X, Li Q. MicroRNA319-mediated gene regulatory network impacts leaf development and morphogenesis in poplar. FORESTRY RESEARCH 2021; 1:4. [PMID: 39524520 PMCID: PMC11524277 DOI: 10.48130/fr-2021-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/18/2021] [Indexed: 11/16/2024]
Abstract
MicroRNA319 (miR319) has been implicated in leaf development in a number of plant species. Here we study the roles of miR319a and its regulated network in leaf development in poplars. Over-expression of miR319a in Populus alba × Populus glandulosa caused dwarf statures, narrow leaf blades and serrated leaf margins. The vascular bundles and bundle sheaths in transgenic leaves had more layers of cells than those in the leaves of control plants, indicating enhanced lignification in these cells. Among the 93 putative targets of miR319a predicted with the psRNATarget tool, only three genes, TCP (TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR), were differentially expressed in the leaves of MIR319a-over-expression transgenic lines. With the RNA-seq data sets from multiple MIR319a over-expression transgenic lines, we built a three-layered gene regulatory network mediated by miR319a using Top-down graphic Gaussian model (GGM) algorithm that is capable of capturing causal relationships from transcriptomic data. The results support that miR319a primarily regulates the lignin biosynthesis, leaf development and differentiation as well as photosynthesis via miR319-MEE35/TCP4, miR319-TCP2 and miR319-TCP2-1 regulatory modules.
Collapse
Affiliation(s)
- Yanxia Cheng
- College of Forestry, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei 056038, P.R. China
| | - Manzar Abbas
- Key Laboratory of Aromatic Plant Resources Exploitation and Utilization, School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan 644000, P.R. China
| | - Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, P.R. China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Qiao Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, P.R. China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Shaobing Peng
- College of Forestry, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, P.R. China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| |
Collapse
|
10
|
Torres S, Lama C, Mantecón L, Flemetakis E, Infante C. Selection and validation of reference genes for quantitative real-time PCR in the green microalgae Tetraselmis chui. PLoS One 2021; 16:e0245495. [PMID: 33444403 PMCID: PMC7808622 DOI: 10.1371/journal.pone.0245495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
Quantitative real-time reverse transcription PCR (RT-qPCR) is a highly sensitive technique that can be applied to analyze how genes are modulated by culture conditions, but identification of appropriate reference genes for normalization is a critical factor to be considered. For this reason, the expression stability of 18 candidate reference genes was evaluated for the green microalgae Tetraselmis chui using the widely employed algorithms geNorm, NormFinder, BestKeeper, the comparative ΔCT method, and RefFinder. Microalgae samples were collected from large scale outdoor photobioreactors during the growing phase (OUT_GP), and during the semi-continuous phase at different times of the day (OUT_DC). Samples from standard indoor cultures under highly controlled conditions (IND) were also collected to complement the other data. Different rankings for the candidate reference genes were obtained depending on the culture conditions and the algorithm employed. After comparison of the achieved ranks with the different methods, the references genes selected for samples from specific culture conditions were ALD and EFL in OUT_GP, RPL32 and UBCE in OUT_DC, and cdkA and UBCE in IND. Moreover, the genes EFL and cdkA or EFL and UBCE appeared as appropriate combinations for pools generated from all samples (ALL). Examination in the OUT_DC cultures of genes encoding the large and small subunits of ADP-glucose pyrophosphorylase (AGPL and AGPS, respectively) confirmed the reliability of the identified reference genes, RPL32 and UBCE. The present study represents a useful contribution for studies of gene expression in T. chui, and also represents the first step to set-up an RT-qPCR platform for quality control of T. chui biomass production in industrial facilities.
Collapse
Affiliation(s)
- Sonia Torres
- Fitoplancton Marino, S.L., El Puerto de Santa María, Cádiz, Spain
| | - Carmen Lama
- Fitoplancton Marino, S.L., El Puerto de Santa María, Cádiz, Spain
| | - Lalia Mantecón
- Fitoplancton Marino, S.L., El Puerto de Santa María, Cádiz, Spain
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Carlos Infante
- Fitoplancton Marino, S.L., El Puerto de Santa María, Cádiz, Spain
| |
Collapse
|
11
|
Li Y, Liang X, Zhou X, Wu Z, Yuan L, Wang Y, Li Y. Selection of Reference Genes for qRT-PCR Analysis in Medicinal Plant Glycyrrhiza under Abiotic Stresses and Hormonal Treatments. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1441. [PMID: 33114570 PMCID: PMC7692165 DOI: 10.3390/plants9111441] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022]
Abstract
Best known as licorice, Glycyrrhiza Linn., a genus of herbaceous perennial legume, has been used as a traditional herbal medicine in Asia and a flavoring agent for tobacco and food industry in Europe and America. Abiotic stresses and hormonal treatments can significantly impact the development and metabolism of secondary metabolites in Glycyrrhiza. To better understand the biosynthesis of the trace-amount bioactive compounds, we first screened for the suitable reference genes for quantitative real-time reverse transcription PCR (qRT-PCR) analysis in Glycyrrhiza. The expression profiles of 14 candidate reference genes, including Actin1 (ACT), Clathrin complex AP1 (CAC), Cyclophilin (CYP), Heat-shock protein 40 (DNAJ), Dehydration responsive element binding gene (DREB), Translation elongation factor1 (EF1), Ras related protein (RAN), Translation initiation factor (TIF1), β-Tubulin (TUB), Ubiquitin-conjugating enzyme E2 (UBC2), ATP binding-box transpoter 2 (ABCC2), COP9 signal compex subunit 3 (COPS3), Citrate synthase (CS), and R3H domain protein 2 (R3HDM2) from two congeneric species, Glycyrrhiza uralensis F. and Glycyrrhiza inflata B., were examined under abiotic stresses (osmotic and salinity) and hormonal treatments (Abscisic acid (ABA) and methyl jasmonic acid (MeJA)) using a panel of software, including geNorm, NormFinder, BestKeeper, and Delta CT. The overall stability, however, was provided by RefFinder, a comprehensive ranking system integrating inputs from all four algorithms. In G. uralensis, the most stable reference genes under osmotic stress, salt stress, ABA treatment, and MeJA treatment were TIF1, DNAJ, CS, and ABCC2 for leaves and DNAJ, DREB, CAC, and CAC for roots, respectively. In comparison, the top ranked genes were TUB, CAC, UBC2, and RAN for leaves and TIF1, ABCC2, CAC, and UBC2 for roots, respectively, under stress and hormonal treatments in G. inflata. ACT and TIF1, on the other hand, were the least stable genes under the most experimental conditions in the two congeneric species. Finally, our survey of the reference genes in legume shows that EF, ACT, UBC2, and TUB were the top choices for the abiotic stresses while EF, UBC2, CAC, and ABCC2 were recommended for the hormonal treatments in Leguminosae. Our combined results provide reliable normalizers for accurate gene quantifications in Glycyrrhiza species, which will allow us to exploit its medicinal potential in general and antiviral activities in particular.
Collapse
Affiliation(s)
- Yuping Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.L.); (X.L.); (Z.W.); (L.Y.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiaoju Liang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.L.); (X.L.); (Z.W.); (L.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA;
| | - Zhigeng Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.L.); (X.L.); (Z.W.); (L.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.L.); (X.L.); (Z.W.); (L.Y.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.L.); (X.L.); (Z.W.); (L.Y.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Gannan Normal University, Ganzhou 341000, China
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.L.); (X.L.); (Z.W.); (L.Y.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
12
|
Nong Q, Yang Y, Zhang M, Zhang M, Chen J, Jian S, Lu H, Xia K. RNA-seq-based selection of reference genes for RT-qPCR analysis of pitaya. FEBS Open Bio 2019; 9:1403-1412. [PMID: 31127874 PMCID: PMC6668369 DOI: 10.1002/2211-5463.12678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 11/18/2022] Open
Abstract
Reverse‐transcription quantitative real‐time PCR (RT‐qPCR) is a primary tool for measuring gene expression levels, and selection of appropriate reference genes is crucial for accurate and reproducible results of gene expression under various experimental conditions. However, no systematic evaluation of reference genes in pitaya (Hylocereus undatus Britt.) has been performed. Here, we examined the expression of five candidate reference genes, namely elongation factor 1‐alpha (HuEF1‐α), 18S ribosomal RNA (Hu18S rRNA), ubiquitin (HuUBQ), actin (HuACT), and ubiquitin‐conjugating enzyme (HuUQT), under different conditions in pitaya. The expression stabilities of these five genes were evaluated using two computation programs: geNorm and NormFinder. The results were further validated by normalizing the expression of the phosphoglycerate kinase (HuPGK) and ethylene‐responsive transcription factor (HuERF) genes. Our results indicate that combined use of HuUBQ and HuUQT is the most stable reference under all of the experimental conditions examined. HuEF1‐α, HuUBQ, and HuUQT are the top three most stable reference genes under salt stress, drought stress, and heat stress, and across different cultivars. HuEF1‐α, HuACT, and HuUQT exhibited the most stable expression patterns across different tissues. Our results will allow researchers to select the most appropriate reference genes for gene expression studies of pitaya under different conditions.
Collapse
Affiliation(s)
- Quandong Nong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Wenshan Academy of Agricultural Sciences, China
| | | | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mei Zhang
- Guangdong Provincial Key laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jiantong Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shuguang Jian
- Guangdong Provincial Key laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hongfang Lu
- Guangdong Provincial Key laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
13
|
Selection of reference genes for qPCR normalization in buffalobur (Solanum rostratum Dunal). Sci Rep 2019; 9:6948. [PMID: 31061419 PMCID: PMC6502881 DOI: 10.1038/s41598-019-43438-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Buffalobur (Solanum rostratum Dunal), which belongs to the Solanaceae family, is a worldwide noxious invasive weed and is listed as one of the top 10 alien invasive species in China. It is harmful to humans and livestock because the entire plant is covered with spines containing toxins. Many studies have analysed the gene expression in this weed species under different stress conditions using quantitative real-time PCR (qPCR). However, until now, there has been no report on suitable reference genes in buffalobur. Herein, 14 candidate reference genes were selected and evaluated for their expression stability in buffalobur in different tissues, at different developmental stages, and in response to several stress conditions using the geNorm, NormFinder, BestKeeper and RefFinder statistical algorithms. The results showed that EF1α, ACT and SAND are suitable reference genes across all samples tested. We recommend the normalization of target gene expression under different experimental conditions using these three genes together. Validation of selected reference genes was achieved by assessing the relative expression levels of P5CS and GI. This work identified the appropriate reference genes for transcript normalization in buffalobur, which will be helpful in future genetic studies of this invasive weed.
Collapse
|
14
|
Wang J, Lin J, Wang H, Li X, Yang Q, Li H, Chang Y. Identification and characterization of circRNAs in Pyrus betulifolia Bunge under drought stress. PLoS One 2018; 13:e0200692. [PMID: 30016342 PMCID: PMC6049930 DOI: 10.1371/journal.pone.0200692] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) play important roles in miRNA function and transcriptional control. However, little is known regarding circRNAs in the pear. In this study, we identified circRNAs using deep sequencing and analyzed their expression under drought stress. We identified 899 circRNAs in total, among which 33 (23 upregulated, 10 downregulated) were shown to be dehydration-responsive. We performed GO and KEGG enrichment analysis to predict the functions of differentially expressed circRNAs. 309 circRNAs were predicted to act as sponges for 180 miRNAs. A circRNA-miRNA co-expression network was constructed based on correlation analysis between the differentially expressed circRNAs and their miRNA binding sites. Our study will provide a rich genetic resource for the discovery of genes related to drought stress, and can readily be applied to other fruit trees.
Collapse
Affiliation(s)
- Jinxing Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Jing Lin
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Hong Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Xiaogang Li
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Qingsong Yang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Hui Li
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Youhong Chang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| |
Collapse
|
15
|
Wang J, Lin J, Kan J, Wang H, Li X, Yang Q, Li H, Chang Y. Genome-Wide Identification and Functional Prediction of Novel Drought-Responsive lncRNAs in Pyrus betulifolia. Genes (Basel) 2018; 9:E311. [PMID: 29925818 PMCID: PMC6027255 DOI: 10.3390/genes9060311] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence shows that long noncoding RNAs (lncRNAs) play important roles in developmental regulation and many other biological processes in plants. However, identification of lncRNAs in Pyrus betulifolia is limited compared with studies of functional gene expression. Using high-throughput sequencing technology, the transcriptome of P. betulifolia under drought stress was analyzed to identify lncRNAs. A total of 14,478 lncRNAs were identified, of which 251 were found to be drought-responsive. The putative target genes of these differentially expressed lncRNAs were significantly enriched in metabolic processes, organic substance metabolic processes, macromolecule metabolic processes, and heterocyclic compound binding. Real-time quantitative polymerase chain reaction validation suggested that the results of the RNA sequencing data analysis were reliable. This study will provide genetic resources for pear breeding and provide reference to other pomological studies.
Collapse
Affiliation(s)
- Jinxing Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 200014, China.
| | - Jing Lin
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 200014, China.
| | - Jialiang Kan
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 200014, China.
| | - Hong Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 200014, China.
| | - Xiaogang Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 200014, China.
| | - Qingsong Yang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 200014, China.
| | - Hui Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 200014, China.
| | - Youhong Chang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 200014, China.
| |
Collapse
|