1
|
Morin J, Royle TCA, Zhang H, Speller C, Alcaide M, Morin R, Ritchie M, Cannon A, George M, George M, Yang D. Indigenous sex-selective salmon harvesting demonstrates pre-contact marine resource management in Burrard Inlet, British Columbia, Canada. Sci Rep 2021; 11:21160. [PMID: 34759290 PMCID: PMC8581006 DOI: 10.1038/s41598-021-00154-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
To gain insight into pre-contact Coast Salish fishing practices, we used new palaeogenetic analytical techniques to assign sex identifications to salmonid bones from four archaeological sites in Burrard Inlet (Tsleil-Waut), British Columbia, Canada, dating between about 2300-1000 BP (ca. 400 BCE-CE 1200). Our results indicate that male chum salmon (Oncorhynchus keta) were preferentially targeted at two of the four sampled archaeological sites. Because a single male salmon can mate with several females, selectively harvesting male salmon can increase a fishery's maximum sustainable harvest. We suggest such selective harvesting of visually distinctive male spawning chum salmon was a common practice, most effectively undertaken at wooden weirs spanning small salmon rivers and streams. We argue that this selective harvesting of males is indicative of an ancient and probably geographically widespread practice for ensuring sustainable salmon populations. The archaeological data presented here confirms earlier ethnographic accounts describing the selective harvest of male salmon.
Collapse
Affiliation(s)
- Jesse Morin
- grid.17091.3e0000 0001 2288 9830Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC Canada
| | - Thomas C. A. Royle
- grid.61971.380000 0004 1936 7494Ancient DNA Laboratory, Department of Archaeology, Simon Fraser University, Burnaby, BC Canada
| | - Hua Zhang
- grid.61971.380000 0004 1936 7494Ancient DNA Laboratory, Department of Archaeology, Simon Fraser University, Burnaby, BC Canada
| | - Camilla Speller
- grid.17091.3e0000 0001 2288 9830Department of Anthropology, University of British Columbia, Vancouver, BC Canada
| | - Miguel Alcaide
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC Canada
| | - Ryan Morin
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC Canada
| | - Morgan Ritchie
- grid.17091.3e0000 0001 2288 9830Department of Anthropology, University of British Columbia, Vancouver, BC Canada
| | - Aubrey Cannon
- grid.25073.330000 0004 1936 8227Department of Anthropology, McMaster University, Hamilton, ON Canada
| | | | | | - Dongya Yang
- grid.61971.380000 0004 1936 7494Ancient DNA Laboratory, Department of Archaeology, Simon Fraser University, Burnaby, BC Canada
| |
Collapse
|
2
|
Guiry E, Royle TCA, Matson RG, Ward H, Weir T, Waber N, Brown TJ, Hunt BPV, Price MHH, Finney BP, Kaeriyama M, Qin Y, Yang DY, Szpak P. Differentiating salmonid migratory ecotypes through stable isotope analysis of collagen: Archaeological and ecological applications. PLoS One 2020; 15:e0232180. [PMID: 32343728 PMCID: PMC7188214 DOI: 10.1371/journal.pone.0232180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/08/2020] [Indexed: 02/02/2023] Open
Abstract
The ability to distinguish between different migratory behaviours (e.g., anadromy and potamodromy) in fish can provide important insights into the ecology, evolution, and conservation of many aquatic species. We present a simple stable carbon isotope (δ13C) approach for distinguishing between sockeye (anadromous ocean migrants) and kokanee (potamodromous freshwater residents), two migratory ecotypes of Oncorhynchus nerka (Salmonidae) that is applicable throughout most of their range across coastal regions of the North Pacific Ocean. Analyses of kokanee (n = 239) and sockeye (n = 417) from 87 sites spanning the North Pacific (Russia to California) show that anadromous and potamodromous ecotypes are broadly distinguishable on the basis of the δ13C values of their scale and bone collagen. We present three case studies demonstrating how this approach can address questions in archaeology, archival, and conservation research. Relative to conventional methods for determining migratory status, which typically apply chemical analyses to otoliths or involve genetic analyses of tissues, the δ13C approach outlined here has the benefit of being non-lethal (when applied to scales), cost-effective, widely available commercially, and should be much more broadly accessible for addressing archaeological questions since the recovery of otoliths at archaeological sites is rare.
Collapse
Affiliation(s)
- Eric Guiry
- Department of Anthropology, Trent University, Peterborough, Ontario, Canada
- School of Archaeology and Ancient History, University of Leicester, Leicester, United Kingdom
- Department of Anthropology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas C. A. Royle
- Department of Archaeology, Ancient DNA Laboratory, Simon Fraser University, Burnaby, British Columbia, Canada
| | - R. G. Matson
- Department of Anthropology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hillary Ward
- Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Government of British Columbia, Penticton, British Columbia, Canada
| | - Tyler Weir
- Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Government of British Columbia, Penticton, British Columbia, Canada
| | - Nicholas Waber
- Department of Anthropology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas J. Brown
- Department of Anthropology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian P. V. Hunt
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Michael H. H. Price
- Department of Biological Sciences, Earth to Ocean Research Group, Simon Fraser University, British Columbia, Canada
| | - Bruce P. Finney
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America
- Department of Geosciences, Idaho State University, Pocatello, Idaho, United States of America
| | | | - Yuxue Qin
- School of Marine Science and Environmental Engineering, Dalian Ocean University, Dalian, Liaoning, China
| | - Dongya Y. Yang
- Department of Archaeology, Ancient DNA Laboratory, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Paul Szpak
- Department of Anthropology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
3
|
Oosting T, Star B, Barrett JH, Wellenreuther M, Ritchie PA, Rawlence NJ. Unlocking the potential of ancient fish DNA in the genomic era. Evol Appl 2019; 12:1513-1522. [PMID: 31462911 PMCID: PMC6708421 DOI: 10.1111/eva.12811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
Fish are the most diverse group of vertebrates, fulfil important ecological functions and are of significant economic interest for aquaculture and wild fisheries. Advances in DNA extraction methods, sequencing technologies and bioinformatic applications have advanced genomic research for nonmodel organisms, allowing the field of fish ancient DNA (aDNA) to move into the genomics era. This move is enabling researchers to investigate a multitude of new questions in evolutionary ecology that could not, until now, be addressed. In many cases, these new fields of research have relevance to evolutionary applications, such as the sustainable management of fisheries resources and the conservation of aquatic animals. Here, we focus on the application of fish aDNA to (a) highlight new research questions, (b) outline methodological advances and current challenges, (c) discuss how our understanding of fish ecology and evolution can benefit from aDNA applications and (d) provide a future perspective on how the field will help answer key questions in conservation and management. We conclude that the power of fish aDNA will be unlocked through the application of continually improving genomic resources and methods to well-chosen taxonomic groups represented by well-dated archaeological samples that can provide temporally and/or spatially extensive data sets.
Collapse
Affiliation(s)
- Tom Oosting
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Bastiaan Star
- Department of Biosciences, Centre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| | - James H. Barrett
- Department of ArchaeologyUniversity of CambridgeCambridgeUK
- Department of Archaeology and Cultural HistoryNTNU University MuseumTrondheimNorway
- Trinity Centre for Environmental HumanitiesTrinity College DublinDublinIreland
| | - Maren Wellenreuther
- Nelson Seafood Research UnitPlant and Food ResearchNelsonNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Peter A. Ritchie
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Nicolas J. Rawlence
- Otago Palaeogenetics Laboratory, Department of ZoologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|