1
|
Jang MA. Genomic technologies for detecting structural variations in hematologic malignancies. Blood Res 2024; 59:1. [PMID: 38485792 PMCID: PMC10903520 DOI: 10.1007/s44313-024-00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 03/18/2024] Open
Abstract
Genomic structural variations in myeloid, lymphoid, and plasma cell neoplasms can provide key diagnostic, prognostic, and therapeutic information while elucidating the underlying disease biology. Several molecular diagnostic approaches play a central role in evaluating hematological malignancies. Traditional cytogenetic diagnostic assays, such as chromosome banding and fluorescence in situ hybridization, are essential components of the current diagnostic workup that guide clinical care for most hematologic malignancies. However, each assay has inherent limitations, including limited resolution for detecting small structural variations and low coverage, and can only detect alterations in the target regions. Recently, the rapid expansion and increasing availability of novel and comprehensive genomic technologies have led to their use in clinical laboratories for clinical management and translational research. This review aims to describe the clinical relevance of structural variations in hematologic malignancies and introduce genomic technologies that may facilitate personalized tumor characterization and treatment.
Collapse
Affiliation(s)
- Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Korea.
| |
Collapse
|
2
|
Bang B, Eisfeldt J, Barbany G, Harila-Saari A, Heyman M, Zachariadis V, Taylan F, Nordgren A. A somatic UBA2 variant preceded ETV6-RUNX1 in the concordant BCP-ALL of monozygotic twins. Blood Adv 2022; 6:2275-2289. [PMID: 34982829 PMCID: PMC9006272 DOI: 10.1182/bloodadvances.2021005703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Genetic analysis of leukemic clones in monozygotic twins with concordant acute lymphoblastic leukemia (ALL) has proved a unique opportunity to gain insight into the molecular phylogenetics of leukemogenesis. Using whole-genome sequencing, we characterized constitutional and somatic single nucleotide variants/insertion-deletions (indels) and structural variants in a monozygotic twin pair with concordant ETV6-RUNX1+ B-cell precursor ALL (BCP-ALL). In addition, digital PCR (dPCR) was applied to evaluate the presence of and quantify selected somatic variants at birth, diagnosis, and remission. A shared somatic complex rearrangement involving chromosomes 11, 12, and 21 with identical fusion sequences in leukemias of both twins offered direct proof of a common clonal origin. The ETV6-RUNX1 fusion detected at diagnosis was found to originate from this complex rearrangement. A shared somatic frameshift deletion in UBA2 was also identified in diagnostic samples. In addition, each leukemia independently acquired analogous deletions of 3 genes recurrently targeted in BCP-ALLs (ETV6, ATF7IP, and RAG1/RAG2), providing evidence of a convergent clonal evolution only explained by a strong concurrent selective pressure. Quantification of the UBA2 deletion by dPCR surprisingly indicated it persisted in remission. This, for the first time to our knowledge, provided evidence of a UBA2 variant preceding the well-established initiating event ETV6-RUNX1. Further, we suggest the UBA2 deletion exerted a leukemia predisposing effect and that its essential role in Small Ubiquitin-like Modifier (SUMO) attachment (SUMOylation), regulating nearly all physiological and pathological cellular processes such as DNA-repair by nonhomologous end joining, may hold a mechanistic explanation for the predisposition.
Collapse
Affiliation(s)
- Benedicte Bang
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Arja Harila-Saari
- Department of Women’s and Children’s Health, Uppsala University Hospital, Uppsala, Sweden
| | - Mats Heyman
- Department of Women’s and Children’s Health, Karolinska University Hospital Solna, Stockholm, Sweden; and
| | - Vasilios Zachariadis
- Department of Oncology-Pathology, Cancer Centre Karolinska (CCK), Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Guenzel AJ, Smadbeck JB, Golden CL, Williamson CM, Benevides Demasi JC, Vasmatzis G, Pearce KE, Olteanu H, Xu X, Hoppman NL, Greipp PT, Baughn LB, Ketterling RP, Peterson JF. Clinical utility of next generation sequencing to detect IGH/IL3 rearrangements [t(5;14)(q31.1;q32.1)] in B-lymphoblastic leukemia/lymphoma. Ann Diagn Pathol 2021; 53:151761. [PMID: 33991782 DOI: 10.1016/j.anndiagpath.2021.151761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022]
Abstract
The t(5;14)(q31.1;q32.1) associated with B-lymphoblastic leukemia/lymphoma (B-ALL/LBL) is a rare, recurrent genetic abnormality recognized as a distinct entity by the 2017 World Health Organization (WHO) classification. In these cases, the IGH enhancer region (14q32.1) is juxtaposed to the vicinity of the IL3 gene (5q31.1), resulting in increased production of interleukin-3 (IL3) and subsequently a characteristic reactive eosinophilia. B-ALL with t(5;14)(q31.1;q32.1) may have a low lymphoblast count that can complicate detection of t(5;14)(q31.1;q32.1) by conventional chromosome studies. We have identified four patients with IGH/IL3 rearrangements despite normal conventional chromosome studies in each case [one patient had a non-clonal t(5;14)(q31;q32) finding]. Fluorescence in situ hybridization utilizing a laboratory-developed IGH break-apart probe set identified IGH rearrangements in three of four cases, and a next generation sequencing (NGS) based assay, mate-pair sequencing (MPseq), was required to characterize the IGH/IL3 rearrangements in each case. Three patients demonstrated a balanced t(5;14)(q31.1;q32.1) while one patient had a cryptic insertion of the IL3 gene into the IGH region. These results demonstrate that NGS-based assays, such as MPseq, confer an advantage in the detection of IGH/IL3 rearrangements that are otherwise challenging to characterize by traditional cytogenetic methodologies.
Collapse
Affiliation(s)
- Adam J Guenzel
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - James B Smadbeck
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, MN, United States of America
| | - Crystal L Golden
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Cynthia M Williamson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Jonna C Benevides Demasi
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - George Vasmatzis
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, MN, United States of America
| | - Kathryn E Pearce
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Horatiu Olteanu
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Xinjie Xu
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Nicole L Hoppman
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Patricia T Greipp
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Linda B Baughn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Rhett P Ketterling
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America; Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Jess F Peterson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
4
|
Polonis K, Schultz MJ, Olteanu H, Smadbeck JB, Johnson SH, Vasmatzis G, Xu X, Greipp PT, Ketterling RP, Hoppman NL, Baughn LB, Peterson JF. Detection of cryptic CCND1 rearrangements in mantle cell lymphoma by next generation sequencing. Ann Diagn Pathol 2020; 46:151533. [PMID: 32408254 DOI: 10.1016/j.anndiagpath.2020.151533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022]
Abstract
The accurate detection of recurrent genetic abnormalities for most hematologic neoplasms is critical for diagnosis, prognosis and/or treatment. Rearrangements involving CCND1 are observed in a subset of mature B-cell neoplasms and can be reliably detected by fluorescence in situ hybridization (FISH) in most cases. However, cryptic and complex chromosomal rearrangements may pose a technical challenge for accurate diagnosis. Herein, we describe two patients with suspected mantle cell lymphoma that lacked obvious CCND1 rearrangements by FISH studies. A next generation sequencing (NGS) based assay, mate-pair sequencing (MPseq), was utilized in each case to investigate potential cryptic CCND1 rearrangements and revealed cryptic insertional events resulting in CCND1/IGH and CCND1/IGK rearrangements. These cases demonstrate that NGS-based assays, including MPseq, are a powerful approach to identify cryptic rearrangements of clinical importance that are not detected by current clinical genomics evaluation.
Collapse
Affiliation(s)
- Katarzyna Polonis
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Matthew J Schultz
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Horatiu Olteanu
- Division of Hematopathology, Mayo Clinic, Rochester, MN, United States of America
| | - James B Smadbeck
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, MN, United States of America
| | - Sarah H Johnson
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, MN, United States of America
| | - George Vasmatzis
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, MN, United States of America
| | - Xinjie Xu
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Patricia T Greipp
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Rhett P Ketterling
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America; Division of Hematopathology, Mayo Clinic, Rochester, MN, United States of America
| | - Nicole L Hoppman
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Linda B Baughn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Jess F Peterson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
5
|
Refined detection and phasing of structural aberrations in pediatric acute lymphoblastic leukemia by linked-read whole-genome sequencing. Sci Rep 2020; 10:2512. [PMID: 32054878 PMCID: PMC7018692 DOI: 10.1038/s41598-020-59214-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Structural chromosomal rearrangements that can lead to in-frame gene-fusions are a leading source of information for diagnosis, risk stratification, and prognosis in pediatric acute lymphoblastic leukemia (ALL). Traditional methods such as karyotyping and FISH struggle to accurately identify and phase such large-scale chromosomal aberrations in ALL genomes. We therefore evaluated linked-read WGS for detecting chromosomal rearrangements in primary samples of from 12 patients diagnosed with ALL. We assessed the effect of input DNA quality on phased haplotype block size and the detectability of copy number aberrations and structural variants in the ALL genomes. We found that biobanked DNA isolated by standard column-based extraction methods was sufficient to detect chromosomal rearrangements even at low 10x sequencing coverage. Linked-read WGS enabled precise, allele-specific, digital karyotyping at a base-pair resolution for a wide range of structural variants including complex rearrangements and aneuploidy assessment. With use of haplotype information from the linked-reads, we also identified previously unknown structural variants, such as a compound heterozygous deletion of ERG in a patient with the DUX4-IGH fusion gene. We conclude that linked-read WGS allows detection of important pathogenic variants in ALL genomes at a resolution beyond that of traditional karyotyping and FISH.
Collapse
|
6
|
Prieto-Conde MI, Corchete LA, García-Álvarez M, Jiménez C, Medina A, Balanzategui A, Hernández-Ruano M, Maldonado R, Sarasquete ME, Alcoceba M, Puig N, González-Calle V, García-Sanz R, Gutiérrez NC, González-Díaz M, Chillón MC. A New Next-Generation Sequencing Strategy for the Simultaneous Analysis of Mutations and Chromosomal Rearrangements at DNA Level in Acute Myeloid Leukemia Patients. J Mol Diagn 2020; 22:60-71. [DOI: 10.1016/j.jmoldx.2019.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
|
7
|
Schultz MJ, Blackburn PR, Cogbill CH, Pitel BA, Smadbeck JB, Johnson SH, Vasmatzis G, Rech KL, Sukov WR, Greipp PT, Hoppman NL, Baughn LB, Ketterling RP, Peterson JF. Characterization of a cryptic PML-RARA fusion by mate-pair sequencing in a case of acute promyelocytic leukemia with a normal karyotype and negative RARA FISH studies. Leuk Lymphoma 2019; 61:975-978. [PMID: 31809670 DOI: 10.1080/10428194.2019.1699081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Matthew J Schultz
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Patrick R Blackburn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Beth A Pitel
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - James B Smadbeck
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, MN, USA
| | - Sarah H Johnson
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, MN, USA
| | - George Vasmatzis
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, MN, USA
| | - Karen L Rech
- Division of Hematopathology, Department of Laboratory Medicine and Genomics, Mayo Clinic, Rochester, MN, USA
| | - William R Sukov
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Patricia T Greipp
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Nicole L Hoppman
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Linda B Baughn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rhett P Ketterling
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Division of Hematopathology, Department of Laboratory Medicine and Genomics, Mayo Clinic, Rochester, MN, USA
| | - Jess F Peterson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Ivanov Öfverholm I, Zachariadis V, Taylan F, Marincevic-Zuniga Y, Tran AN, Saft L, Nilsson D, Syvänen AC, Lönnerholm G, Harila-Saari A, Nordenskjöld M, Heyman M, Nordgren A, Nordlund J, Barbany G. Overexpression of chromatin remodeling and tyrosine kinase genes in iAMP21-positive acute lymphoblastic leukemia. Leuk Lymphoma 2019; 61:604-613. [PMID: 31640433 DOI: 10.1080/10428194.2019.1678153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intrachromosomal amplification of chromosome 21 (iAMP21) is a cytogenetic subtype associated with relapse and poor prognosis in pediatric B-cell precursor acute lymphoblastic leukemia (BCP ALL). The biology behind the high relapse risk is unknown and the aim of this study was to further characterize the genomic and transcriptional landscape of iAMP21. Using DNA arrays and sequencing, we could identify rearrangements and aberrations characteristic for iAMP21. RNA sequencing revealed that only half of the genes in the minimal region of amplification (20/45) were differentially expressed in iAMP21. Among them were the top overexpressed genes (p < 0.001) in iAMP21 vs. BCP ALL without iAMP21 and three candidate genes could be identified, the tyrosine kinase gene DYRK1A and chromatin remodeling genes CHAF1B and SON. While overexpression of DYRK1A and CHAF1B is associated with poor prognosis in malignant diseases including myeloid leukemia, this is the first study to show significant correlation with iAMP21-positive ALL.
Collapse
Affiliation(s)
- Ingegerd Ivanov Öfverholm
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Fulya Taylan
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yanara Marincevic-Zuniga
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anh Nhi Tran
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Leonie Saft
- Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gudmar Lönnerholm
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Arja Harila-Saari
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Heyman
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Rowsey RA, Smoley SA, Williamson CM, Vasmatzis G, Smadbeck JB, Ning Y, Greipp PT, Hoppman NL, Baughn LB, Ketterling RP, Peterson JF. Characterization of TCF3 rearrangements in pediatric B-lymphoblastic leukemia/lymphoma by mate-pair sequencing (MPseq) identifies complex genomic rearrangements and a novel TCF3/TEF gene fusion. Blood Cancer J 2019; 9:81. [PMID: 31575852 PMCID: PMC6773761 DOI: 10.1038/s41408-019-0239-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 11/17/2022] Open
Abstract
The TCF3/PBX1 gene fusion is a recurrent genetic abnormality in pediatric B-lymphoblastic leukemia/lymphoma (B-ALL/LBL). While dual-color, dual-fusion fluorescence in situ hybridization (D-FISH) probes can detect TCF3/PBX1 fusions, further characterization of atypical TCF3 FISH patterns as indicated by additional or diminished TCF3 signals is currently limited. Herein we describe the use of a next-generation sequencing assay, mate-pair sequencing (MPseq), to characterize typical and cryptic TCF3/PBX1 fusions and to identify TCF3 translocation partners based on results obtained from our laboratory-developed TCF3/PBX1 D-FISH probe set. MPseq was performed on 21 cases of pediatric B-ALL/LBL with either TCF3/PBX1 fusion, or no TCF3/PBX1 fusion but with additional or diminished TCF3 signals obtained by our PBX1/TCF3 D-FISH probe set. In addition, MPseq was performed on one pediatric B-ALL/LBL case with an apparently normal karyotype and abnormal TCF3 break-apart probe results. Of 22 specimens successfully evaluated by MPseq, 13 cases (59%) demonstrated TCF3/PBX1 fusion, including three cases with previously undescribed insertional rearrangements. The remaining nine cases (41%) harbored various TCF3 partners, including six cases with TCF3/ZNF384, and one case each with TCF3/HLF, TCF3/FLI1 and TCF3/TEF. Our results illustrate the power of MPseq to characterize TCF3 rearrangements with increased precision and accuracy over traditional cytogenetic methodologies.
Collapse
Affiliation(s)
- Ross A Rowsey
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Stephanie A Smoley
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Cynthia M Williamson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - George Vasmatzis
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Mayo Clinic, Rochester, MN, USA
| | - James B Smadbeck
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Mayo Clinic, Rochester, MN, USA
| | - Yi Ning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia T Greipp
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Nicole L Hoppman
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Linda B Baughn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rhett P Ketterling
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jess F Peterson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Taylan F, Bang B, Öfverholm II, Tran AN, Heyman M, Barbany G, Zachariadis V, Nordgren A. Somatic Structural Alterations in Childhood Leukemia Can Be Backtracked in Neonatal Dried Blood Spots by Use of Whole-Genome Sequencing and Digital PCR. Clin Chem 2018; 65:345-347. [PMID: 30518665 DOI: 10.1373/clinchem.2018.293548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fulya Taylan
- Department of Molecular Medicine and Surgery Center for Molecular Medicine Karolinska Institutet Stockholm, Sweden
| | - Benedicte Bang
- Department of Molecular Medicine and Surgery Center for Molecular Medicine Karolinska Institutet Stockholm, Sweden
| | - Ingegerd Ivanov Öfverholm
- Department of Molecular Medicine and Surgery Center for Molecular Medicine Karolinska Institutet Stockholm, Sweden.,Diagnostic Services Karolinska University Hospital Clinical Genetics Stockholm, Sweden
| | - Anh-Nhi Tran
- Department of Molecular Medicine and Surgery Center for Molecular Medicine Karolinska Institutet Stockholm, Sweden.,Diagnostic Services Karolinska University Hospital Clinical Genetics Stockholm, Sweden
| | - Mats Heyman
- Department of Women's and Children's Health Karolinska University Hospital Solna Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery Center for Molecular Medicine Karolinska Institutet Stockholm, Sweden.,Diagnostic Services Karolinska University Hospital Clinical Genetics Stockholm, Sweden
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery Center for Molecular Medicine Karolinska Institutet Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery Center for Molecular Medicine Karolinska Institutet Stockholm, Sweden.,Diagnostic Services Karolinska University Hospital Clinical Genetics Stockholm, Sweden
| |
Collapse
|