1
|
Herrick EM, Yakovenko S. Evidence of sensory error threshold in triggering locomotor adaptations in humans. PLoS One 2025; 20:e0321949. [PMID: 40299860 PMCID: PMC12040145 DOI: 10.1371/journal.pone.0321949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 03/12/2025] [Indexed: 05/01/2025] Open
Abstract
Changing body biomechanics or external conditions trigger neural adaptations to optimize motor behavior. While the adaptations appear to be constantly minimizing movement errors, not all errors necessarily initiate sensorimotor adaptations. The locomotor control system may resist changes since exploratory modifications can lead to critical failures in walking. Theoretically, this implies the presence of an error threshold to trigger the adaptation mechanism. Here, kinematic and kinetic asymmetries were imposed as conditions on stepping using a passive orthosis (kinematic asymmetry) and real-time feedback about limb loading (kinetic asymmetry) to vary sensorimotor error during locomotion on a treadmill. Healthy participants adapted to asymmetric conditions while walking on a tied-belt treadmill. The asymmetry in leading and trailing double stance captured the presence of aftereffects, and consequently adaptation, in two conditions: i) only kinematic constraints, or ii) kinematic and kinetic constraints. We tested the hypothesis that the presence of adaptation depends on the magnitude of locomotor asymmetry. Kinematic asymmetry alone did not induce persistent locomotor adaptation; however, the addition of asymmetric interlimb loading triggered the expected adaptation. This result suggests that uninjured locomotor systems can cope with a range of kinematic asymmetries without initiating persistent adaptations, and that loading may be a key variable for triggering the adaptation. The error threshold within the adaptation mechanism may mitigate possible disruption of locomotion when adaptation is not necessary. These insights elucidate the mechanism of neural plasticity and have implications for rehabilitation.
Collapse
Affiliation(s)
- Emily M. Herrick
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, United States of America
| | - Sergiy Yakovenko
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, United States of America
- Division of Exercise Physiology, Department of Human Performance, West Virginia University, Morgantown, WV, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States of America
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States of America
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
2
|
Van Der Velde G, Laloyaux H, Ronsse R. Inducing asymmetric gait in healthy walkers: a review. FRONTIERS IN REHABILITATION SCIENCES 2025; 6:1463382. [PMID: 40166454 PMCID: PMC11955677 DOI: 10.3389/fresc.2025.1463382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Gait symmetry between both legs is a typical hallmark of healthy walking. In contrast, several pathologies induce asymmetry in the gait pattern, regarding both spatial and temporal features. This can be due to either an asymmetrical change of the body morphology-e.g., after an amputation or an injury-or a damage in the brain-such as stroke or cerebral palsy. This deficit in gait symmetry usually induces higher metabolic effort in locomotion and might further accelerate severe comorbidities such as osteoarthritis and low back pain. Consequently, several assistive devices-such as active exoskeletons or prostheses-are currently developed to mitigate gait asymmetry and restore a healthier gait pattern. Typically, the development of such devices requires extensive tests and validations, and it is practically and ethically not always desirable to recruit disabled patients to run these tests in the preliminary stages of development. In this review paper, we collect and analyse the different reversible interventions described in the literature that can induce asymmetry in the gait pattern of healthy walkers. We perform a systematic literature research by exploring five databases, i.e., Pubmed, Embase, Web of Science, Google Scholar, and Scopus. This narrative review identifies more than 150 articles reporting 16 different interventional methods used to induce asymmetric gait pattern in healthy walkers or with the potential to do so. These interventions are categorized according to their mode of action, and their effects on spatiotemporal parameters, joint kinematics and kinetics are summarized adopting a macroscopic viewpoint. Interventions are compared in terms of efficacy, maturity of the results, and applicability. Recommendations are provided for guiding researchers in the field in using each of the identified manipulations in its most relevant research contexts.
Collapse
Affiliation(s)
- Gert Van Der Velde
- Faculty of Medicine, University of Ghent, Ghent, Belgium
- Louvain Bionics, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Henri Laloyaux
- Louvain Bionics, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Renaud Ronsse
- Louvain Bionics, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
| |
Collapse
|
3
|
Muller KS, Bonnen K, Shields SM, Panfili DP, Matthis J, Hayhoe MM. Analysis of foothold selection during locomotion using terrain reconstruction. eLife 2024; 12:RP91243. [PMID: 39652392 PMCID: PMC11627511 DOI: 10.7554/elife.91243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Relatively little is known about the way vision is used to guide locomotion in the natural world. What visual features are used to choose paths in natural complex terrain? To answer this question, we measured eye and body movements while participants walked in natural outdoor environments. We incorporated measurements of the three-dimensional (3D) terrain structure into our analyses and reconstructed the terrain along the walker's path, applying photogrammetry techniques to the eye tracker's scene camera videos. Combining these reconstructions with the walker's body movements, we demonstrate that walkers take terrain structure into account when selecting paths through an environment. We find that they change direction to avoid taking steeper steps that involve large height changes, instead of choosing more circuitous, relatively flat paths. Our data suggest walkers plan the location of individual footholds and plan ahead to select flatter paths. These results provide evidence that locomotor behavior in natural environments is controlled by decision mechanisms that account for multiple factors, including sensory and motor information, costs, and path planning.
Collapse
Affiliation(s)
- Karl S Muller
- Center for Perceptual Systems, The University of Texas at AustinAustinUnited States
| | - Kathryn Bonnen
- School of Optometry, Indiana UniversityBloomingtonUnited States
| | | | - Daniel P Panfili
- Center for Perceptual Systems, The University of Texas at AustinAustinUnited States
| | - Jonathan Matthis
- Department of Biology, Northeastern UniversityBostonUnited States
| | - Mary M Hayhoe
- Center for Perceptual Systems, The University of Texas at AustinAustinUnited States
| |
Collapse
|
4
|
Bogard AT, Hemmerle MR, Smith AC, Tan AQ. Enhanced motor learning and motor savings after acute intermittent hypoxia are associated with a reduction in metabolic cost. J Physiol 2024; 602:5879-5899. [PMID: 37983629 PMCID: PMC11102937 DOI: 10.1113/jp285425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Breathing mild bouts of low oxygen air (i.e. acute intermittent hypoxia, AIH) has been shown to improve locomotor function in humans after a spinal cord injury. How AIH-induced gains in motor performance are achieved remains unclear. We examined the hypothesis that AIH augments motor learning and motor retention during a locomotor adaptation task. We further hypothesized that gains in motor learning and retention will be associated with reductions in net metabolic power, consistent with the acquisition of energetically favourable mechanics. Thirty healthy individuals were randomly allocated into either a control group or an AIH group. We utilized a split-belt treadmill to characterize adaptations to an unexpected belt speed perturbation of equal magnitude during an initial exposure and a second exposure. Adaptation was characterized by changes in spatiotemporal step asymmetry, anterior-posterior force asymmetry, and net metabolic power. While both groups adapted by reducing spatial asymmetry, only the AIH group achieved significant reductions in double support time asymmetry and propulsive force asymmetry during both the initial and the second exposures to the belt speed perturbation. Net metabolic power was also significantly lower in the AIH group, with significant reductions from the initial perturbation exposure to the second. These results provide the first evidence that AIH mediates improvements in both motor learning and retention. Further, our results suggest that reductions in net metabolic power continue to be optimized upon subsequent learning and are driven by more energetically favourable temporal coordination strategies. Our observation that AIH facilitates motor learning and retention can be leveraged to design rehabilitation interventions that promote functional recovery. KEY POINTS: Brief exposures to low oxygen air, known as acute intermittent hypoxia (AIH), improves locomotor function in humans after a spinal cord injury, but it remains unclear how gains in motor performance are achieved. In this study, we tested the hypothesis that AIH induces enhancements in motor learning and retention by quantifying changes in interlimb coordination, anterior-posterior force symmetry and metabolic cost during a locomotor adaptation task. We show the first evidence that AIH improves both motor learning and savings of newly learned temporal interlimb coordination strategies and force asymmetry compared to untreated individuals. We further demonstrate that AIH elicits greater reductions in metabolic cost during motor learning that continues to be optimized upon subsequent learning. Our findings suggest that AIH-induced gains in locomotor performance are facilitated by enhancements in motor learning and retention of more energetically favourable coordination strategies.
Collapse
Affiliation(s)
- Alysha T Bogard
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
| | - Makenna R Hemmerle
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
| | - Andrew C Smith
- Dept. of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrew Q Tan
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
- Center for Neuroscience, University of Colorado, Boulder, CO, USA
| |
Collapse
|
5
|
Hardesty RL, Motjabavi H, Gemoets DE, Wolpaw JR. Bidirectional locomotion induces unilateral limb adaptations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609228. [PMID: 39229004 PMCID: PMC11370602 DOI: 10.1101/2024.08.22.609228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Humans can acquire and maintain motor skills throughout their lives through motor learning. Motor learning and skill acquisition are essential for rehabilitation following neurological disease or injury. Adaptation, the initial stage of motor learning, involves short-term changes in motor performance in response to a new demand in the person's environment. Repeated adaptation can improve skill performance and result in long-term skill retention. Locomotor adaptation is extensively studied using split-belt treadmill paradigms. In this study we explored whether bidirectional walking (BDW) on a split-belt treadmill can induce short-term gait adaptations. Twelve healthy volunteers participated in our single session, starting with 2 minutes of normal walking (NW), followed by four 5-minute blocks of BDW with a 1-minute passive rest in between blocks, and ending with another 2-minute of NW. We recorded body kinematics and ground reaction forces throughout the experiment. Participants quickly adapted to BDW with both legs showing decreased step lengths. However, only the backward-walking leg exhibited aftereffects upon returning to NW, indicating short-term adaptation. Notable kinematic changes were observed, particularly in hip extension and pelvis tilt, though these varied among participants. Our findings suggest that BDW induces unilateral adaptations despite bilateral changes in gait, offering new insights into locomotor control and spinal CPG organization.
Collapse
Affiliation(s)
- Russell L Hardesty
- National Center for Adaptive Neurotechnologies (NCAN), Albany, NY
- Department of Veterans Affairs, Samuel S. Stratton Medical Center, Albany, NY
| | - Helia Motjabavi
- National Center for Adaptive Neurotechnologies (NCAN), Albany, NY
- Department of Veterans Affairs, Samuel S. Stratton Medical Center, Albany, NY
| | - Darren E Gemoets
- Department of Veterans Affairs, Samuel S. Stratton Medical Center, Albany, NY
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies (NCAN), Albany, NY
- Department of Veterans Affairs, Samuel S. Stratton Medical Center, Albany, NY
| |
Collapse
|
6
|
Kowalczyk K, Mukherjee M, Malcolm P. Can a passive unilateral hip exosuit diminish walking asymmetry? A randomized trial. J Neuroeng Rehabil 2023; 20:88. [PMID: 37438846 DOI: 10.1186/s12984-023-01212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Asymmetric walking gait impairs activities of daily living in neurological patient populations, increases their fall risk, and leads to comorbidities. Accessible, long-term rehabilitation methods are needed to help neurological patients restore symmetrical walking patterns. This study aimed to determine if a passive unilateral hip exosuit can modify an induced asymmetric walking gait pattern. We hypothesized that a passive hip exosuit would diminish initial- and post-split-belt treadmill walking after-effects in healthy young adults. METHODS We divided 15 healthy young adults evenly between three experimental groups that each completed a baseline trial, an adaptation period with different interventions for each group, and a post-adaptation trial. To isolate the contribution of the exosuit we compared a group adapting to the exosuit and split-belt treadmill (Exo-Sb) to groups adapting to exosuit-only (Exo-only) and split-belt only (Sb-only) conditions. The independent variables step length, stance time, and swing time symmetry were analyzed across five timepoints (baseline, early- and late adaptation, and early- and late post-adaptation) using a 3 × 5 mixed ANOVA. RESULTS We found significant interaction and time effects on step length, stance time and swing time symmetry. Sb-only produced increased step length asymmetry at early adaptation compared to baseline (p < 0.0001) and an after-effect with increased asymmetry at early post-adaptation compared to baseline (p < 0.0001). Exo-only increased step length asymmetry (in the opposite direction as Sb-only) at early adaptation compared to baseline (p = 0.0392) but did not influence the participants sufficiently to result in a post-effect. Exo-Sb produced similar changes in step length asymmetry in the same direction as Sb-only (p = 0.0014). However, in contrast to Sb-only there was no significant after-effect between early post-adaptation and baseline (p = 0.0885). CONCLUSION The passive exosuit successfully diminished asymmetrical step length after-effects induced by the split-belt treadmill in Exo-Sb. These results support the passive exosuit's ability to alter walking gait patterns.
Collapse
Affiliation(s)
- Kayla Kowalczyk
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE, 68182-0860, USA
- UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens, GA, USA
| | - Mukul Mukherjee
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE, 68182-0860, USA
| | - Philippe Malcolm
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE, 68182-0860, USA.
| |
Collapse
|
7
|
Kambic RE, Roemmich RT, Bastian AJ. Joint-level coordination patterns for split-belt walking across different speed ratios. J Neurophysiol 2023; 129:969-983. [PMID: 36988216 PMCID: PMC10125032 DOI: 10.1152/jn.00323.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/01/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Locomotion is a highly flexible process, requiring rapid changes to gait due to changes in the environment or goals. Here, we used a split-belt treadmill to examine how the central nervous system coordinates a novel gait pattern. Existing research has focused on summary measures, most often step lengths, when describing changes induced while walking on the split-belt treadmill and during subsequent aftereffects. Here, we asked how the nervous system adjusts individual joint motions and the coordination pattern of the legs when people walk with one leg moving at either 2×, 3×, or 4× the speed of the other leg. We found that relative to tied-belt walking, split-belt perturbations change the timing relationships between the legs while most joint angle peaks and range of motion change little. The kinematic changes over the course of adaptation (i.e., from the beginning to end of a single split-belt walking bout) were subtle, particularly when comparing individual joint motions. The magnitude of the belt speed differences impacted intralimb coordination but did not produce consistent differences in most other measures. Most significant changes in kinematics occurred in the fast leg. Overall, interlimb timing changes drove a large proportion of the differences observed between tied-belt and split-belt gaits. Thus, it appears that the central nervous system can produce novel gait patterns through changes in coordination between legs that lead to new configurations at significant time points. These patterns can use within-limb and within-joint patterns that closely resemble those of normal walking.NEW & NOTEWORTHY We studied how the nervous system coordinates limb movements during asymmetric gait. Using a split-belt treadmill, we found that most changes in motion occurred when comparing motions between limbs, rather than among joints within a limb. Individual joint patterns resembled speed-matched comparisons, but this meant that joint movements became asymmetric during split-belt walking. These findings demonstrate that the nervous system can use consistent joint motions that are reconfigured in time to achieve new gait patterns.
Collapse
Affiliation(s)
- Robert E Kambic
- Department of Biology, Hood College, Frederick, Maryland, United States
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | - Ryan T Roemmich
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Amy J Bastian
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
8
|
Kim K, Vinent M, Deller L, Zijlstra W. A scoping review of voluntary gait adaptability tasks requiring cognitive demands in older adults. Phys Act Nutr 2023; 27:30-40. [PMID: 37132208 PMCID: PMC10164512 DOI: 10.20463/pan.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 05/04/2023] Open
Abstract
PURPOSE Voluntary gait adaptability is a complex construct that requires cognitive demands and dynamic balance control; it also has implications for the daily lives of older adults. This ability has been extensively studied, however, a comprehensive overview of appropriate tasks for measuring voluntary gait adaptability in older adults is lacking. Our scoping review aimed to identify existing voluntary gait adaptability tasks for older adults, summarize the specific methodological features requiring cognitive demands found in previous studies, and categorize these tasks according to experimental procedure and setup. METHODS A comprehensive literature search was performed using six databases (PubMed, SPORTDiscus, Web of Science, CINAHL, MEDLINE, and Embase). This included studies that investigated voluntary gait adaptability in older adults (≥ 65 years old) with and without neurological disorders, with a focus on experimental tasks requiring cognitive function (e.g., response to visual or auditive stimuli) while walking. RESULTS Sixteen studies were included; most involved visual stimuli, such as obstacles, stairs, or colored cues, and few required auditory stimuli. The studies were categorized according to the experimental procedure, for example, ascent/descent of obstacles (n = 3), inconsistent surfaces (n = 1), lateral gait adjustment (n = 4), obstacle avoidance (n = 6), and stepping tasks (n = 2), as well as experimental setup, including instrumented treadmills (n = 3), stairs (n = 3), and walkways (n = 10). CONCLUSION The results show wide heterogeneity between studies regarding experimental procedures and setup. Our scoping review highlights the need for additional experimental studies and systematic reviews on voluntary gait adaptability in older adults.
Collapse
Affiliation(s)
- Kyungwan Kim
- Institute of Movement and Sport Gerontology, German Sport University Cologne, Cologne, Germany
| | - Marie Vinent
- Institute of Movement and Sport Gerontology, German Sport University Cologne, Cologne, Germany
| | - Lena Deller
- Institute of Movement and Sport Gerontology, German Sport University Cologne, Cologne, Germany
| | - Wiebren Zijlstra
- Institute of Movement and Sport Gerontology, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
9
|
Swart SB, den Otter AR, Lamoth CJC. Natural ageing primarily affects the initial response to a sustained walking perturbation but not the ability to adapt over time. Front Physiol 2023; 14:1065974. [PMID: 36909231 PMCID: PMC9995672 DOI: 10.3389/fphys.2023.1065974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
The ability to flexibly respond and adapt the walking pattern over time to unexpected gait perturbations is pivotal for safe and efficient locomotion. However, these abilities might be affected by age due to age-related changes in sensorimotor functioning. In this cross-sectional lifespan study, we used a split-belt paradigm to determine how age affects the initial response (i.e., flexibility)-and the ability to adapt after prolonged exposure-to a sustained gait perturbation. Healthy adults (N = 75) of different ages (12-13 per decade) were included and walked on a split-belt treadmill, in which a sustained gait perturbation was imposed by increasing one of the belt speeds. Linear regression models, with the evoked spatiotemporal gait asymmetry during the early perturbation and late adaptation, were performed to determine the effects of age on the flexibility and adaptability to split-belt walking. Results showed that the flexibility to respond to an unexpected perturbation decreased across the lifespan, as evidenced by a greater step length asymmetry (SLA) during the early perturbation phase. Despite this reduced flexibility in step lengths, late adaptation levels in SLA were comparable across different ages. With increasing age, however, subjects needed more steps to reach a stable level in SLA. Finally, when the belts were set to symmetrical speeds again, the magnitude of SLA (i.e., the aftereffects) increased with age. Collectively, these findings suggest that natural ageing comes with a decrease in gait flexibility, while the ability to adapt to split-belt walking was not affected by age-only how adaptation was achieved.
Collapse
Affiliation(s)
- S. B. Swart
- Department of Human Movement Sciences, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | | | | |
Collapse
|
10
|
Ito T, Kamiue M, Hosokawa T, Kimura D, Tsubahara A. Individual differences in processing ability to transform visual stimuli during the mental rotation task are closely related to individual motor adaptation ability. Front Neurosci 2022; 16:941942. [DOI: 10.3389/fnins.2022.941942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Mental rotation (MR) is a well-established experimental paradigm for exploring human spatial ability. Although MR tasks are assumed to be involved in several cognitive processes, it remains unclear which cognitive processes are related to the individual ability of motor adaptation. Therefore, we aimed to elucidate the relationship between the response time (RT) of MR using body parts and the adaptive motor learning capability of gait. In the MR task, dorsal hand, palmar plane, dorsal foot, and plantar plane images rotated in 45° increments were utilized to measure the RTs required for judging hand/foot laterality. A split-belt treadmill paradigm was applied, and the number of strides until the value of the asymmetrical ground reaction force reached a steady state was calculated to evaluate the individual motor adaptation ability. No significant relationship was found between the mean RT of the egocentric perspectives (0°, 45°, and 315°) or allocentric perspectives (135°, 180°, and 225°) and adaptive learning ability of gait, irrespective of body parts or image planes. Contrarily, the change rate of RTs obtained by subtracting the RT of the egocentric perspective from that of the allocentric perspective in dorsal hand/foot images that reflect the time to mentally transform a rotated visual stimulus correlated only with adaptive learning ability. Interestingly, the change rate of RTs calculated using the palmar and plantar images, assumed to reflect the three-dimensional transformation process, was not correlated. These findings suggest that individual differences in the processing capability of visual stimuli during the transformation process involved in the pure motor simulation of MR tasks are precisely related to individual motor adaptation ability.
Collapse
|
11
|
Grimmer M, Zeiss J, Weigand F, Zhao G. Exploring surface electromyography (EMG) as a feedback variable for the human-in-the-loop optimization of lower limb wearable robotics. Front Neurorobot 2022; 16:948093. [PMID: 36277332 PMCID: PMC9582428 DOI: 10.3389/fnbot.2022.948093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Human-in-the-loop (HITL) optimization with metabolic cost feedback has been proposed to reduce walking effort with wearable robotics. This study investigates if lower limb surface electromyography (EMG) could be an alternative feedback variable to overcome time-intensive metabolic cost based exploration. For application, it should be possible to distinguish conditions with different walking efforts based on the EMG. To obtain such EMG data, a laboratory experiment was designed to elicit changes in the effort by loading and unloading pairs of weights (in total 2, 4, and 8 kg) in three randomized weight sessions for 13 subjects during treadmill walking. EMG of seven lower limb muscles was recorded for both limbs. Mean absolute values of each stride prior to and following weight loading and unloading were used to determine the detection rate (100% if every loading and unloading is detected accordingly) for changing between loaded and unloaded conditions. We assessed the use of multiple consecutive strides and the combination of muscles to improve the detection rate and estimated the related acquisition times of diminishing returns. To conclude on possible limitations of EMG for HITL optimization, EMG drift was evaluated during the Warmup and the experiment. Detection rates highly increased for the combination of multiple consecutive strides and the combination of multiple muscles. EMG drift was largest during Warmup and at the beginning of each weight session. The results suggest using EMG feedback of multiple involved muscles and from at least 10 consecutive strides (5.5 s) to benefit from the increases in detection rate in HITL optimization. In combination with up to 20 excluded acclimatization strides, after changing the assistance condition, we advise exploring about 16.5 s of walking to obtain reliable EMG-based feedback. To minimize the negative impact of EMG drift on the detection rate, at least 6 min of Warmup should be performed and breaks during the optimization should be avoided. Future studies should investigate additional feedback variables based on EMG, methods to reduce their variability and drift, and should apply the outcomes in HITL optimization with lower limb wearable robots.
Collapse
Affiliation(s)
- Martin Grimmer
- Lauflabor Locomotion Laboratory, Department of Human Sciences, Institute of Sports Science, Technical University of Darmstadt, Darmstadt, Germany
| | - Julian Zeiss
- Department of Electrical Engineering and Information Technology, Institute of Automatic Control and Mechatronics, Technical University of Darmstadt, Darmstadt, Germany
| | - Florian Weigand
- Department of Electrical Engineering and Information Technology, Institute of Automatic Control and Mechatronics, Technical University of Darmstadt, Darmstadt, Germany
| | - Guoping Zhao
- Lauflabor Locomotion Laboratory, Department of Human Sciences, Institute of Sports Science, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
12
|
Butterfield JK, Simha SN, Donelan JM, Collins SH. The split-belt rimless wheel. Int J Rob Res 2022. [DOI: 10.1177/02783649221110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Split-belt treadmill walking, in which the two belts move at different speeds, reveals a mechanism through which energy can be extracted from the environment. When a person walks with positive step length asymmetry on a split-belt treadmill, the treadmill can perform net positive work on the person. Here we use a split-belt rimless wheel model to explore how people could take advantage of the treadmill. We show that a split-belt rimless wheel can passively walk steadily by capturing energy from the treadmill to overcome collision losses, whereas it loses energy on each step with no way to recover the losses when walking on tied belts. Our simulated split-belt rimless wheel can walk steadily for a variety of leg angle and belt speed combinations, tolerating both speed disturbances and ground height variability. The wheel can even capture enough energy to walk uphill. We also built a physical split-belt rimless wheel robot and demonstrated that it can walk continuously without additional energy input. In comparing the wheel solutions to human split-belt gait, we found that humans do not maximize positive work performed by the treadmill. Other aspects of walking, such as costs associated with swing, balance, and free vertical moments, likely limit people’s ability to benefit from the treadmill. This study uses a simple walking model to characterize the mechanics and energetics of split-belt walking, demonstrating that energy capture through intermittent contact with two belts is possible and providing a simple model framework for understanding human adaptation during split-belt walking.
Collapse
Affiliation(s)
- Julia K Butterfield
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Surabhi N Simha
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - J Maxwell Donelan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Steven H Collins
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Carr S, Rasouli F, Kim SH, Reed KB. Real-time feedback control of split-belt ratio to induce targeted step length asymmetry. J Neuroeng Rehabil 2022; 19:65. [PMID: 35773672 PMCID: PMC9248177 DOI: 10.1186/s12984-022-01044-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Split-belt treadmill training has been used to assist with gait rehabilitation following stroke. This method modifies a patient's step length asymmetry by adjusting left and right tread speeds individually during training. However, current split-belt training approaches pay little attention to the individuality of patients by applying set tread speed ratios (e.g., 2:1 or 3:1). This generalization results in unpredictable step length adjustments between the legs. To customize the training, this study explores the capabilities of a live feedback system that modulates split-belt tread speeds based on real-time step length asymmetry. MATERIALS AND METHODS Fourteen healthy individuals participated in two 1.5-h gait training sessions scheduled 1 week apart. They were asked to walk on the Computer Assisted Rehabilitation Environment (CAREN) split-belt treadmill system with a boot on one foot to impose asymmetrical gait patterns. Each training session consisted of a 3-min baseline, 10-min baseline with boot, 10-min feedback with boot (6% asymmetry exaggeration in the first session and personalized in the second), 5-min post feedback with boot, and 3-min post feedback without boot. A proportional-integral (PI) controller was used to maintain a specified step-length asymmetry by changing the tread speed ratios during the 10-min feedback period. After the first session, a linear model between baseline asymmetry exaggeration and post-intervention asymmetry improvement was utilized to develop a relationship between target exaggeration and target post-intervention asymmetry. In the second session, this model predicted a necessary target asymmetry exaggeration to replace the original 6%. This prediction was intended to result in a highly symmetric post-intervention step length. RESULTS AND DISCUSSION Eleven out of 14 participants (78.6%) developed a successful relationship between asymmetry exaggeration and decreased asymmetry in the post-intervention period of the first session. Seven out of the 11 participants (63.6%) in this successful correlation group had second session post-intervention asymmetries of < 3.5%. CONCLUSIONS The use of a PI controller to modulate split-belt tread speeds demonstrated itself to be a viable method for individualizing split-belt treadmill training.
Collapse
Affiliation(s)
- Sean Carr
- Department of Medical Engineering, University of South Florida, Tampa, 33620, USA.
| | - Fatemeh Rasouli
- Department of Mechanical Engineering, University of South Florida, Tampa, 33620, USA
| | - Seok Hun Kim
- School of Physical Therapy and Rehabilitation Sciences, University of South Florida, Tampa, 33620, USA
| | - Kyle B Reed
- Department of Mechanical Engineering, University of South Florida, Tampa, 33620, USA
| |
Collapse
|
14
|
Oshima A, Nakamura Y, Kamibayashi K. Modulation of Muscle Synergies in Lower-Limb Muscles Associated With Split-Belt Locomotor Adaptation. Front Hum Neurosci 2022; 16:852530. [PMID: 35845245 PMCID: PMC9279664 DOI: 10.3389/fnhum.2022.852530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Humans have great locomotor adaptability to environmental demands, which has been investigated using a split-belt treadmill with belts on both the left and right sides. Thus far, neuromuscular control in split-belt locomotor adaptation has been evaluated by analyzing muscle activities at the individual muscle level. Meanwhile, in the motor control field, the muscle synergy concept has been proposed. Muscle synergies are considered the fundamental building blocks of movement and are groups of coactive muscles and time-varying activation patterns, thereby, reflecting the neurophysiological characteristics of movement. To date, it remains unclear how such muscle synergies change during the adaptation and de-adaptation processes on the split-belt treadmill. Hence, we chronologically extracted muscle synergies while walking on the split-belt treadmill and examined changes in the number, muscle weightings, and temporal activation patterns of muscle synergies. Twelve healthy young males participated, and surface electromyography (EMG) signals were recorded bilaterally from 13 lower-limb muscles. Muscle synergies were extracted by applying non-negative matrix factorization to the EMG data of each leg. We found that during split-belt walking, the number of synergies in the slow leg increased while an extra synergy appeared and disappeared in the fast leg. Additionally, the areas under the temporal activation patterns in several synergies in both legs decreased. When both belts returned to the same speed, a decrease in the number of synergies and an increase in the areas under the temporal activation patterns of several synergies were temporally shown in each leg. Subsequently, the number of synergies and the areas under the temporal activation patterns returned to those of normal walking before split-belt walking. Thus, changes in the number, muscle weightings, and temporal activation patterns of synergies were noted in the split-belt locomotor adaptation, suggesting that the adaptation and de-adaptation occurred at the muscle synergy level.
Collapse
Affiliation(s)
- Atsushi Oshima
- Graduate School of Health and Sports Science, Doshisha University, Kyoto, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yasuo Nakamura
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
| | - Kiyotaka Kamibayashi
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
- *Correspondence: Kiyotaka Kamibayashi,
| |
Collapse
|
15
|
Hayami N, Williams HE, Shibagaki K, Vette AH, Suzuki Y, Nakazawa K, Nomura T, Milosevic M. Development and Validation of a Closed-Loop Functional Electrical Stimulation-Based Controller for Gait Rehabilitation Using a Finite State Machine Model. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1642-1651. [PMID: 35709114 DOI: 10.1109/tnsre.2022.3183571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional electrical stimulation (FES) can be used to initiate lower limb muscle contractions and has been widely applied in gait rehabilitation. Establishing the correct timing of FES activation during each phase of the gait (walking) cycle remains challenging as most FES systems rely on open-loop control, whereby the controller receives no feedback about joint kinematics and instead relies on predetermined/timed muscle stimulation. The objective of this study was to develop and validate a closed-loop FES-based control solution for gait rehabilitation using a finite state machine (FSM) model. A two-phased study approach was taken: (1) Experimentally-Informed Study: A neuromuscular-derived FSM model was developed to drive closed-loop FES-based control for gait rehabilitation. The finite states were determined using electromyography and joint kinematics data of 12 non-disabled adults, collected during treadmill walking. The gait cycles were divided into four states, namely: swing-to-stance, push off, pre-swing, and toe up. (2) Simulation Study: A closed-loop FES-based control solution that employed the resulting FSM model, was validated through comparisons of neuro-musculo-skeletal computer simulations of impaired versus healthy gait. This closed-loop controller yielded steadier simulated impaired gait, in comparison to an open-loop alternative. The simulation results confirmed that accurate timing of FES activation during the gait cycle, as informed by kinematics data, is important to natural gait retraining. The closed-loop FES-based solution, introduced in this study, contributes to the repository of gait rehabilitation control options and offers the advantage of being simplistic to implement. Furthermore, this control solution is expected to integrate well with powered exoskeleton technologies.
Collapse
|
16
|
Dzewaltowski AC, Hedrick EA, Leutzinger TJ, Remski LE, Rosen AB. The Effect of Split-Belt Treadmill Interventions on Step Length Asymmetry in Individuals Poststroke: A Systematic Review With Meta-Analysis. Neurorehabil Neural Repair 2021; 35:563-575. [PMID: 33978525 DOI: 10.1177/15459683211011226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Individuals poststroke experience gait asymmetries that result in decreased community ambulation and a lower quality of life. A variety of studies have utilized split-belt treadmill training to investigate its effect on gait asymmetry, but many employ various methodologies that report differing results. OBJECTIVE The purpose of this meta-analysis was to determine the effects of split-belt treadmill walking on step length symmetry in individuals poststroke both during and following training. METHODS A comprehensive search of PubMed/MEDLINE, CINAHL, Web of Science, and Scopus was conducted to find peer-reviewed journal articles that included individuals poststroke that participated in a split-belt treadmill walking intervention. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) was used to assess risk of bias. Pooled Hedge's g with random effects models were used to estimate the effect of split-belt training on step length symmetry. RESULTS Twenty-one studies were assessed and included in the systematic review with 11 of them included in the meta-analysis. Included studies had an average STROBE score of 16.2 ± 2.5. The pooled effects for step length asymmetry from baseline to late adaptation were not significant (g = 0.060, P = .701). Large, significant effects were found at posttraining after a single session (g = 1.04, P < .01), posttraining after multiple sessions (g = -0.70, P = .01), and follow-up (g = -0.718, P = .023). CONCLUSION Results indicate split-belt treadmill training with the shorter step length on the fast belt has the potential to improve step length symmetry in individuals poststroke when long-term training is implemented, but randomized controlled trials are needed to confirm the efficacy of split-belt treadmill training.
Collapse
|
17
|
Oshima A, Wakahara T, Nakamura Y, Tsujiuchi N, Kamibayashi K. Time-series changes in intramuscular coherence associated with split-belt treadmill adaptation in humans. Exp Brain Res 2021; 239:2127-2139. [PMID: 33961075 DOI: 10.1007/s00221-021-06127-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/27/2021] [Indexed: 11/24/2022]
Abstract
Humans can flexibly modify their walking patterns. A split-belt treadmill has been widely used to study locomotor adaptation. Although previous studies have examined in detail the time-series changes in the spatiotemporal characteristics of walking during and after split-belt walking, it is not clear how intramuscular coherence changes during and after split-belt walking. We thus investigated the time-series changes of intramuscular coherence in the ankle dorsiflexor muscle associated with split-belt locomotor adaptation by coherence analysis using paired electromyography (EMG) signals. Twelve healthy males walked on a split-belt treadmill. Surface EMG signals were recorded from two parts of the tibialis anterior (TA) muscle in both legs to calculate intramuscular coherence. Each area of intramuscular coherence in the beta and gamma bands in the slow leg gradually decreased during split-belt walking. Significant differences in the area were observed from 7 min compared to the first minute after the start of split-belt walking. Meanwhile, the area of coherence in both beta and gamma bands in the fast leg for the first minute of normal walking following split-belt walking was significantly increased compared with normal walking before split-belt walking, and then immediately returned to the normal walking level. These results suggest that cortical involvement in TA muscle activity gradually weakens when adapting from a normal walking pattern to a new walking pattern. On the other hand, when re-adapting from the newly adapted walking pattern to the normal walking pattern, cortical involvement might strengthen temporally and then weaken quickly.
Collapse
Affiliation(s)
- Atsushi Oshima
- Graduate School of Health and Sports Science, Doshisha University, Kyoto, Japan
| | - Taku Wakahara
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan.,Human Performance Laboratory, Waseda University, Saitama, Japan
| | - Yasuo Nakamura
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Nobutaka Tsujiuchi
- Department of Mechanical and Systems Engineering, Faculty of Science and Engineering, Doshisha University, Kyoto, Japan
| | - Kiyotaka Kamibayashi
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
18
|
Desrochers PC, Gill SV. Temporal accuracy of gait after metronome practice. Hum Mov Sci 2021; 77:102798. [PMID: 33857702 DOI: 10.1016/j.humov.2021.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Humans readily entrain their movements to a beat, including matching their gait to a prescribed tempo. Rhythmic auditory cueing tasks have been used to enhance stepping behavior in a variety of clinical populations. However, there is limited understanding of how temporal accuracy of gait changes over practice in healthy young adults. In this study, we examined how inter-step interval and cadence deviated from slow, medium, and fast tempos across steps within trials, across trials within blocks, and across two blocks that bookended a period of practice of walking to each tempo. Participants were accurate in matching the tempo at the slow and medium tempos, while they tended to lag behind the beat at the fast tempo. We also found that participants showed no substantial improvement across steps and trials, nor across blocks, suggesting that participants had a robust ability to entrain their gait to the specified metronome tempo. However, we did find that participants habituated to the prescribed tempo, showing self-paced gait that was faster than self-paced baseline gait after the fast tempo, and slower than self-paced baseline gait after the slow tempo. These findings might represent an "after-effect" in the temporal domain, akin to after-effects consistently shown in other sensorimotor tasks. This knowledge of how healthy participants entrain their gait to temporal cues may have important implications in understanding how clinical populations acquire and modify their gait in rhythmic auditory cueing tasks.
Collapse
Affiliation(s)
| | - Simone V Gill
- Sargent College of Health and Rehabilitation Sciences, Boston University, USA.
| |
Collapse
|
19
|
Charlton JM, Eng JJ, Li LC, Hunt MA. Learning Gait Modifications for Musculoskeletal Rehabilitation: Applying Motor Learning Principles to Improve Research and Clinical Implementation. Phys Ther 2021; 101:pzaa207. [PMID: 33351940 PMCID: PMC7899063 DOI: 10.1093/ptj/pzaa207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/04/2020] [Indexed: 12/11/2022]
Abstract
Gait modifications are used in the rehabilitation of musculoskeletal conditions like osteoarthritis and patellofemoral pain syndrome. While most of the research has focused on the biomechanical and clinical outcomes affected by gait modification, the process of learning these new gait patterns has received little attention. Without adequate learning, it is unlikely that the modification will be performed in daily life, limiting the likelihood of long-term benefit. There is a vast body of literature examining motor learning, though little has involved gait modifications, especially in populations with musculoskeletal conditions. The studies that have examined gait modifications in these populations are often limited due to incomplete reporting and study design decisions that prohibit strong conclusions about motor learning. This perspective draws on evidence from the broader motor learning literature for application in the context of modifying gait. Where possible, specific gait modification examples are included to highlight the current literature and what can be improved on going forward. A brief theoretical overview of motor learning is outlined, followed by strategies that are known to improve motor learning, and finally, how assessments of learning need to be conducted to make meaningful conclusions.
Collapse
Affiliation(s)
- Jesse M Charlton
- Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, BC, Canada
- Motion Analysis and Biofeedback Laboratory, University of British Columbia, Vancouver, BC, Canada
| | - Janice J Eng
- Rehabilitation Research Program, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Linda C Li
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Arthritis Research Canada, Richmond, BC, Canada
| | - Michael A Hunt
- Motion Analysis and Biofeedback Laboratory, University of British Columbia, Vancouver, BC, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Sánchez N, Simha SN, Donelan JM, Finley JM. Using asymmetry to your advantage: learning to acquire and accept external assistance during prolonged split-belt walking. J Neurophysiol 2021; 125:344-357. [PMID: 33296612 PMCID: PMC7948143 DOI: 10.1152/jn.00416.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 11/22/2022] Open
Abstract
People can learn to exploit external assistance during walking to reduce energetic cost. For example, walking on a split-belt treadmill affords the opportunity for people to redistribute the mechanical work performed by the legs to gain assistance from the difference in belts' speed and reduce energetic cost. Though we know what people should do to acquire this assistance, this strategy is not observed during typical adaptation studies. We hypothesized that extending the time allotted for adaptation would result in participants adopting asymmetric step lengths to increase the assistance they can acquire from the treadmill. Here, participants walked on a split-belt treadmill for 45 min while we measured spatiotemporal gait variables, metabolic cost, and mechanical work. We show that when people are given sufficient time to adapt, they naturally learn to step further forward on the fast belt, acquire positive mechanical work from the treadmill, and reduce the positive work performed by the legs. We also show that spatiotemporal adaptation and energy optimization operate over different timescales: people continue to reduce energetic cost even after spatiotemporal changes have plateaued. Our findings support the idea that walking with symmetric step lengths, which is traditionally thought of as the endpoint of adaptation, is only a point in the process by which people learn to take advantage of the assistance provided by the treadmill. These results provide further evidence that reducing energetic cost is central in shaping adaptive locomotion, but this process occurs over more extended timescales than those used in typical studies.NEW & NOTEWORTHY Split-belt treadmill adaptation can be seen as a process where people learn to acquire positive work from the treadmill to reduce energetic cost. Though we know what people should do to reduce energetic cost, this strategy is not observed during adaptation studies. We extended the duration of adaptation and show that people continuously adapt their gait to acquire positive work from the treadmill to reduce energetic cost. This process requires longer exposure than traditionally allotted.
Collapse
Affiliation(s)
- Natalia Sánchez
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Surabhi N Simha
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - J Maxwell Donelan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - James M Finley
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| |
Collapse
|
21
|
Bertrand-Charette M, Nielsen JB, Bouyer LJ. A simple, clinically applicable motor learning protocol to increase push-off during gait: A proof-of-concept. PLoS One 2021; 16:e0245523. [PMID: 33465113 PMCID: PMC7815130 DOI: 10.1371/journal.pone.0245523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/30/2020] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Task-specific training is often used in functional rehabilitation for its potential to improve performance at locomotor tasks in neurological populations. As push-off impairment are often seen with these patients, this functional approach shows potential to retrain gait overground to normalize the gait pattern and retrain the ability to improve gait speed. The main objective of this project was to validate, in healthy participants, a simple, low-cost push-off retraining protocol based on task-specific training that could be implemented during overground walking in the clinic. METHODS 30 healthy participants walked in an 80-meter long corridor before, during, and after the application of an elastic resistance to the right ankle. Elastic tubing attached to the front of a modified ankle-foot orthosis delivered the resistance during push-off. Relative ankle joint angular displacements were recorded bilaterally and continuously during each walking condition. RESULTS On the resisted side, participants presented aftereffects (increased peak plantarflexion angle from 13.4±4.2° to 20.0±6.4°, p<0.0001 and increased peak plantarflexion angular velocity from 145.8±22.7°/s to 174.4±37.4°/s, p<0.0001). On the non-resisted side, aftereffects were much smaller than on the resisted side suggesting that the motor learning process was mainly specific to the trained leg. CONCLUSION This study shows the feasibility of modifying push-off kinematics using an elastic resistance applied at the ankle while walking overground. This approach represents an interesting venue for future gait rehabilitation.
Collapse
Affiliation(s)
- Michaël Bertrand-Charette
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Quebec City, Quebec, Canada
| | - Jens Bo Nielsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Laurent J. Bouyer
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Quebec City, Quebec, Canada
- Department of Rehabilitation, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
22
|
Young DR, Parikh PJ, Layne CS. The Posterior Parietal Cortex Is Involved in Gait Adaptation: A Bilateral Transcranial Direct Current Stimulation Study. Front Hum Neurosci 2020; 14:581026. [PMID: 33250730 PMCID: PMC7674796 DOI: 10.3389/fnhum.2020.581026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
Gait is one of the fundamental behaviors we use to interact with the world. The functionality of the locomotor system is thus related to enriching interactions with our environment. The posterior parietal cortex (PPC) has been found to contribute to motor adaptation during both visuomotor and postural adaptation tasks. Additionally, structural or functional deficits of the PPC lead to impairments in gaits such as shortened steps and increased step width. Based on the aforementioned roles of the PPC, and the importance of gait adaptability, the current investigation sought to identify the role of the PPC in gait adaptation. To achieve this, we performed transcranial direct current stimulation (tDCS) over the bilateral PPC before performing a split-belt treadmill gait adaptation paradigm. We used three stimulation conditions in a within-subject design. tDCS was administered in a randomized and double-blinded order. Following each stimulation session, subjects first performed baseline walking with both belts running at the same speed. Then, subjects walked for 15 min on an uncoupled treadmill, with the belts being driven at a 3:1 speed ratio. Last, they returned to normal (i.e., tied-belt) walking for 5 min. Results from 15 young and healthy subjects identified that subjects required more steps to adapt to split-belt walking following the suppression of the left hemisphere PPC, contralateral to the fast belt. Furthermore, while suppression of the left hemisphere PPC did not increase the number of steps required to re-adapt to tied-belt walking, this condition did lead to increased magnitude of after-effects. Together, these findings indicate that the PPC is involved in locomotor adaptation. These results support previous literature regarding the upper body or postural adaptation and extend these findings to the realm of gait. Results highlight the PPC as a potential target for neurorehabilitation designed to improve gait adaptability.
Collapse
Affiliation(s)
- David R Young
- Department of Health and Human Performance, Center for Neuromotor and Biomechanics Research, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, United States
| | - Pranav J Parikh
- Department of Health and Human Performance, Center for Neuromotor and Biomechanics Research, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, United States
| | - Charles S Layne
- Department of Health and Human Performance, Center for Neuromotor and Biomechanics Research, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, United States.,Center for Neuro-Engineering and Cognitive Science, Cullen College of Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
23
|
Rashid U, Kumari N, Signal N, Taylor D, Vandal AC. On Nonlinear Regression for Trends in Split-Belt Treadmill Training. Brain Sci 2020; 10:E737. [PMID: 33066492 PMCID: PMC7602156 DOI: 10.3390/brainsci10100737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 11/20/2022] Open
Abstract
Single and double exponential models fitted to step length symmetry series are used to evaluate the timecourse of adaptation and de-adaptation in instrumented split-belt treadmill tasks. Whilst the nonlinear regression literature has developed substantially over time, the split-belt treadmill training literature has not been fully utilising the fruits of these developments. In this research area, the current methods of model fitting and evaluation have three significant limitations: (i) optimisation algorithms that are used for model fitting require a good initial guess for regression parameters; (ii) the coefficient of determination (R2) is used for comparing and evaluating models, yet it is considered to be an inadequate measure of fit for nonlinear regression; and, (iii) inference is based on comparison of the confidence intervals for the regression parameters that are obtained under the untested assumption that the nonlinear model has a good linear approximation. In this research, we propose a transformed set of parameters with a common language interpretation that is relevant to split-belt treadmill training for both the single and double exponential models. We propose parameter bounds for the exponential models which allow the use of particle swarm optimisation for model fitting without an initial guess for the regression parameters. For model evaluation and comparison, we propose the use of residual plots and Akaike's information criterion (AIC). A method for obtaining confidence intervals that does not require the assumption of a good linear approximation is also suggested. A set of MATLAB (MathWorks, Inc., Natick, MA, USA) functions developed in order to apply these methods are also presented. Single and double exponential models are fitted to both the group-averaged and participant step length symmetry series in an experimental dataset generating new insights into split-belt treadmill training. The proposed methods may be useful for research involving analysis of gait symmetry with instrumented split-belt treadmills. Moreover, the demonstration of the suggested statistical methods on an experimental dataset may help the uptake of these methods by a wider community of researchers that are interested in timecourse of motor training.
Collapse
Affiliation(s)
- Usman Rashid
- Health & Rehabilitation Research Institute, Auckland University of Technology, Auckland 1010, New Zealand; (N.K.); (N.S.); (D.T.)
| | - Nitika Kumari
- Health & Rehabilitation Research Institute, Auckland University of Technology, Auckland 1010, New Zealand; (N.K.); (N.S.); (D.T.)
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
| | - Nada Signal
- Health & Rehabilitation Research Institute, Auckland University of Technology, Auckland 1010, New Zealand; (N.K.); (N.S.); (D.T.)
| | - Denise Taylor
- Health & Rehabilitation Research Institute, Auckland University of Technology, Auckland 1010, New Zealand; (N.K.); (N.S.); (D.T.)
| | - Alain C. Vandal
- Department of Statistics, The University of Auckland, Auckland 1010, New Zealand;
| |
Collapse
|
24
|
Hagner-Derengowska M, Kałużny K, Kałużna A, Zukow W, Leis K, Domagalska-Szopa M, Kochański B, Budzyński J. Effect of a training program of overground walking on BTS gait parameters in elderly women during single and dual cognitive tasks. Int J Rehabil Res 2020; 43:355-360. [PMID: 32897934 DOI: 10.1097/mrr.0000000000000434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We tested the hypothesis that a regular training program might reduce gait disturbances during dual cognitive-motor tasks in elderly women. This open-label experimental study comprised 53 postmenopausal women aged over 65, who were assigned to a 10-week training program (360 min/week). A BTS SMART system examination during free walking and during dual tasks [i.e., walking while performing either a simple (SCT) or a complex (CCT) cognitive task] was performed prior to the training program and again after it had finished. After the 10-week walking training program, a significant decrease was found in the duration of single support phase, double support phase, total support phase, and gait cycle, whereas values for such BTS parameters as swing speed, step length, and gait speed increased significantly. The greatest percentage deltas between the final and initial values of the respective BTS parameters concerned swing speed and gait speed irrespective of the kind of task undertaken while measurements were taken. A cognitive task, irrespective of the level of difficulty, performed during walking had the opposite effect on step width than expected. A 10-week training program significantly improved the cadency and manner of gait in elderly women, but did not change step width. Therefore, further study is needed to estimate the usefulness of cognitive-motor training programs for significant improvement in gait coordination during dual tasks in elderly women.
Collapse
Affiliation(s)
- Magdalena Hagner-Derengowska
- Department of Physical Culture, Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Toruń
| | | | - Anna Kałużna
- Department of Rehabilitation, Faculty of Health Sciences
| | - Walery Zukow
- Department of Physical Culture, Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Toruń
| | - Kamil Leis
- Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń
| | | | | | - Jacek Budzyński
- Department of Vascular and Internal Diseases, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
25
|
Sensorimotor conflict tests in an immersive virtual environment reveal subclinical impairments in mild traumatic brain injury. Sci Rep 2020; 10:14773. [PMID: 32901067 PMCID: PMC7479615 DOI: 10.1038/s41598-020-71611-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/11/2020] [Indexed: 11/08/2022] Open
Abstract
Current clinical tests lack the sensitivity needed for detecting subtle balance impairments associated with mild traumatic brain injury (mTBI). Patient-reported symptoms can be significant and have a huge impact on daily life, but impairments may remain undetected or poorly quantified using clinical measures. Our central hypothesis was that provocative sensorimotor perturbations, delivered in a highly instrumented, immersive virtual environment, would challenge sensory subsystems recruited for balance through conflicting multi-sensory evidence, and therefore reveal that not all subsystems are performing optimally. The results show that, as compared to standard clinical tests, the provocative perturbations illuminate balance impairments in subjects who have had mild traumatic brain injuries. Perturbations delivered while subjects were walking provided greater discriminability (average accuracy ≈ 0.90) than those delivered during standing (average accuracy ≈ 0.65) between mTBI subjects and healthy controls. Of the categories of features extracted to characterize balance, the lower limb accelerometry-based metrics proved to be most informative. Further, in response to perturbations, subjects with an mTBI utilized hip strategies more than ankle strategies to prevent loss of balance and also showed less variability in gait patterns. We have shown that sensorimotor conflicts illuminate otherwise-hidden balance impairments, which can be used to increase the sensitivity of current clinical procedures. This augmentation is vital in order to robustly detect the presence of balance impairments after mTBI and potentially define a phenotype of balance dysfunction that enhances risk of injury.
Collapse
|
26
|
Balbinot G, Schuch CP, Bianchi Oliveira H, Peyré-Tartaruga LA. Mechanical and energetic determinants of impaired gait following stroke: segmental work and pendular energy transduction during treadmill walking. Biol Open 2020; 9:9/7/bio051581. [PMID: 32694152 PMCID: PMC7390624 DOI: 10.1242/bio.051581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Systems biology postulates the balance between energy production and conservation in optimizing locomotion. Here, we analyzed how mechanical energy production and conservation influenced metabolic energy expenditure in stroke survivors during treadmill walking at different speeds. We used the body center of mass (BCoM) and segmental center of mass to calculate mechanical energy production: external and each segment's mechanical work (Wseg). We also estimated energy conservation by applying the pendular transduction framework (i.e. energy transduction within the step; Rint). Energy conservation was likely optimized by the paretic lower-limb acting as a rigid shaft while the non-paretic limb pushed the BCoM forward at the slower walking speed. Wseg production was characterized by greater movements between the limbs and body, a compensatory strategy used mainly by the non-paretic limbs. Overall, Wseg production following a stroke was characterized by non-paretic upper-limb compensation, but also by an exaggerated lift of the paretic leg. This study also highlights how post-stroke subjects may perform a more economic gait while walking on a treadmill at preferred walking speeds. Complex neural adaptations optimize energy production and conservation at the systems level, and may fundament new insights onto post-stroke neurorehabilitation. This article has and associated First Person interview with the first author of the paper. Summary: Walking after a stroke may be energetically consuming. Here, we show how compensations and asymmetries may contribute to increasing the amount of work needed to walk following a stroke.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Exercise Research Laboratory, Universidade Federal do Rio Grande do Sul, 750 Felizardo Street, Porto Alegre, 90690-200, RS, Brazil.,KITE - Toronto Rehabilitation Institute - University Health Network, Lyndhurst Centre, 520 Sutherland Drive, Toronto, M4G 3V9, ON, Canada
| | - Clarissa Pedrini Schuch
- Exercise Research Laboratory, Universidade Federal do Rio Grande do Sul, 750 Felizardo Street, Porto Alegre, 90690-200, RS, Brazil
| | - Henrique Bianchi Oliveira
- Exercise Research Laboratory, Universidade Federal do Rio Grande do Sul, 750 Felizardo Street, Porto Alegre, 90690-200, RS, Brazil
| | - Leonardo A Peyré-Tartaruga
- Exercise Research Laboratory, Universidade Federal do Rio Grande do Sul, 750 Felizardo Street, Porto Alegre, 90690-200, RS, Brazil
| |
Collapse
|
27
|
Sombric CJ, Torres-Oviedo G. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths. J Neuroeng Rehabil 2020; 17:69. [PMID: 32493440 PMCID: PMC7268294 DOI: 10.1186/s12984-020-00698-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/21/2020] [Indexed: 11/30/2022] Open
Abstract
Background Promising studies have shown that the gait symmetry of individuals with hemiparesis due to brain lesions, such as stroke, can improve through motor adaptation protocols forcing patients to use their affected limb more. However, little is known about how to facilitate this process. Here we asked if increasing propulsion demands during split-belt walking (i.e., legs moving at different speeds) leads to more motor adaptation and more symmetric gait in survivors of a stroke, as we previously observed in subjects without neurological disorders. Methods We investigated the effect of propulsion forces on locomotor adaptation during and after split-belt walking in the asymmetric motor system post-stroke. To test this, 12 subjects in the chronic phase post-stroke experienced a split-belt protocol in a flat and incline session so as to contrast the effects of two different propulsion demands. Step length asymmetry and propulsion forces were used to compare the motor behavior between the two sessions because these are clinically relevant measures that are altered by split-belt walking. Results The incline session resulted in more symmetric step lengths during late split-belt walking and larger after-effects following split-belt walking. In both testing sessions, subjects who have had a stroke adapted to regain speed and slope-specific leg orientations similarly to young, intact adults. Importantly, leg orientations, which were set by kinetic demands, during baseline walking were predictive of those achieved during split-belt walking, which in turn predicted each individual’s post-adaptation behavior. These results are relevant because they provide evidence that survivors of a stroke can generate the leg-specific forces to walk more symmetrically, but also because we provide insight into factors underlying the therapeutic effect of split-belt walking. Conclusions Individuals post-stroke at a chronic stage can adapt more during split-belt walking and have greater after-effects when propulsion demands are augmented by inclining the treadmill surface. Our results are promising since they suggest that increasing propulsion demands during paradigms that force patients to use their paretic side more could correct gait asymmetries post-stroke more effectively.
Collapse
Affiliation(s)
- Carly J Sombric
- Department of Bioengineering, University of Pittsburgh, 4420 Bayard Street, Suite 110, Pitt, Pittsburgh, PA, USA
| | - Gelsy Torres-Oviedo
- Department of Bioengineering, University of Pittsburgh, 4420 Bayard Street, Suite 110, Pitt, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Aucie Y, Zhang X, Sargent R, Torres-Oviedo G. Motorized Shoes Induce Robust Sensorimotor Adaptation in Walking. Front Neurosci 2020; 14:174. [PMID: 32210750 PMCID: PMC7069354 DOI: 10.3389/fnins.2020.00174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/17/2020] [Indexed: 11/27/2022] Open
Abstract
The motor system has the flexibility to update motor plans according to systematic changes in the environment or the body. This capacity is studied in the laboratory through sensorimotor adaptation paradigms imposing sustained and predictable motor demands specific to the task at hand. However, these studies are tied to the laboratory setting. Thus, we asked if a portable device could be used to elicit locomotor adaptation outside the laboratory. To this end, we tested the extent to which a pair of motorized shoes could induce similar locomotor adaptation to split-belt walking, which is a well-established sensorimotor adaptation paradigm in locomotion. We specifically compared the adaptation effects (i.e. after-effects) between two groups of young, healthy participants walking with the legs moving at different speeds by either a split-belt treadmill or a pair of motorized shoes. The speeds at which the legs moved in the split-belt group was set by the belt speed under each foot, whereas in the motorized shoes group were set by the combined effect of the actuated shoes and the belts' moving at the same speed. We found that the adaptation of joint motions and measures of spatial and temporal asymmetry, which are commonly used to quantify sensorimotor adaptation in locomotion, were indistinguishable between groups. We only found small differences in the joint angle kinematics during baseline walking between the groups - potentially due to the weight and height of the motorized shoes. Our results indicate that robust sensorimotor adaptation in walking can be induced with a paired of motorized shoes, opening the exciting possibility to study sensorimotor adaptation during more realistic situations outside the laboratory.
Collapse
Affiliation(s)
- Yashar Aucie
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Randy Sargent
- The Robotics Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Gelsy Torres-Oviedo
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
29
|
Gonzalez-Rubio M, Velasquez NF, Torres-Oviedo G. Explicit Control of Step Timing During Split-Belt Walking Reveals Interdependent Recalibration of Movements in Space and Time. Front Hum Neurosci 2019; 13:207. [PMID: 31333429 PMCID: PMC6619396 DOI: 10.3389/fnhum.2019.00207] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Split-belt treadmills that move the legs at different speeds are thought to update internal representations of the environment, such that this novel condition generates a new locomotor pattern with distinct spatio-temporal features compared to those of regular walking. It is unclear the degree to which such recalibration of movements in the spatial and temporal domains is interdependent. In this study, we explicitly altered subjects' limb motion in either space or time during split-belt walking to determine its impact on the adaptation of the other domain. Interestingly, we observed that motor adaptation in the spatial domain was susceptible to altering the temporal domain, whereas motor adaptation in the temporal domain was resilient to modifying the spatial domain. This non-reciprocal relation suggests a hierarchical organization such that the control of timing in locomotion has an effect on the control of limb position. This is of translational interest because clinical populations often have a greater deficit in one domain compared to the other. Our results suggest that explicit changes to temporal deficits cannot occur without modifying the spatial control of the limb.
Collapse
Affiliation(s)
| | | | - Gelsy Torres-Oviedo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Corrective Muscle Activity Reveals Subject-Specific Sensorimotor Recalibration. eNeuro 2019; 6:ENEURO.0358-18.2019. [PMID: 31043463 PMCID: PMC6497908 DOI: 10.1523/eneuro.0358-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/05/2019] [Accepted: 03/22/2019] [Indexed: 12/04/2022] Open
Abstract
Recent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (also known as reactive) movements in human locomotion are thought to simply reflect sudden environmental changes independently from sensorimotor recalibration. Thus, we asked whether corrective responses can indicate the motor system’s adapted state following prolonged exposure to a novel walking situation inducing sensorimotor adaptation. We recorded electromyographic (EMG) signals bilaterally on 15 leg muscles before, during, and after split-belts walking (i.e., novel walking situation), in which the legs move at different speeds. We exploited the rapid temporal dynamics of corrective responses upon unexpected speed transitions to isolate them from the overall motor output. We found that corrective muscle activity was structurally different following short versus long exposures to split-belts walking. Only after a long exposure, removal of the novel environment elicited corrective muscle patterns that matched those expected in response to a perturbation opposite to the one originally experienced. This indicated that individuals who recalibrated their motor system adopted split-belts environment as their new “normal” and transitioning back to the original walking environment causes subjects to react as if it was novel to them. Interestingly, this learning declined with age, but steady state modulation of muscle activity during split-belts walking did not, suggesting potentially different neural mechanisms underlying these motor patterns. Taken together, our results show that corrective motor commands reflect the adapted state of the motor system, which is less flexible as we age.
Collapse
|
31
|
Sombric CJ, Calvert JS, Torres-Oviedo G. Large Propulsion Demands Increase Locomotor Adaptation at the Expense of Step Length Symmetry. Front Physiol 2019; 10:60. [PMID: 30800072 PMCID: PMC6376174 DOI: 10.3389/fphys.2019.00060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/18/2019] [Indexed: 11/23/2022] Open
Abstract
There is an interest to identify factors facilitating locomotor adaptation induced by split-belt walking (i.e., legs moving at different speeds) because of its clinical potential. We hypothesized that augmenting braking forces, rather than propulsion forces, experienced at the feet would increase locomotor adaptation during and after split-belt walking. To test this, forces were modulated during split-belt walking with distinct slopes: incline (larger propulsion than braking), decline (larger braking than propulsion), and flat (similar propulsion and braking). Step length asymmetry was compared between groups because it is a clinically relevant measure robustly adapted on split-belt treadmills. Unexpectedly, the group with larger propulsion demands (i.e., the incline group) changed their gait the most during adaptation, reached their final adapted state more quickly, and had larger after-effects when the split-belt perturbation was removed. We also found that subjects who experienced larger disruptions of propulsion forces in early adaptation exhibited greater after-effects, which further highlights the catalytic role of propulsion forces on locomotor adaptation. The relevance of mechanical demands on shaping our movements was also indicated by the steady state split-belt behavior, during which each group recovered their baseline leg orientation to meet leg-specific force demands at the expense of step length symmetry. Notably, the flat group was nearly symmetric, whereas the incline and decline group overshot and undershot step length symmetry, respectively. Taken together, our results indicate that forces propelling the body facilitate gait changes during and after split-belt walking. Therefore, the particular propulsion demands to walk on a split-belt treadmill might explain the gait symmetry improvements in hemiparetic gait following split-belt training.
Collapse
Affiliation(s)
| | | | - Gelsy Torres-Oviedo
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
32
|
Contribution of Lower Limb Joint Movement in Adapting to Re-establish Step Length Symmetry During Split-Belt Treadmill Walking. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0456-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|