1
|
Cotter A, Dracatos P, Beddoe T, Johnson K. Isothermal Detection Methods for Fungal Pathogens in Closed Environment Agriculture. J Fungi (Basel) 2024; 10:851. [PMID: 39728347 DOI: 10.3390/jof10120851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
Closed environment agriculture (CEA) is rapidly gaining traction as a sustainable option to meet global food demands while mitigating the impacts of climate change. Fungal pathogens represent a significant threat to crop productivity in CEA, where the controlled conditions can inadvertently foster their growth. Historically, the detection of pathogens has largely relied on the manual observation of signs and symptoms of disease in the crops. These approaches are challenging at large scale, time consuming, and often too late to limit crop loss. The emergence of fungicide resistance further complicates management strategies, necessitating the development of more effective diagnostic tools. Recent advancements in technology, particularly in molecular and isothermal diagnostics, offer promising tools for the early detection and management of fungal pathogens. Innovative detection methods have the potential to provide real-time results and enhance pathogen management in CEA systems. This review explores isothermal amplification and other new technologies in detection of fungal pathogens that occur in CEA.
Collapse
Affiliation(s)
- Aylwen Cotter
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, Bundoora 3083, Australia
| | - Peter Dracatos
- La Trobe Institute for Sustainable Agriculture and Food, Department of Ecological, Plant and Animal Sciences, La Trobe University, Bundoora 3083, Australia
| | - Travis Beddoe
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, Bundoora 3083, Australia
- La Trobe Institute for Sustainable Agriculture and Food, Department of Ecological, Plant and Animal Sciences, La Trobe University, Bundoora 3083, Australia
| | - Kim Johnson
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, Bundoora 3083, Australia
- La Trobe Institute for Sustainable Agriculture and Food, Department of Ecological, Plant and Animal Sciences, La Trobe University, Bundoora 3083, Australia
| |
Collapse
|
2
|
Thangarajah K, Emmanuel CJ. Identification of new phylogenetic lineage of Lasiodiplodia causing leaf spot and tip necrosis causing agent on Aloe vera in Sri Lanka and screening eco-friendly control measures. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2024; 133:102387. [DOI: 10.1016/j.pmpp.2024.102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Saadaoui M, Faize M, Rifai A, Tayeb K, Omri Ben Youssef N, Kharrat M, Roeckel-Drevet P, Chaar H, Venisse JS. Evaluation of Tunisian wheat endophytes as plant growth promoting bacteria and biological control agents against Fusarium culmorum. PLoS One 2024; 19:e0300791. [PMID: 38758965 PMCID: PMC11101125 DOI: 10.1371/journal.pone.0300791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/05/2024] [Indexed: 05/19/2024] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) applications have emerged as an ideal substitute for synthetic chemicals by their ability to improve plant nutrition and resistance against pathogens. In this study, we isolated fourteen root endophytes from healthy wheat roots cultivated in Tunisia. The isolates were identified based from their 16S rRNA gene sequences. They belonged to Bacillota and Pseudomonadota taxa. Fourteen strains were tested for their growth-promoting and defense-eliciting potentials on durum wheat under greenhouse conditions, and for their in vitro biocontrol power against Fusarium culmorum, an ascomycete responsible for seedling blight, foot and root rot, and head blight diseases of wheat. We found that all the strains improved shoot and/or root biomass accumulation, with Bacillus mojavensis, Paenibacillus peoriae and Variovorax paradoxus showing the strongest promoting effects. These physiological effects were correlated with the plant growth-promoting traits of the bacterial endophytes, which produced indole-related compounds, ammonia, and hydrogen cyanide (HCN), and solubilized phosphate and zinc. Likewise, plant defense accumulations were modulated lastingly and systematically in roots and leaves by all the strains. Testing in vitro antagonism against F. culmorum revealed an inhibition activity exceeding 40% for five strains: Bacillus cereus, Paenibacillus peoriae, Paenibacillus polymyxa, Pantoae agglomerans, and Pseudomonas aeruginosa. These strains exhibited significant inhibitory effects on F. culmorum mycelia growth, sporulation, and/or macroconidia germination. P. peoriae performed best, with total inhibition of sporulation and macroconidia germination. These finding highlight the effectiveness of root bacterial endophytes in promoting plant growth and resistance, and in controlling phytopathogens such as F. culmorum. This is the first report identifying 14 bacterial candidates as potential agents for the control of F. culmorum, of which Paenibacillus peoriae and/or its intracellular metabolites have potential for development as biopesticides.
Collapse
Affiliation(s)
- Mouadh Saadaoui
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
- Université de Tunis El Manar, Campus Universitaire Farhat Hached, Tunis, Tunisia
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia, Tunisia, Tunisia
| | - Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization CNRST-URL10, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - Aicha Rifai
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization CNRST-URL10, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - Koussa Tayeb
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization CNRST-URL10, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
| | - Noura Omri Ben Youssef
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia, Tunisia, Tunisia
- National Institute of Agronomy of Tunisia, Tunis, Tunisia
| | - Mohamed Kharrat
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia, Tunisia, Tunisia
| | | | - Hatem Chaar
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia, Tunisia, Tunisia
- National Institute of Agronomy of Tunisia, Tunis, Tunisia
| | | |
Collapse
|
4
|
Saadaoui M, Faize M, Bonhomme L, Benyoussef NO, Kharrat M, Chaar H, Label P, Venisse JS. Assessment of Tunisian Trichoderma Isolates on Wheat Seed Germination, Seedling Growth and Fusarium Seedling Blight Suppression. Microorganisms 2023; 11:1512. [PMID: 37375014 DOI: 10.3390/microorganisms11061512] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Beneficial microorganisms, including members of the Trichoderma genus, are known for their ability to promote plant growth and disease resistance, as well as being alternatives to synthetic inputs in agriculture. In this study, 111 Trichoderma strains were isolated from the rhizospheric soil of Florence Aurore, an ancient wheat variety that was cultivated in an organic farming system in Tunisia. A preliminary ITS analysis allowed us to cluster these 111 isolates into three main groups, T. harzianum (74 isolates), T. lixii (16 isolates) and T. sp. (21 isolates), represented by six different species. Their multi-locus analysis (tef1, translation elongation factor 1; rpb2, RNA polymerase B) identified three T. afroharzianum, one T. lixii, one T. atrobrunneum and one T. lentinulae species. These six new strains were selected to determine their suitability as plant growth promoters (PGP) and biocontrol agents (BCA) against Fusarium seedling blight disease (FSB) in wheat caused by Fusarium culmorum. All of the strains exhibited PGP abilities correlated to ammonia and indole-like compound production. In terms of biocontrol activity, all of the strains inhibited the development of F. culmorum in vitro, which is linked to the production of lytic enzymes, as well as diffusible and volatile organic compounds. An in planta assay was carried out on the seeds of a Tunisian modern wheat variety (Khiar) by coating them with Trichoderma. A significant increase in biomass was observed, which is associated with increased chlorophyll and nitrogen. An FSB bioprotective effect was confirmed for all strains (with Th01 being the most effective) by suppressing morbid symptoms in germinated seeds and seedlings, as well as by limiting F. culmorum aggressiveness on overall plant growth. Plant transcriptome analysis revealed that the isolates triggered several SA- and JA-dependent defense-encoding genes involved in F. culmorum resistance in the roots and leaves of three-week-old seedlings. This finding makes these strains very promising in promoting growth and controlling FSB disease in modern wheat varieties.
Collapse
Affiliation(s)
- Mouadh Saadaoui
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
- Université de Tunis El Manar, Campus Universitaire Farhat Hached, B.P. n° 94-ROMMANA, Tunis 1068, Tunisia
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
| | - Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization URL-CNRST 10, Faculty of Sciences, University Chouaib Doukkali, El Jadida 24000, Morocco
| | - Ludovic Bonhomme
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Noura Omri Benyoussef
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
- National Institute of Agronomy of Tunisia (INAT), Tunis 1082, Tunisia
| | - Mohamed Kharrat
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
| | - Hatem Chaar
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
- National Institute of Agronomy of Tunisia (INAT), Tunis 1082, Tunisia
| | - Philippe Label
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | | |
Collapse
|
5
|
A Novel Bacillus safensis-Based Formulation along with Mycorrhiza Inoculation for Controlling Alternaria alternata and Simultaneously Improving Growth, Nutrient Uptake, and Steviol Glycosides in Stevia rebaudiana under Field Conditions. PLANTS 2022; 11:plants11141857. [PMID: 35890492 PMCID: PMC9317049 DOI: 10.3390/plants11141857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
The excess use of chemicals by farmers in the agroecosystems degrades soil quality, disturbs soil ecology, and increases soil salinity and health hazards in humans. Stevia rebaudiana is an important medicinal and aromatic crop whose leaves contain steviol glycosides (SGs). The Bacillus safensis NAIMCC-B-02323 strain STJP from the rhizosphere of S. rebaudiana producing salicylic acid (16.80 µg/mL), chitinase (75.58 U/mL), β-1,3-glucanase (220.36 U/mL), and cellulase (170 U/mL) was taken as a plant growth-promoting rhizobacteria (PGPR). The cell-free supernatant (CFS) from strain STJP showed significant biocontrol activity against Alternaria alternata (80%), suggesting the protective role of extracellular metabolite(s) against phytopathogens. Paneer whey-based bioformulation (P-WBF) was developed to exploit B. safensis STJP to enhance the growth, nutrient uptake, soil properties, stevioside content, and SGs biosynthesis in S. rebaudiana under an A. alternata-infested field. The combined treatment of P-WBF and mycorrhiza (Glomus fasciculatum ABTEC) significantly enhanced plant growth parameters after 90 days, in comparison with control. The symbiotic action (P-WBF and mycorrhiza) displayed much better results in terms of chlorophyll a and b (improved by 132.85% and 39.80%, respectively), protein (by 278.75%), flavonoid (by 86.99%), carbohydrate (by 103.84%), antioxidant (by 75.11%), and stevioside (by 120.62%) contents in plants as compared to the untreated set. Further, the augmentation of potassium (by 132.39%), phosphorous (by 94.22%), and zinc (by 111.11%) uptake in plant tissues and soil was also observed by the application of P-WBF and mycorrhiza. The expression of UGT74G1 and UGT85C2 genes related to SG biosynthesis was upregulated (2.7- and 3.2-fold, respectively) in plants treated with P-WBF and mycorrhiza as further confirmed by the accumulation of SGs. The results suggest that the application of P-WBF and mycorrhiza not only provides an ecofriendly and sustainable solution to improve stevioside content in S. rebaudiana by a nutrient-linked mechanism but also paves the way to enhanced production of stevioside.
Collapse
|
6
|
Trichoderma and Its Products From Laboratory to Patient Bedside in Medical Science: An Emerging Aspect. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Mastan A, Rane D, Dastager SG, Vivek Babu CS. Molecular insights of fungal endophyte co-inoculation with Trichoderma viride for the augmentation of forskolin biosynthesis in Coleus forskohlii. PHYTOCHEMISTRY 2021; 184:112654. [PMID: 33461046 DOI: 10.1016/j.phytochem.2021.112654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
To understand the compatibility of three native endophytic fungi Phialemoniopsis cornearis (SF1), Macrophomina pseudophaseolina (SF2) and Fusarium redolens (RF1) with Trichoderma viride (TV1) on Coleus forskohlii in enhancing plant growth and forskolin content, field experiments were conducted. Co-inoculation of RF1+TV1 showed significant improvement in plant growth (52%), root biomass (67%), and in-planta forskolin content (94%), followed by treatment with SF2+TV1 and SF1+TV1. qRT-PCR was carried out to quantify expression of five key forskolin biosynthetic pathway genes (CfTPS2, CfTPS3, CfTPS4, CfCYP76AH15, and CfACT1-8) in RF1+TV1 treated C. forskohlii plants. Elevated expression of CfTPS2, CfTPS4, CfCYP76AH15 and CfACT1-8 genes was observed with RF1+TV1 combination as compared to uninoculated C. forskohlii plants. Besides, RF1+TV1 treatment considerably reduced the severity of nematode infection of C. forskohlii plants under field conditions. Thus, congruent properties of F. redolens (RF1) were witnessed with co-inoculation of T. viride (TV1) under field conditions which resulted in enhanced forskolin content, root biomass, and reduced nematode infections in C. forskohlii. Overall, this approach could be an economical and sustainable step towards cultivation of commercially important medicinal plants.
Collapse
Affiliation(s)
- Anthati Mastan
- Microbial Technology Laboratory, CSIR- Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore, 560065, India; Academy of Scientific and Innovative Research, CSIR-CIMAP Campus, Lucknow, Uttar Pradesh, 226015, India
| | - Digeshwar Rane
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Syed G Dastager
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - C S Vivek Babu
- Microbial Technology Laboratory, CSIR- Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore, 560065, India; Academy of Scientific and Innovative Research, CSIR-CIMAP Campus, Lucknow, Uttar Pradesh, 226015, India; Present address: Food Protectants & Infestation Control (FPIC) Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, 570 020, Karnataka, India.
| |
Collapse
|