1
|
Kumaraswamy S, Huang Y. Molecular Interactions Between Plants and Aphids: Recent Advances and Future Perspectives. INSECTS 2024; 15:935. [PMID: 39769537 PMCID: PMC11677212 DOI: 10.3390/insects15120935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Aphids are small, notorious insect pests that negatively impact plant health and agricultural productivity through direct damage, such as sap-sucking, and indirectly as vectors of plant viruses. Plants respond to aphid feeding with a variety of molecular mechanisms to mitigate damage. These responses are diverse and highly dynamic, functioning either independently or in combination. Understanding plant-aphid interactions is crucial for revealing the full range of plant defenses against aphids. When aphids infest, plants detect the damage via specific receptor proteins, initiating a signaling cascade that activates defense mechanisms. These defenses include a complex interaction of phytohormones that trigger defense pathways, secondary metabolites that deter aphid feeding and reproduction, lectins and protease inhibitors that disrupt aphid physiology, and elicitors that activate further defense responses. Meanwhile, aphids counteract plant defenses with salivary effectors and proteins that suppress plant defenses, aiding in their successful colonization. This review offers a detailed overview of the molecular mechanisms involved in plant-aphid interactions, emphasizing both established and emerging plant defense strategies. Its uniqueness lies in synthesizing the recent progress made in plant defense responses to aphids, along with aphids' countermeasures to evade such defenses. By consolidating current knowledge, this review provides key insights for developing sustainable strategies to achieve crop protection and minimize dependence on chemical pesticides.
Collapse
Affiliation(s)
- Sunil Kumaraswamy
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Yinghua Huang
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA;
- Plant Science Research Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 1301 N. Western Road, Stillwater, OK 74075, USA
| |
Collapse
|
2
|
Feng H, Jander G. Serine proteinase inhibitors from Nicotiana benthamiana, a nonpreferred host plant, inhibit the growth of Myzus persicae (green peach aphid). PEST MANAGEMENT SCIENCE 2024; 80:4470-4481. [PMID: 38666388 DOI: 10.1002/ps.8148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The green peach aphid (Myzus persicae) is a severe agricultural crop pest that has developed resistance to most current control methods, requiring the urgent development of novel strategies. Plant proteinase inhibitors (PINs) are small proteins that protect plants against pathogens and/or herbivores, likely by preventing efficient protein digestion. RESULTS We identified 67 protease genes in the transcriptomes of three M. persicae lineages (USDA-Red, G002 and G006). Comparison of gene expression levels in aphid guts and whole aphids showed that several proteases, including a highly expressed serine protease, are significantly overexpressed in the guts. Furthermore, we identified three genes encoding serine protease inhibitors (SerPIN-II1, 2 and 3) in Nicotiana benthamiana, which is a nonpreferred host for M. persicae. Using virus-induced gene silencing (VIGS) with a tobacco rattle virus (TRV) vector and overexpression with a turnip mosaic virus (TuMV) vector, we demonstrated that N. benthamiana SerPIN-II1 and SerPIN-II2 cause reduced survival and growth, but do not affect aphid protein content. Likewise, SerPIN-II3 overexpression reduced survival and growth, and serpin-II3 knockout mutations, which we generated using CRISPR/Cas9, increased survival and growth. Protein content was significantly increased in aphids fed on SerPIN-II3 overexpressing plants, yet it was decreased in aphids fed on serpin-II3 mutants. CONCLUSION Our results show that three PIN-IIs from N. benthamiana, a nonpreferred host plant, effectively inhibit M. persicae survival and growth, thereby representing a new resource for the development of aphid-resistant crop plants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Honglin Feng
- Boyce Thompson Institute, Ithaca, NY, USA
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | | |
Collapse
|
3
|
Mangena P. Pleiotropic effects of recombinant protease inhibitors in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:994710. [PMID: 36119571 PMCID: PMC9478479 DOI: 10.3389/fpls.2022.994710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Recombinant gene encoded protease inhibitors have been identified as some of the most effective antidigestive molecules to guard against proteolysis of essential proteins and plant attacking proteases from herbivorous pests and pathogenic microorganisms. Protease inhibitors (PIs) can be over expressed in transgenic plants to complement internal host defense systems, Bt toxins in genetically modified pest resistance and abiotic stress tolerance achieved through cystatins expression. Although the understanding of the role of proteolytic enzymes and their inhibitors encoded by both endogenous and transgenes expressed in crop plants has significantly advanced, their implication in biological systems still requires further elucidations. This paper, therefore, succinctly reviewed most recently published literature on recombinant proteases inhibitors (RPIs), focusing mainly on their unintended consequences in plants, other living organisms, and the environment. The review discusses major negative and unintended effects of RPIs involving the inhibitors' non-specificity on protease enzymes, non-target organisms and ubiquitous versatility in their mechanism of inhibition. The paper also discusses some direct and indirect effects of RPIs such as degradation by distinct classes of proteases, reduced functionality due to plant exposure to severe environmental stress and any other potential negative influences exerted on both the host plant as well as the environment. These pleiotropic effects must be decisively monitored to eliminate and prevent any potential adverse effects that transgenic plants carrying recombinant inhibitor genes may have on non-target organisms and biodiversity.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, Faculty of Science and Agriculture, School of Molecular and Life Sciences, University of Limpopo, Polokwane, Limpopo, South Africa
| |
Collapse
|
4
|
Grover S, Cardona JB, Zogli P, Alvarez S, Naldrett MJ, Sattler SE, Louis J. Reprogramming of sorghum proteome in response to sugarcane aphid infestation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111289. [PMID: 35643611 DOI: 10.1016/j.plantsci.2022.111289] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Sugarcane aphid (SCA; Melanaphis sacchari Zehntner) is a key piercing-sucking pest of sorghum (Sorghum bicolor) that cause significant yield losses. While feeding on host plants, complex signaling networks are invoked from recognition of insect attack to induction of plant defenses. Consequently, these signaling networks lead to the production of insecticidal compounds or limited access of nutrients to insects. Previously, several studies were published on the transcriptomics analysis of sorghum in response to SCA infestation, but no information is available on the physiological changes of sorghum at the proteome level. We used the SCA resistant sorghum genotype SC265 for the global proteomics analysis after 1 and 7 days of SCA infestation using the TMT-plex technique. Peptides matching a total of 4211 proteins were identified and 158 proteins were differentially expressed at day 1 and 7. Overall, proteome profiling of SC265 after SCA infestation at days 1 and 7 revealed the suppression of plant defense-related proteins and upregulation of plant defense and signaling-related proteins, respectively. The plant defense responses based on proteome data were validated using electrical penetration graph (EPG) technique to observe changes in aphid feeding. Feeding behavior analyses revealed that SCA spent significantly longer time in phloem phase on SCA infested plants for day 1 and lesser time in day 7 SCA infested sorghum plants, compared to their respective control plants. Overall, our study provides insights into underlying mechanisms that contribute to sorghum resistance to SCA.
Collapse
Affiliation(s)
- Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | | | - Prince Zogli
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, US Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 68583, USA.
| |
Collapse
|
5
|
Liu X, Kou X, Bai S, Luo Y, Wang Z, Xie L, Deng P, Zhang H, Wang C, Wang Y, Zhao J, Ji W. Identification of Differentially Expressed Genes in Resistant Tetraploid Wheat ( Triticum turgidum) under Sitobion avenae (F.) Infestation. Int J Mol Sci 2022; 23:ijms23116012. [PMID: 35682692 PMCID: PMC9180832 DOI: 10.3390/ijms23116012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
The grain aphid Sitobion avenae (Fabricius) is one of the most destructive pests of wheat (Triticum aestivum). Deployment of resistant wheat germplasm appears as an excellent solution for this problem. Elite bread wheat cultivars only have limited resistance to this pest. The present study was carried out to investigate the potential of the tetraploid wheat (Triticum turgidum) variety Lanmai, which showed high resistance to S. avenae at both seedling and adult plant stages, as a source of resistance genes. Based on apterous adult aphids’ fecundity tests and choice bioassays, Lanmai has been shown to display antixenosis and antibiosis. Suppression subtractive hybridization (SSH) was employed to identify and isolate the putative candidate defense genes in Lanmai against S. avenae infestation. A total of 134 expressed sequence tags (ESTs) were identified and categorized based on their putative functions. RT-qPCR analysis of 30 selected genes confirmed their differential expression over time between the resistant wheat variety Lanmai and susceptible wheat variety Polan305 during S. avenae infestation. There were 11 genes related to the photosynthesis process, and only 3 genes showed higher expression in Lanmai than in Polan305 after S. avenae infestation. Gene expression analysis also revealed that Lanmai played a critical role in salicylic acid and jasmonic acid pathways after S. avenae infestation. This study provided further insights into the role of defense signaling networks in wheat resistance to S. avenae and indicates that the resistant tetraploid wheat variety Lanmai may provide a valuable resource for aphid tolerance improvement in wheat.
Collapse
Affiliation(s)
- Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
- Correspondence: (X.L.); (W.J.)
| | - Xudan Kou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Shichao Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Yufeng Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Zhenyu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Lincai Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Jixin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.K.); (S.B.); (Y.L.); (Z.W.); (L.X.); (P.D.); (H.Z.); (C.W.); (Y.W.); (J.Z.)
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
- Correspondence: (X.L.); (W.J.)
| |
Collapse
|
6
|
The Status of Prunus padus L. (Bird Cherry) in Forest Communities throughout Europe and Asia. FORESTS 2020. [DOI: 10.3390/f11050497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prunus padus L. (bird cherry) belongs to the Racemosa group in subgenus Padus in the genus Prunus L. It is a hardy invasive species, which makes it valuable for securing slopes, and for eco-design. It is a good solitary park tree with early flowering of white flowers in racemes, which have a pleasant smell. However, it may be attacked by cherry-oat aphid, and the small ermine moth, which may weave giant webs over the whole tree, which demonstrates the important role of P. padus in the food web of forest ecosystems. The species is in balance with these pests, other herbivores and diseases throughout Europe and Asia. Another threat is the competition against the invasive P. serotina, but it seems that P. padus is not strongly threatened, though they compete for the same habitats. Moreover, human interference of forest community ecology is probably the greatest threat. The tree is not only winter hardy; it can also survive hot summers and tolerate a wide variety of soil types. It may form dense thickets due to the regeneration of branches bent to the ground and basal shoots, and may be invasive. These characteristics are important in determining the ecological niche of P. padus, which involves the position of the species within an ecosystem, comprising both its habitat requirements and the functional role. It is also important that P. padus has effective dispersal of pollen and seeds. This, together with the previously noted characteristics and the fact that the tree can cope well with climate change, define it as a not threatened species. However, the ssp. borealis is threatened and national level monitoring is required. Prunus padus has been exploited by farmers and rural population, but is less used today. However, it is still used for making syrup, jam and liquor. Moreover, the wood is valuable for wood carving and making cabinets. All tissues are valuable as sources of powerful natural antioxidants. However, the interest in the P. padus fruit and other tissues is overshadowed by the interest in other wild species of edible and human health-related berries. Moreover, the tree is used in horticulture as an ornamental in gardens and parks, values that deserve a new focus.
Collapse
|
7
|
Kersch‐Becker MF, Thaler JS. Constitutive and herbivore‐induced plant defences regulate herbivore population processes. J Anim Ecol 2019; 88:1079-1088. [DOI: 10.1111/1365-2656.12993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/26/2019] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jennifer S. Thaler
- Department of Entomology and Department of Ecology and Evolutionary Biology Cornell University Ithaca New York
| |
Collapse
|
8
|
Åhman I, Bengtsson T. Introgression of resistance to Rhopalosiphum padi L. from wild barley into cultivated barley facilitated by doubled haploid and molecular marker techniques. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1397-1408. [PMID: 30712072 PMCID: PMC6477012 DOI: 10.1007/s00122-019-03287-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/16/2019] [Indexed: 05/24/2023]
Abstract
Long-term pre-breeding using Hordeum vulgare ssp. spontaneum as a donor of bird cherry-oat aphid resistance has resulted in agronomically improved resistance sources of barley along with easy-to-use molecular markers. Bird cherry-oat aphid (Rhopalosiphum padi L.) is a pest and a virus vector in barley to which there are no bred-resistant cultivars. The present study describes how resistance from Hordeum vulgare ssp. spontaneum has been introgressed in cultivated barley via five successive crosses with the same cultivar Lina (BC) and in parallel with other more modern barley cultivars. Most of the selections for resistance are based on measurements of individual aphid growth in the laboratory. This very slow phenotyping method has been complemented by molecular marker evaluation and application in part of the breeding material. Doubled haploid production in each generation has been crucial for more precise selection of lines with the quantitatively expressed resistance. A field trial of selected "BC3"-generation lines essentially confirmed the laboratory results, so did genotyping of the whole pedigree of parents and selected "BC2" and "BC4" offspring lines. The Infinium iSelect 50 K SNP assay confirmed relationships between lines and discerned several new markers for a resistance QTL on chromosome 2H.
Collapse
Affiliation(s)
- Inger Åhman
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53, Alnarp, Sweden.
| | - Therése Bengtsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53, Alnarp, Sweden
| |
Collapse
|
9
|
Losvik A, Beste L, Mehrabi S, Jonsson L. The Protease Inhibitor CI2c Gene Induced by Bird Cherry-Oat Aphid in Barley Inhibits Green Peach Aphid Fecundity in Transgenic Arabidopsis. Int J Mol Sci 2017. [PMID: 28632160 PMCID: PMC5486138 DOI: 10.3390/ijms18061317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aphids are phloem feeders that cause large damage globally as pest insects. They induce a variety of responses in the host plant, but not much is known about which responses are promoting or inhibiting aphid performance. Here, we investigated whether one of the responses induced in barley by the cereal aphid, bird cherry-oat aphid (Rhopalosiphum padi L.) affects aphid performance in the model plant Arabidopsis thaliana L. A barley cDNA encoding the protease inhibitor CI2c was expressed in A. thaliana and aphid performance was studied using the generalist green peach aphid (Myzus persicae Sulzer). There were no consistent effects on aphid settling or preference or on parameters of life span and long-term fecundity. However, short-term tests with apterous adult aphids showed lower fecundity on three of the transgenic lines, as compared to on control plants. This effect was transient, observed on days 5 to 7, but not later. The results suggest that the protease inhibitor is taken up from the tissue during probing and weakly inhibits fecundity by an unknown mechanism. The study shows that a protease inhibitor induced in barley by an essentially monocot specialist aphid can inhibit a generalist aphid in transgenic Arabidopsis.
Collapse
Affiliation(s)
| | | | - Sara Mehrabi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| | - Lisbeth Jonsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|