1
|
Turabi K, Klute K, Radhakrishnan P. Decoding the Dynamics of Circulating Tumor DNA in Liquid Biopsies. Cancers (Basel) 2024; 16:2432. [PMID: 39001494 PMCID: PMC11240538 DOI: 10.3390/cancers16132432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA), a fragment of tumor DNA found in the bloodstream, has emerged as a revolutionary tool in cancer management. This review delves into the biology of ctDNA, examining release mechanisms, including necrosis, apoptosis, and active secretion, all of which offer information about the state and nature of the tumor. Comprehensive DNA profiling has been enabled by methods such as whole genome sequencing and methylation analysis. The low abundance of the ctDNA fraction makes alternative techniques, such as digital PCR and targeted next-generation exome sequencing, more valuable and accurate for mutation profiling and detection. There are numerous clinical applications for ctDNA analysis, including non-invasive liquid biopsies for minimal residual disease monitoring to detect cancer recurrence, personalized medicine by mutation profiling for targeted therapy identification, early cancer detection, and real-time evaluation of therapeutic response. Integrating ctDNA analysis into routine clinical practice creates promising avenues for successful and personalized cancer care, from diagnosis to treatment and follow-up.
Collapse
Affiliation(s)
- Khadija Turabi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kelsey Klute
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Beeler JS, Bolton KL. How low can you go?: Methodologic considerations in clonal hematopoiesis variant calling. Leuk Res 2023; 135:107419. [PMID: 37956474 DOI: 10.1016/j.leukres.2023.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Clonal hematopoiesis (CH) is defined by the presence of an expanded clonal hematopoietic cell population due to an acquired mutation conferring a selective growth advantage and is known to predispose to hematologic malignancy. In this review, we discuss sequencing methods for CH detection in bulk sequencing data and corresponding bioinformatic approaches for variant calling, filtering, and curation. We detail practical recommendations for CH calling. Finally, we discuss how improvements in CH sequencing and bioinformatic approaches will enable the characterization of CH trajectories, its impact on human health, and therapeutic approaches to mitigate its adverse effects.
Collapse
Affiliation(s)
- J Scott Beeler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelly L Bolton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Hernandez KM, Bramlett KS, Agius P, Baden J, Cao R, Clement O, Corner AS, Craft J, Dean DA, Dry JR, Grigaityte K, Grossman RL, Hicks J, Higa N, Holzer TR, Jensen J, Johann DJ, Katz S, Kolatkar A, Keynton JL, Lee JSH, Maar D, Martini JF, Meyer CG, Roberts PC, Ryder M, Salvatore L, Schageman JJ, Somiari S, Stetson D, Stern M, Xu L, Leiman LC. Contrived Materials and a Data Set for the Evaluation of Liquid Biopsy Tests: A Blood Profiling Atlas in Cancer (BLOODPAC) Community Study. J Mol Diagn 2023; 25:143-155. [PMID: 36828596 DOI: 10.1016/j.jmoldx.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/21/2022] [Accepted: 12/02/2022] [Indexed: 02/24/2023] Open
Abstract
The Blood Profiling Atlas in Cancer (BLOODPAC) Consortium is a collaborative effort involving stakeholders from the public, industry, academia, and regulatory agencies focused on developing shared best practices on liquid biopsy. This report describes the results from the JFDI (Just Freaking Do It) study, a BLOODPAC initiative to develop standards on the use of contrived materials mimicking cell-free circulating tumor DNA, to comparatively evaluate clinical laboratory testing procedures. Nine independent laboratories tested the concordance, sensitivity, and specificity of commercially available contrived materials with known variant-allele frequencies (VAFs) ranging from 0.1% to 5.0%. Each participating laboratory utilized its own proprietary evaluation procedures. The results demonstrated high levels of concordance and sensitivity at VAFs of >0.1%, but reduced concordance and sensitivity at a VAF of 0.1%; these findings were similar to those from previous studies, suggesting that commercially available contrived materials can support the evaluation of testing procedures across multiple technologies. Such materials may enable more objective comparisons of results on materials formulated in-house at each center in multicenter trials. A unique goal of the collaborative effort was to develop a data resource, the BLOODPAC Data Commons, now available to the liquid-biopsy community for further study. This resource can be used to support independent evaluations of results, data extension through data integration and new studies, and retrospective evaluation of data collection.
Collapse
Affiliation(s)
- Kyle M Hernandez
- Department of Medicine, University of Chicago, Chicago, Illinois; Center for Translational Data Science, University of Chicago, Chicago, Illinois
| | | | | | | | - Ru Cao
- Thermo Fisher Scientific, Austin, Texas
| | | | - Adam S Corner
- Digital Biology Group, Bio-Rad Laboratories Inc., Pleasanton, California
| | | | | | | | | | - Robert L Grossman
- Department of Medicine, University of Chicago, Chicago, Illinois; Open Commons Consortium, Chicago, Illinois; Pfizer, San Diego, California
| | - James Hicks
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA
| | - Nikki Higa
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA
| | | | | | - Donald J Johann
- Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Anand Kolatkar
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA
| | | | - Jerry S H Lee
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA; Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, California
| | - Dianna Maar
- Digital Biology Group, Bio-Rad Laboratories Inc., Pleasanton, California
| | | | - Christopher G Meyer
- Center for Translational Data Science, University of Chicago, Chicago, Illinois
| | | | | | | | | | | | | | - Mark Stern
- Bristol Myers Squibb, Newton, New Jersey
| | - Liya Xu
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA
| | | |
Collapse
|
4
|
Nucleotide-based genetic networks: Methods and applications. J Biosci 2022. [PMID: 36226367 PMCID: PMC9554864 DOI: 10.1007/s12038-022-00290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genomic variations have been acclaimed as among the key players in understanding the biological mechanisms behind migration, evolution, and adaptation to extreme conditions. Due to stochastic evolutionary forces, the frequency of polymorphisms is affected by changes in the frequency of nearby polymorphisms in the same DNA sample, making them connected in terms of evolution. This article presents all the ingredients to understand the cumulative effects and complex behaviors of genetic variations in the human mitochondrial genome by analyzing co-occurrence networks of nucleotides, and shows key results obtained from such analyses. The article emphasizes recent investigations of these co-occurrence networks, describing the role of interactions between nucleotides in fundamental processes of human migration and viral evolution. The corresponding co-mutation-based genetic networks revealed genetic signatures of human adaptation in extreme environments. This article provides the methods of constructing such networks in detail, along with their graph-theoretical properties, and applications of the genomic networks in understanding the role of nucleotide co-evolution in evolution of the whole genome.
Collapse
|
5
|
Ezeife DA, Spackman E, Juergens RA, Laskin JJ, Agulnik JS, Hao D, Laurie SA, Law JH, Le LW, Kiedrowski LA, Melosky B, Shepherd FA, Cohen V, Wheatley-Price P, Vandermeer R, Li JJ, Fernandes R, Shokoohi A, Lanman RB, Leighl NB. The economic value of liquid biopsy for genomic profiling in advanced non-small cell lung cancer. Ther Adv Med Oncol 2022; 14:17588359221112696. [PMID: 35923926 PMCID: PMC9340413 DOI: 10.1177/17588359221112696] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Liquid biopsy (LB) can detect actionable genomic alterations in plasma circulating tumor circulating tumor DNA beyond tissue testing (TT) alone in advanced non-small cell lung cancer (NSCLC) patients. We estimated the cost-effectiveness of adding LB to TT in the Canadian healthcare system. Methods A cost-effectiveness analysis was conducted using a decision analytic Markov model from the Canadian public payer (Ontario) perspective and a 2-year time horizon in patients with treatment-naïve stage IV non-squamous NSCLC and ⩽10 pack-year smoking history. LB was performed using the comprehensive genomic profiling Guardant360™ assay. Standard of care TT for each participating institution was performed. Costs and outcomes of molecular testing by LB + TT were compared to TT alone. Transition probabilities were calculated from the VALUE trial (NCT03576937). Sensitivity analyses were undertaken to assess uncertainty in the model. Results Use of LB + TT identified actionable alterations in more patients, 68.5 versus 52.7% with TT alone. Use of the LB + TT strategy resulted in an incremental cost savings of $3065 CAD per patient (95% CI, 2195-3945) and a gain in quality-adjusted life-years of 0.02 (95% CI, 0.01-0.02) versus TT alone. More patients received chemo-immunotherapy based on TT with higher overall costs, whereas more patients received targeted therapy based on LB + TT with net cost savings. Major drivers of cost-effectiveness were drug acquisition costs and prevalence of actionable alterations. Conclusion The addition of LB to TT as initial molecular testing of clinically selected patients with advanced NSCLC did not increase system costs and led to more patients receiving appropriate targeted therapy.
Collapse
Affiliation(s)
- Doreen A. Ezeife
- Department of Oncology, Tom Baker Cancer
Center, 1331 29 St NW, Toronto, ON T2N 4N2, Canada University of Calgary,
Calgary, AB, Canada
| | | | | | - Janessa J. Laskin
- BC Cancer, The University of British Columbia,
Vancouver, BC, Canada
| | - Jason S. Agulnik
- Jewish General Hospital, McGill University,
Montreal, QC, Canada
| | - Desiree Hao
- Tom Baker Cancer Center, Calgary, AB, Canada
University of Calgary, Calgary AB, Canada
| | - Scott A. Laurie
- Ottawa Hospital Research Institute/Department
of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jennifer H. Law
- Princess Margaret Cancer Center, University of
Toronto, Toronto, ON, Canada
| | - Lisa W. Le
- Princess Margaret Cancer Center, University of
Toronto, Toronto, ON, Canada
| | | | - Barbara Melosky
- BC Cancer, The University of British Columbia,
Vancouver, BC, Canada
| | | | - Victor Cohen
- Jewish General Hospital, McGill University,
Montreal, QC, Canada
| | - Paul Wheatley-Price
- Ottawa Hospital Research Institute/Department
of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | - Janice J. Li
- Princess Margaret Cancer Center, University of
Toronto, Toronto, ON, Canada
| | - Roxanne Fernandes
- Princess Margaret Cancer Center, University of
Toronto, Toronto, ON, Canada
| | - Aria Shokoohi
- BC Cancer, The University of British Columbia,
Vancouver, BC, Canada
| | | | - Natasha B. Leighl
- Princess Margaret Cancer Center, University of
Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Assessment of Circulating Nucleic Acids in Cancer: From Current Status to Future Perspectives and Potential Clinical Applications. Cancers (Basel) 2021; 13:cancers13143460. [PMID: 34298675 PMCID: PMC8307284 DOI: 10.3390/cancers13143460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Current approaches for cancer detection and characterization are based on radiological procedures coupled with tissue biopsies, despite relevant limitations in terms of overall accuracy and feasibility, including relevant patients' discomfort. Liquid biopsies enable the minimally invasive collection and analysis of circulating biomarkers released from cancer cells and stroma, representing therefore a promising candidate for the substitution or integration in the current standard of care. Despite the potential, the current clinical applications of liquid biopsies are limited to a few specific purposes. The lack of standardized procedures for the pre-analytical management of body fluids samples and the detection of circulating biomarkers is one of the main factors impacting the effective advancement in the applicability of liquid biopsies to clinical practice. The aim of this work, besides depicting current methods for samples collection, storage, quality check and biomarker extraction, is to review the current techniques aimed at analyzing one of the main circulating biomarkers assessed through liquid biopsy, namely cell-free nucleic acids, with particular regard to circulating tumor DNA (ctDNA). ctDNA current and potential applications are reviewed as well.
Collapse
|
7
|
Sensitive detection of tumor mutations from blood and its application to immunotherapy prognosis. Nat Commun 2021; 12:4172. [PMID: 34234141 PMCID: PMC8263778 DOI: 10.1038/s41467-021-24457-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Cell-free DNA (cfDNA) is attractive for many applications, including detecting cancer, identifying the tissue of origin, and monitoring. A fundamental task underlying these applications is SNV calling from cfDNA, which is hindered by the very low tumor content. Thus sensitive and accurate detection of low-frequency mutations (<5%) remains challenging for existing SNV callers. Here we present cfSNV, a method incorporating multi-layer error suppression and hierarchical mutation calling, to address this challenge. Furthermore, by leveraging cfDNA's comprehensive coverage of tumor clonal landscape, cfSNV can profile mutations in subclones. In both simulated and real patient data, cfSNV outperforms existing tools in sensitivity while maintaining high precision. cfSNV enhances the clinical utilities of cfDNA by improving mutation detection performance in medium-depth sequencing data, therefore making Whole-Exome Sequencing a viable option. As an example, we demonstrate that the tumor mutation profile from cfDNA WES data can provide an effective biomarker to predict immunotherapy outcomes.
Collapse
|
8
|
Kurgan G, Turk R, Li H, Roberts N, Rettig GR, Jacobi AM, Tso L, Sturgeon M, Mertens M, Noten R, Florus K, Behlke MA, Wang Y, McNeill MS. CRISPAltRations: a validated cloud-based approach for interrogation of double-strand break repair mediated by CRISPR genome editing. Mol Ther Methods Clin Dev 2021; 21:478-491. [PMID: 33981780 PMCID: PMC8082044 DOI: 10.1016/j.omtm.2021.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/29/2021] [Indexed: 12/26/2022]
Abstract
CRISPR systems enable targeted genome editing in a wide variety of organisms by introducing single- or double-strand DNA breaks, which are repaired using endogenous molecular pathways. Characterization of on- and off-target editing events from CRISPR proteins can be evaluated using targeted genome resequencing. We characterized DNA repair fingerprints that result from non-homologous end joining (NHEJ) after double-stranded breaks (DSBs) were introduced by Cas9 or Cas12a for >500 paired treatment/control experiments. We found that building biological understanding of the repair into a novel analysis tool (CRISPAltRations) improved the quality of the results. We validated our software using simulated, targeted amplicon sequencing data (11 guide RNAs [gRNAs] and 603 on- and off-target locations) and demonstrated that CRISPAltRations outperforms other publicly available software tools in accurately annotating CRISPR-associated indels and homology-directed repair (HDR) events. We enable non-bioinformaticians to use CRISPAltRations by developing a web-accessible, cloud-hosted deployment, which allows rapid batch processing of samples in a graphical user interface (GUI) and complies with HIPAA security standards. By ensuring that our software is thoroughly tested, version controlled, and supported with a user interface (UI), we enable resequencing analysis of CRISPR genome editing experiments to researchers no matter their skill in bioinformatics.
Collapse
Affiliation(s)
- Gavin Kurgan
- Integrated DNA Technologies, Coralville, IA 52241, USA
| | - Rolf Turk
- Integrated DNA Technologies, Coralville, IA 52241, USA
| | - Heng Li
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215
| | | | | | | | - Lauren Tso
- Integrated DNA Technologies, Coralville, IA 52241, USA
| | | | | | | | | | | | - Yu Wang
- Integrated DNA Technologies, Coralville, IA 52241, USA
| | | |
Collapse
|
9
|
Garcia J, Kamps-Hughes N, Geiguer F, Couraud S, Sarver B, Payen L, Ionescu-Zanetti C. Sensitivity, specificity, and accuracy of a liquid biopsy approach utilizing molecular amplification pools. Sci Rep 2021; 11:10761. [PMID: 34031447 PMCID: PMC8144209 DOI: 10.1038/s41598-021-89592-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating cell-free DNA (cfDNA) has the potential to be a specific biomarker for the therapeutic management of lung cancer patients. Here, a new sequencing error-reduction method based on molecular amplification pools (MAPs) was utilized to analyze cfDNA in lung cancer patients. We determined the accuracy of MAPs plasma sequencing with respect to droplet digital polymerase chain reaction assays (ddPCR), and tested whether actionable mutation discovery is improved by next-generation sequencing (NGS) in a clinical setting. This study reports data from 356 lung cancer patients receiving plasma testing as part of routine clinical management. Sequencing of cfDNA via MAPs had a sensitivity of 98.5% and specificity 98.9%. The ddPCR assay was used as the reference, since it is an established, accurate assay that can be performed contemporaneously on the same plasma sample. MAPs sequencing detected somatic variants in 261 of 356 samples (73%). Non-actionable clonal hematopoiesis-associated variants were identified via sequencing in 21% of samples. The accuracy of this cfDNA sequencing approach was similar to that of ddPCR assays in a clinical setting, down to an allele frequency of 0.1%. Due to broader coverage and high sensitivity for insertions and deletions, sequencing via MAPs afforded important detection of additional actionable mutations.
Collapse
Affiliation(s)
- Jessica Garcia
- Laboratoire de Biochimie Et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495, Pierre Bénite, France
- CIRculating CANcer (CIRCAN) Program, Hospices Civils de Lyon Cancer Institute, 69495, Pierre Bénite, France
| | | | - Florence Geiguer
- Laboratoire de Biochimie Et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495, Pierre Bénite, France
- CIRculating CANcer (CIRCAN) Program, Hospices Civils de Lyon Cancer Institute, 69495, Pierre Bénite, France
| | - Sébastien Couraud
- CIRculating CANcer (CIRCAN) Program, Acute Respiratory Disease and Thoracic Oncology Department, Lyon Sud Hospital, Cancer Institute of Hospices Civils de Lyon, Lyon, France
| | | | - Léa Payen
- Laboratoire de Biochimie Et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495, Pierre Bénite, France
- CIRculating CANcer (CIRCAN) Program, Hospices Civils de Lyon Cancer Institute, 69495, Pierre Bénite, France
| | | |
Collapse
|
10
|
Garcia J, Kamps-Hughes N, Geiguer F, Couraud S, Sarver B, Payen L, Ionescu-Zanetti C. Sensitivity, specificity, and accuracy of a liquid biopsy approach utilizing molecular amplification pools. Sci Rep 2021. [PMID: 34031447 DOI: 10.1038/s41598‐021‐89592‐8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Circulating cell-free DNA (cfDNA) has the potential to be a specific biomarker for the therapeutic management of lung cancer patients. Here, a new sequencing error-reduction method based on molecular amplification pools (MAPs) was utilized to analyze cfDNA in lung cancer patients. We determined the accuracy of MAPs plasma sequencing with respect to droplet digital polymerase chain reaction assays (ddPCR), and tested whether actionable mutation discovery is improved by next-generation sequencing (NGS) in a clinical setting. This study reports data from 356 lung cancer patients receiving plasma testing as part of routine clinical management. Sequencing of cfDNA via MAPs had a sensitivity of 98.5% and specificity 98.9%. The ddPCR assay was used as the reference, since it is an established, accurate assay that can be performed contemporaneously on the same plasma sample. MAPs sequencing detected somatic variants in 261 of 356 samples (73%). Non-actionable clonal hematopoiesis-associated variants were identified via sequencing in 21% of samples. The accuracy of this cfDNA sequencing approach was similar to that of ddPCR assays in a clinical setting, down to an allele frequency of 0.1%. Due to broader coverage and high sensitivity for insertions and deletions, sequencing via MAPs afforded important detection of additional actionable mutations.
Collapse
Affiliation(s)
- Jessica Garcia
- Laboratoire de Biochimie Et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495, Pierre Bénite, France.,CIRculating CANcer (CIRCAN) Program, Hospices Civils de Lyon Cancer Institute, 69495, Pierre Bénite, France
| | | | - Florence Geiguer
- Laboratoire de Biochimie Et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495, Pierre Bénite, France.,CIRculating CANcer (CIRCAN) Program, Hospices Civils de Lyon Cancer Institute, 69495, Pierre Bénite, France
| | - Sébastien Couraud
- CIRculating CANcer (CIRCAN) Program, Acute Respiratory Disease and Thoracic Oncology Department, Lyon Sud Hospital, Cancer Institute of Hospices Civils de Lyon, Lyon, France
| | | | - Léa Payen
- Laboratoire de Biochimie Et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495, Pierre Bénite, France.,CIRculating CANcer (CIRCAN) Program, Hospices Civils de Lyon Cancer Institute, 69495, Pierre Bénite, France
| | | |
Collapse
|
11
|
Fusion genes as biomarkers in pediatric cancers: A review of the current state and applicability in diagnostics and personalized therapy. Cancer Lett 2020; 499:24-38. [PMID: 33248210 DOI: 10.1016/j.canlet.2020.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
The incidence of pediatric cancers is rising steadily across the world, along with the challenges in understanding the molecular mechanisms and devising effective therapeutic strategies. Pediatric cancers are presented with diverse molecular characteristics and more distinct subtypes when compared to adult cancers. Recent studies on the genomic landscape of pediatric cancers using next-generation sequencing (NGS) approaches have redefined this field by providing better subtype characterization and novel actionable targets. Since early identification and personalized treatment strategies influence therapeutic outcomes, survival, and quality of life in pediatric cancer patients, the quest for actionable biomarkers is of great value in this field. Fusion genes that are prevalent and recurrent in several pediatric cancers are ideally suited in this context due to their disease-specific occurrence. In this review, we explore the current status of fusion genes in pediatric cancer subtypes and their use as biomarkers for diagnosis and personalized therapy. We discuss the technological advancements made in recent years in NGS sequencing and their impact on fusion detection algorithms that have revolutionized this field. Finally, we also discuss the advantages of pairing liquid biopsy protocols for fusion detection and their eventual use in diagnosis and treatment monitoring.
Collapse
|
12
|
Khandelwal AR, Greer AH, Hamiter M, Fermin JM, McMullen T, Moore‐Medlin T, Mills G, Flores JM, Yin H, Nathan CO. Comparing cell-free circulating tumor DNA mutational profiles of disease-free and nonresponders patients with oropharyngeal squamous cell carcinoma. Laryngoscope Investig Otolaryngol 2020; 5:868-878. [PMID: 33134534 PMCID: PMC7585239 DOI: 10.1002/lio2.447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 08/08/2020] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE The purpose of this study was to investigate whether somatic nonsynonymous variants in tumor tissue can potentially be identified in circulating cell-free DNA (cfDNA) of head and neck oropharyngeal squamous cell carcinoma (OPSCC) patients using next-generation sequencing and can predict recurrence or persistence disease. METHODS A total of 22 OPSCC patients with tumor tissue and respective plasma samples were included in this study. Matching cfDNA and tumor tissues were processed, and DNA sequencing was conducted using the MiSeq platform. Variants were identified using Biomedical Genomic Workbench and Genialis's online data analysis platform for Swift Biosciences' Accel-amplicon panels. RESULTS Among 11 nonresponders, 6 matched mutations were detected in 5 patients suggesting a predictive factor for patients with likelihood of recurrence. The matched variants and their allele frequencies identified in the nonresponder group were (tumor DNA/cfDNA in %): TP53 G325fs (27/0.62), TP53 R282W (48/1.74), TP53 R273C (39/2.17), FBXW7 R505G (30/0.6), FBXW7 R505L (31/0.65), and TP53 Q331H (56.5/0.52). Interestingly, the matched somatic mutations were only detected in patients who did not respond to therapy or had persistent disease. CONCLUSIONS Somatic nonsynonymous variants in tumor tissue can potentially be identified in cfDNA of OPSCC patients using NGS. The likelihood of variant detection in cfDNA is greater in nonresponders, especially in human papillomavirus-negative nonresponders, rendering it beneficial as a less invasive detection method for disease persistence/recurrence and prognosis. LEVEL OF EVIDENCE Cohort study.
Collapse
Affiliation(s)
- Alok R. Khandelwal
- Department of Otolaryngology/Head and Neck SurgeryLSU‐Health ShreveportShreveportLouisianaUSA
- Feist‐Weiller Cancer CenterShreveportLouisianaUSA
| | | | - Mickie Hamiter
- Department of Otolaryngology/Head and Neck SurgeryLSU‐Health ShreveportShreveportLouisianaUSA
- Feist‐Weiller Cancer CenterShreveportLouisianaUSA
| | - Janmaris Marin Fermin
- Department of Otolaryngology/Head and Neck SurgeryLSU‐Health ShreveportShreveportLouisianaUSA
| | - Thomas McMullen
- Department of Otolaryngology/Head and Neck SurgeryLSU‐Health ShreveportShreveportLouisianaUSA
| | - Tara Moore‐Medlin
- Department of Otolaryngology/Head and Neck SurgeryLSU‐Health ShreveportShreveportLouisianaUSA
- Feist‐Weiller Cancer CenterShreveportLouisianaUSA
| | - Glenn Mills
- Department of Otolaryngology/Head and Neck SurgeryLSU‐Health ShreveportShreveportLouisianaUSA
- Feist‐Weiller Cancer CenterShreveportLouisianaUSA
| | - Jose M. Flores
- Department of EpidemiologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMarylandUSA
- LSU‐Medical CenterShreveportLouisianaUSA
| | - Hong Yin
- Feist‐Weiller Cancer CenterShreveportLouisianaUSA
| | - Cherie‐Ann O. Nathan
- Department of Otolaryngology/Head and Neck SurgeryLSU‐Health ShreveportShreveportLouisianaUSA
- Feist‐Weiller Cancer CenterShreveportLouisianaUSA
| |
Collapse
|
13
|
Wu L, Deng Q, Xu Z, Zhou S, Li C, Li YX. A novel virtual barcode strategy for accurate panel-wide variant calling in circulating tumor DNA. BMC Bioinformatics 2020; 21:127. [PMID: 32245364 PMCID: PMC7118954 DOI: 10.1186/s12859-020-3412-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Hybrid capture-based next-generation sequencing of DNA has been widely applied in the detection of circulating tumor DNA (ctDNA). Various methods have been proposed for ctDNA detection, but low-allelic-fraction (AF) variants are still a great challenge. In addition, no panel-wide calling algorithm is available, which hiders the full usage of ctDNA based 'liquid biopsy'. Thus, we developed the VBCALAVD (Virtual Barcode-based Calling Algorithm for Low Allelic Variant Detection) in silico to overcome these limitations. RESULTS Based on the understanding of the nature of ctDNA fragmentation, a novel platform-independent virtual barcode strategy was established to eliminate random sequencing errors by clustering sequencing reads into virtual families. Stereotypical mutant-family-level background artifacts were polished by constructing AF distributions. Three additional robust fine-tuning filters were obtained to eliminate stochastic mutant-family-level noises. The performance of our algorithm was validated using cell-free DNA reference standard samples (cfDNA RSDs) and normal healthy cfDNA samples (cfDNA controls). For the RSDs with AFs of 0.1, 0.2, 0.5, 1 and 5%, the mean F1 scores were 0.43 (0.25~0.56), 0.77, 0.92, 0.926 (0.86~1.0) and 0.89 (0.75~1.0), respectively, which indicates that the proposed approach significantly outperforms the published algorithms. Among controls, no false positives were detected. Meanwhile, characteristics of mutant-family-level noise and quantitative determinants of divergence between mutant-family-level noises from controls and RSDs were clearly depicted. CONCLUSIONS Due to its good performance in the detection of low-AF variants, our algorithm will greatly facilitate the noninvasive panel-wide detection of ctDNA in research and clinical settings. The whole pipeline is available at https://github.com/zhaodalv/VBCALAVD.
Collapse
Affiliation(s)
- Leilei Wu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qinfang Deng
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Ze Xu
- Smartquerier Biomedicine, Shanghai, 201203, China
| | - Songwen Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Chao Li
- Smartquerier Biomedicine, Shanghai, 201203, China.
- Shanghai Center for Bioinformation Technology, Shanghai, 201203, China.
| | - Yi-Xue Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Center for Bioinformation Technology, Shanghai, 201203, China.
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
14
|
Andersson D, Fagman H, Dalin MG, Ståhlberg A. Circulating cell-free tumor DNA analysis in pediatric cancers. Mol Aspects Med 2020; 72:100819. [DOI: 10.1016/j.mam.2019.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022]
|
15
|
Bos MK, Angus L, Nasserinejad K, Jager A, Jansen MPHM, Martens JWM, Sleijfer S. Whole exome sequencing of cell-free DNA - A systematic review and Bayesian individual patient data meta-analysis. Cancer Treat Rev 2019; 83:101951. [PMID: 31874446 DOI: 10.1016/j.ctrv.2019.101951] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022]
Abstract
Molecular profiling of tumor derived cell free DNA (cfDNA) is gaining ground as a prognostic and predictive biomarker. However to what extent cfDNA reflects the full metastatic landscape as currently determined by tumor tissue analysis remains controversial. Though technically challenging, whole exome sequencing (WES) of cfDNA enables thorough evaluation of somatic alterations. Here, we review the feasibility of WES of cfDNA and determine the sensitivity of WES-detected single nucleotide variants (SNVs) in cfDNA on individual patient data level using paired tumor tissue as reference (sharedSNVsAlltissueSNVs×100%). The pooled sensitivity was 50% (95% credible interval (CI): 29-72%). The tissue mutant allele frequency (MAF) of variants exclusively identified in tissue was significantly lower (12.5%, range: 0.5-18%) than the tissue MAF of variants identified in both tissue and cfDNA (23.9%, range: 17-38%), p = 0.004. The overall agreement (sharedSNVsAllSNVs×100%)between SNVs in cfDNA and tumor tissue was 31% (95% CI: 15-49%). The number of detected SNVs was positively correlated with circulating tumor DNA (ctDNA) fraction (p = 0.016). A sub analysis of samples with ctDNA fractions ≥ 25% improved the sensitivity to 69% (95% CI: 46-89%) and agreement to 46% (95% CI: 36-59%), suggesting that WES is mainly feasible for patients with high ctDNA fractions. Pre- and post-analytical procedures were highly variable between studies rendering comparisons problematic. In conclusion, various aspects of WES of cfDNA are largely in its investigative phase, standardization of methodologies is highly needed to bring this promising technique to its clinical potential.
Collapse
Affiliation(s)
- Manouk K Bos
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Lindsay Angus
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Kazem Nasserinejad
- HOVON Data Center, Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Maurice P H M Jansen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| |
Collapse
|
16
|
Adelson RP, Renton AE, Li W, Barzilai N, Atzmon G, Goate AM, Davies P, Freudenberg-Hua Y. Empirical design of a variant quality control pipeline for whole genome sequencing data using replicate discordance. Sci Rep 2019; 9:16156. [PMID: 31695094 PMCID: PMC6834861 DOI: 10.1038/s41598-019-52614-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022] Open
Abstract
The success of next-generation sequencing depends on the accuracy of variant calls. Few objective protocols exist for QC following variant calling from whole genome sequencing (WGS) data. After applying QC filtering based on Genome Analysis Tool Kit (GATK) best practices, we used genotype discordance of eight samples that were sequenced twice each to evaluate the proportion of potentially inaccurate variant calls. We designed a QC pipeline involving hard filters to improve replicate genotype concordance, which indicates improved accuracy of genotype calls. Our pipeline analyzes the efficacy of each filtering step. We initially applied this strategy to well-characterized variants from the ClinVar database, and subsequently to the full WGS dataset. The genome-wide biallelic pipeline removed 82.11% of discordant and 14.89% of concordant genotypes, and improved the concordance rate from 98.53% to 99.69%. The variant-level read depth filter most improved the genome-wide biallelic concordance rate. We also adapted this pipeline for triallelic sites, given the increasing proportion of multiallelic sites as sample sizes increase. For triallelic sites containing only SNVs, the concordance rate improved from 97.68% to 99.80%. Our QC pipeline removes many potentially false positive calls that pass in GATK, and may inform future WGS studies prior to variant effect analysis.
Collapse
Affiliation(s)
- Robert P Adelson
- Litwin-Zucker Center for Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, 11030, USA
| | - Alan E Renton
- Ronald M. Loeb Center for Alzheimer's Disease and Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Wentian Li
- Robert S. Boas Center for Genomics & Human Genetics, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, 11030, USA
| | - Nir Barzilai
- Robert S. Boas Center for Genomics & Human Genetics, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, 11030, USA
| | - Gil Atzmon
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease and Departments of Neuroscience, Genetics and Genomic Sciences, and Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Peter Davies
- Litwin-Zucker Center for Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, 11030, USA
| | - Yun Freudenberg-Hua
- Litwin-Zucker Center for Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, 11030, USA.
- Division of Geriatric Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York, 11004, USA.
| |
Collapse
|
17
|
Mallampati S, Zalles S, Duose DY, Hu PC, Medeiros LJ, Wistuba II, Kopetz S, Luthra R. Development and Application of Duplex Sequencing Strategy for Cell-Free DNA-Based Longitudinal Monitoring of Stage IV Colorectal Cancer. J Mol Diagn 2019; 21:994-1009. [PMID: 31401123 DOI: 10.1016/j.jmoldx.2019.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/08/2019] [Accepted: 06/12/2019] [Indexed: 02/09/2023] Open
Abstract
Potential applications of cell-free DNA (cfDNA)-based molecular profiling have used in patients with diverse malignant tumors. However, capturing all cfDNA that originates from tumor cells and identifying true variants present in this minute fraction remain challenges to the widespread application of cfDNA-based liquid biopsies in the clinical setting. In this study, we evaluate a systematic approach and identify key components of wet bench and bioinformatics strategies to address these challenges. We found that concentration of enrichment oligonucleotides, elements of the library preparation, and the structure of adaptors are critical for achieving high enrichment of target regions, retaining variant allele frequencies accurately throughout all involved steps of library preparation, and obtaining high variant coverage. We developed a dual molecular barcode-integrated error elimination strategy to remove sequencing artifacts and a background error correction strategy to distinguish true variants from abundant false-positive variants. We further describe a clinical application of this cfDNA-based duplex sequencing approach that can be used to monitor disease progression in patients with stage IV colorectal cancer. The findings also suggest that cfDNA-based molecular testing observations are highly concordant with observations obtained by traditional imaging methods. Overall, the findings presented in this study have potential implications for early detection of cancer, identification of minimal residual disease, and evaluation of therapeutic responses in patients with cancer.
Collapse
Affiliation(s)
- Saradhi Mallampati
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie Zalles
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dzifa Y Duose
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter C Hu
- School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajyalakshmi Luthra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
18
|
Huang CC, Du M, Wang L. Bioinformatics Analysis for Circulating Cell-Free DNA in Cancer. Cancers (Basel) 2019; 11:cancers11060805. [PMID: 31212602 PMCID: PMC6627444 DOI: 10.3390/cancers11060805] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022] Open
Abstract
Molecular analysis of cell-free DNA (cfDNA) that circulates in plasma and other body fluids represents a "liquid biopsy" approach for non-invasive cancer screening or monitoring. The rapid development of sequencing technologies has made cfDNA a promising source to study cancer development and progression. Specific genetic and epigenetic alterations have been found in plasma, serum, and urine cfDNA and could potentially be used as diagnostic or prognostic biomarkers in various cancer types. In this review, we will discuss the molecular characteristics of cancer cfDNA and major bioinformatics approaches involved in the analysis of cfDNA sequencing data for detecting genetic mutation, copy number alteration, methylation change, and nucleosome positioning variation. We highlight specific challenges in sensitivity to detect genetic aberrations and robustness of statistical analysis. Finally, we provide perspectives regarding the standard and continuing development of bioinformatics analysis to move this promising screening tool into clinical practice.
Collapse
Affiliation(s)
- Chiang-Ching Huang
- Zilber School of Public Health, University of Wisconsin, Milwaukee, WI 53205, USA.
| | - Meijun Du
- Department of Pathology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Liang Wang
- Department of Pathology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
19
|
Johansson G, Andersson D, Filges S, Li J, Muth A, Godfrey TE, Ståhlberg A. Considerations and quality controls when analyzing cell-free tumor DNA. BIOMOLECULAR DETECTION AND QUANTIFICATION 2019; 17:100078. [PMID: 30906693 PMCID: PMC6416156 DOI: 10.1016/j.bdq.2018.12.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/05/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
Abstract
Circulating cell-free tumor DNA (ctDNA) is a promising biomarker in cancer. Ultrasensitive technologies enable detection of low (< 0.1%) mutant allele frequencies, a pre-requisite to fully utilize the potential of ctDNA in cancer diagnostics. In addition, the entire liquid biopsy workflow needs to be carefully optimized to enable reliable ctDNA analysis. Here, we discuss important considerations for ctDNA detection in plasma. We show how each experimental step can easily be evaluated using simple quantitative PCR assays, including detection of cellular DNA contamination and PCR inhibition. Furthermore, ctDNA assay performance is also demonstrated to be affected by both DNA fragmentation and target sequence. Finally, we show that quantitative PCR is useful to estimate the required sequencing depth and to monitor DNA losses throughout the workflow. The use of quality control assays enables the development of robust and standardized workflows that facilitate the implementation of ctDNA analysis into clinical routine.
Collapse
Affiliation(s)
- Gustav Johansson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Respiratory Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Daniel Andersson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| | - Stefan Filges
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| | - Junrui Li
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| | - Andreas Muth
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Tony E. Godfrey
- Department of Surgery, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Anders Ståhlberg
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| |
Collapse
|
20
|
Ravegnini G, Sammarini G, Serrano C, Nannini M, Pantaleo MA, Hrelia P, Angelini S. Clinical relevance of circulating molecules in cancer: focus on gastrointestinal stromal tumors. Ther Adv Med Oncol 2019; 11:1758835919831902. [PMID: 30854029 PMCID: PMC6399766 DOI: 10.1177/1758835919831902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/30/2018] [Indexed: 12/12/2022] Open
Abstract
In recent years, growing research interest has focused on the so-called liquid biopsy. A simple blood test offers access to a plethora of information, which might be extremely helpful in understanding or characterizing specific diseases. Blood contains different molecules, of which circulating free DNA (cfDNA), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs) and extracellular vesicles (EVs) are the most relevant. Conceivably, these molecules have the potential for tumor diagnosis, monitoring tumor evolution, and evaluating treatment response and pharmacological resistance. This review aims to present a state-of-the-art of recent advances in circulating DNA and circulating RNA in gastrointestinal stromal tumors (GISTs). To date, progress in liquid biopsy has been scarce in GISTs due to several issues correlated with the nature of the pathology. Namely, heterogeneity in primary and secondary mutations in key driver genes has greatly slowed the development and application in GISTs, unlike in other tumor types in which liquid biopsy has already been translated into clinical practice. However, meaningful novel data have shown in recent years a significant clinical potential of ctDNA, CTCs, EVs and circulating RNA in GISTs.
Collapse
Affiliation(s)
- Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giulia Sammarini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - César Serrano
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Margherita Nannini
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Maria A Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|