1
|
Park KS, Lässer C, Lötvall J. Extracellular vesicles and the lung: from disease pathogenesis to biomarkers and treatments. Physiol Rev 2025; 105:1733-1821. [PMID: 40125970 DOI: 10.1152/physrev.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Nanosized extracellular vesicles (EVs) are released by all cells to convey cell-to-cell communication. EVs, including exosomes and microvesicles, carry an array of bioactive molecules, such as proteins and RNAs, encapsulated by a membrane lipid bilayer. Epithelial cells, endothelial cells, and various immune cells in the lung contribute to the pool of EVs in the lung microenvironment and carry molecules reflecting their cellular origin. EVs can maintain lung health by regulating immune responses, inducing tissue repair, and maintaining lung homeostasis. They can be detected in lung tissues and biofluids such as bronchoalveolar lavage fluid and blood, offering information about disease processes, and can function as disease biomarkers. Here, we discuss the role of EVs in lung homeostasis and pulmonary diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary fibrosis, and lung injury. The mechanistic involvement of EVs in pathogenesis and their potential as disease biomarkers are discussed. Finally, the pulmonary field benefits from EVs as clinical therapeutics in severe pulmonary inflammatory disease, as EVs from mesenchymal stem cells attenuate severe respiratory inflammation in multiple clinical trials. Further, EVs can be engineered to carry therapeutic molecules for enhanced and broadened therapeutic opportunities, such as the anti-inflammatory molecule CD24. Finally, we discuss the emerging opportunity of using different types of EVs for treating severe respiratory conditions.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
2
|
Kole C, Stefanou Ε, Karvelas N, Schizas D, Toutouzas KP. Acute and Post-Acute COVID-19 Cardiovascular Complications: A Comprehensive Review. Cardiovasc Drugs Ther 2024; 38:1017-1032. [PMID: 37209261 PMCID: PMC10199303 DOI: 10.1007/s10557-023-07465-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE OF REVIEW The risk of cardiovascular complications due to SARS-CoV-2 are significantly increased within the first 6 months of the infection. Patients with COVID-19 have an increased risk of death, and there is evidence that many may experience a wide range of post-acute cardiovascular complications. Our work aims to provide an update on current clinical aspects of diagnosis and treatment of cardiovascular manifestations during acute and long-term COVID-19. RECENT FINDINGS SARS-CoV-2 has been shown to be associated with increased incidence of cardiovascular complications such as myocardial injury, heart failure, and dysrhythmias, as well as coagulation abnormalities not only during the acute phase but also beyond the first 30 days of the infection, associated with high mortality and poor outcomes. Cardiovascular complications during long-COVID-19 were found regardless of comorbidities such as age, hypertension, and diabetes; nevertheless, these populations remain at high risk for the worst outcomes during post-acute COVID-19. Emphasis should be given to the management of these patients. Treatment with low-dose oral propranolol, a beta blocker, for heart rate management may be considered, since it was found to significantly attenuate tachycardia and improve symptoms in postural tachycardia syndrome, while for patients on ACE inhibitors or angiotensin-receptor blockers (ARBs), under no circumstances should these medications be withdrawn. In addition, in patients at high risk after hospitalization due to COVID-19, thromboprophylaxis with rivaroxaban 10 mg/day for 35 days improved clinical outcomes compared with no extended thromboprophylaxis. In this work we provide a comprehensive review on acute and post-acute COVID-19 cardiovascular complications, symptomatology, and pathophysiology mechanisms. We also discuss therapeutic strategies for these patients during acute and long-term care and highlight populations at risk. Our findings suggest that older patients with risk factors such as hypertension, diabetes, and medical history of vascular disease have worse outcomes during acute SARS-CoV-2 infection and are more likely to develop cardiovascular complications during long-COVID-19.
Collapse
Affiliation(s)
- Christo Kole
- Cardiology Department, Sismanoglio General Hospital of Attica, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Εleni Stefanou
- Artificial Kidney Unit, General Hospital of Messinia, Kalamata, Greece
| | - Nikolaos Karvelas
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | | |
Collapse
|
3
|
Pszczołowska M, Walczak K, Misków W, Antosz K, Batko J, Karska J, Leszek J. Molecular cross-talk between long COVID-19 and Alzheimer's disease. GeroScience 2024; 46:2885-2899. [PMID: 38393535 PMCID: PMC11009207 DOI: 10.1007/s11357-024-01096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The long COVID (coronavirus disease), a multisystemic condition following severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, is one of the widespread problems. Some of its symptoms affect the nervous system and resemble symptoms of Alzheimer's disease (AD)-a neurodegenerative condition caused by the accumulation of amyloid beta and hyperphosphorylation of tau proteins. Multiple studies have found dependence between these two conditions. Patients with Alzheimer's disease have a greater risk of SARS-CoV-2 infection due to increased levels of angiotensin-converting enzyme 2 (ACE2), and the infection itself promotes amyloid beta generation which enhances the risk of AD. Also, the molecular pathways are alike-misregulations in folate-mediated one-carbon metabolism, a deficit of Cq10, and disease-associated microglia. Medical imaging in both of these diseases shows a decrease in the volume of gray matter, global brain size reduction, and hypometabolism in the parahippocampal gyrus, thalamus, and cingulate cortex. In some studies, a similar approach to applied medication can be seen, including the use of amino adamantanes and phenolic compounds of rosemary. The significance of these connections and their possible application in medical practice still needs further study but there is a possibility that they will help to better understand long COVID.
Collapse
Affiliation(s)
| | - Kamil Walczak
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Weronika Misków
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Katarzyna Antosz
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Joanna Batko
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Julia Karska
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
4
|
Lembas A, Załęski A, Peller M, Mikuła T, Wiercińska-Drapało A. Human Immunodeficiency Virus as a Risk Factor for Cardiovascular Disease. Cardiovasc Toxicol 2024; 24:1-14. [PMID: 37982976 PMCID: PMC10838226 DOI: 10.1007/s12012-023-09815-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The developments in HIV treatments have increased the life expectancy of people living with HIV (PLWH), a situation that makes cardiovascular disease (CVD) in that population as relevant as ever. PLWH are at increased risk of CVD, and our understanding of the underlying mechanisms is continually increasing. HIV infection is associated with elevated levels of multiple proinflammatory molecules, including IL-6, IL-1β, VCAM-1, ICAM-1, TNF-α, TGF-β, osteopontin, sCD14, hs-CRP, and D-dimer. Other currently examined mechanisms include CD4 + lymphocyte depletion, increased intestinal permeability, microbial translocation, and altered cholesterol metabolism. Antiretroviral therapy (ART) leads to decreases in the concentrations of the majority of proinflammatory molecules, although most remain higher than in the general population. Moreover, adverse effects of ART also play an important role in increased CVD risk, especially in the era of rapid advancement of new therapeutical options. Nevertheless, it is currently believed that HIV plays a more significant role in the development of metabolic syndromes than treatment-associated factors. PLWH being more prone to develop CVD is also due to the higher prevalence of smoking and chronic coinfections with viruses such as HCV and HBV. For these reasons, it is crucial to consider HIV a possible causal factor in CVD occurrence, especially among young patients or individuals without common CVD risk factors.
Collapse
Affiliation(s)
- Agnieszka Lembas
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
- Hospital for Infectious Diseases, Warsaw, Poland
| | - Andrzej Załęski
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland.
- Hospital for Infectious Diseases, Warsaw, Poland.
| | - Michał Peller
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Mikuła
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
- Hospital for Infectious Diseases, Warsaw, Poland
| | - Alicja Wiercińska-Drapało
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
- Hospital for Infectious Diseases, Warsaw, Poland
| |
Collapse
|
5
|
Soleimanifar N, Assadiasl S, Kalateh E, Hassanvand MS, Sadr M, Mojtahedi H, Nadafi K, Nicknam MH, Edalatifard M. Circulating Exosomes and Ambient Air Pollution Exposure in COPD. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2023; 10:412-421. [PMID: 37676651 DOI: 10.15326/jcopdf.2023.0400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterized by progressive obstruction of airways due to chronic inflammation. Both genetic and environmental components are risk factors for COPD. The most common cause of COPD is smoking. However, evidence suggests that 17% to 38% of COPD patients are nonsmokers, so other factors like air pollution may also play a role. Objective The relationship between serum exosomes and exposure to particulate matter (PM) <2.5 and 10 micrometers (µm) in the residing environment of COPD patients and healthy groups was investigated. The correlation between inflammatory cytokine levels with exosome count was also studied. Methods Peripheral blood samples were taken from 20 COPD patients without a smoking history or a family history of COPD, along with 20 nonsmoker healthy controls. The serum exosomes were counted by flow cytometry using a CD81 marker. The exposure to PM2.5 and PM10 was measured in daily, weekly, and monthly intervals based on the longitudinal measurements of the monitoring stations, and the correlation between exosome count and air pollutants was analyzed. Results The serum CD81+ exosome count in COPD patients was significantly elevated compared to the healthy controls and this was correlated with daily PM10 (P-value=0.02) and monthly PM2.5 (P-value=0.02) exposure. Although interferon-gamma levels of COPD patients were higher than healthy controls, there was no correlation between exosome count and cytokine level. Conclusions Considering the significant relationship between air pollutants and the count of serum exosomes demonstrated in the present study, air pollution might be a considerable risk factor in the progression of airway inflammation.
Collapse
Affiliation(s)
- Narjes Soleimanifar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Effat Kalateh
- Thoracic Research Center, Tehran University of Medical Sciences, Imam Khomeini Hospital, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Maryam Sadr
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Mojtahedi
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Nadafi
- Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | - Maryam Edalatifard
- Thoracic Research Center, Tehran University of Medical Sciences, Imam Khomeini Hospital, Tehran, Iran
| |
Collapse
|
6
|
Mehboob R, von Kries JP, Ehsan K, Almansouri M, Bamaga AK. Role of endothelial cells and angiotensin converting enzyme-II in COVID-19 and brain damages post-infection. Front Neurol 2023; 14:1210194. [PMID: 37456637 PMCID: PMC10348744 DOI: 10.3389/fneur.2023.1210194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) causes coronavirus disease 2019 (COVID-19), which became a pandemic in late 2019 and early 2020. Apart from many other symptoms of this infection, such as loss of smell and taste, rashes, body aches, fatigue, and psychological and cardiac symptoms, it also causes vasodilation in response to inflammation via nitric oxide release. SARS CoV-2 affects microcirculation, resulting in the swelling and damage of endothelial cells, micro thrombosis, constriction of capillaries, and damage to pericytes that are vital for the integrity of capillaries, angiogenesis, and the healing process. Cytokine storming has been associated with COVID-19 illness. Capillary damage and congestion may cause limited diffusion exchange of oxygen in the lungs and hence hypoxemia and tissue hypoxia occur. This perspective study will explore the involvement of capillary damage and inflammation by their interference with blood and tissue oxygenation as well as brain function in the persistent symptoms and severity of COVID-19. The overall effects of capillary damage due to COVID-19, microvascular damage, and hypoxia in vital organs are also discussed in this perspective. Once initiated, this vicious cycle causes inflammation due to hypoxia, resulting in limited capillary function, which in turn causes inflammation and tissue damage. Low oxygen levels and high cytokines in brain tissue may lead to brain damage. The after-effects may be in the form of psychological symptoms such as mood changes, anxiety, depression, and many others that need to be investigated.
Collapse
Affiliation(s)
- Riffat Mehboob
- Lahore Medical Research Center and LMRC Laboratories, LLP, Lahore, Pakistan
| | - Jens Peter von Kries
- Screening Unit, Leibniz-Research Institute of Molecular Pharmacology (FMP), Berlin, Germany
| | - Kashifa Ehsan
- Lahore Medical Research Center and LMRC Laboratories, LLP, Lahore, Pakistan
| | - Majid Almansouri
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed K. Bamaga
- Neurology Division, Pediatric Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Rodríguez-Chiaradía DA, Khilzi K, Blanco I, Rodó-Pin A, Martin-Ontiyuelo C, Herranz Blasco A, Garcia-Lucio J, Molina L, Marco E, Barreiro E, Piccari L, Peinado VI, Garcia AR, Tura-Ceide O, Barberà JA. Effects of Exercise Training on Circulating Biomarkers of Endothelial Function in Pulmonary Arterial Hypertension. Biomedicines 2023; 11:1822. [PMID: 37509463 PMCID: PMC10376643 DOI: 10.3390/biomedicines11071822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION In stable patients with pulmonary arterial hypertension (PAH), pulmonary rehabilitation (PR) is an effective, safe and cost-effective non-pharmacological treatment. However, the effects of PR on vascular function have been poorly explored. This study aimed to compare the amounts of circulating progenitor cells (PCs) and endothelial microvesicles (EMVs) in patients with PAH before and after 8 weeks of endurance exercise training as markers of vascular competence. METHODS A prospective study of 10 consecutive patients with PAH that successfully finished a PR program (8 weeks) was carried out before and after this intervention. Levels of circulating PCs defined as CD34+CD45low progenitor cells and levels of EMVs (CD31+ CD42b-) were measured by flow cytometry. The ratio of PCs to EMVs was taken as a measure of the balance between endothelial damage and repair capacity. RESULTS All patients showed training-induced increases in endurance time (mean change 287 s). After PR, the number of PCs (CD34+CD45low/total lymphocytes) was increased (p < 0.05). In contrast, after training, the level of EMVs (CD31+ CD42b-/total EMVs) was reduced. The ratio of PCs to EMVs was significantly higher after training (p < 0.05). CONCLUSION Our study shows, for the first time, that endurance exercise training in patients with stable PAH has a positive effect, promoting potential mechanisms of damage/repair in favor of repair. This effect could contribute to a positive hemodynamic and clinical response.
Collapse
Affiliation(s)
- Diego A Rodríguez-Chiaradía
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Karys Khilzi
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | - Isabel Blanco
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, 08036 Barcelona, Spain
| | - Anna Rodó-Pin
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | - Clara Martin-Ontiyuelo
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, 08036 Barcelona, Spain
| | - Anna Herranz Blasco
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | - Jessica Garcia-Lucio
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Lluis Molina
- Cardiology Department, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | - Ester Marco
- Physical Medicine and Rehabilitation Department, Hospital Del Mar-Hospital de L'Esperança, Parc de Salut Mar, Rehabilitation Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
- School of Medicine, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08017 Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Lucilla Piccari
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | - Victor I Peinado
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, 08036 Barcelona, Spain
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain
| | - Agustín R Garcia
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, 08036 Barcelona, Spain
| | - Olga Tura-Ceide
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, 08036 Barcelona, Spain
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institut (IDIBGI), 17190 Girona, Spain
| | - Joan Albert Barberà
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
8
|
Zhang Y, Xue X, Meng L, Li D, Qiao W, Wang J, Xie D. Roles of autophagy-related genes in the therapeutic effects of Xuanfei Pingchuan capsules on chronic obstructive pulmonary disease based on transcriptome sequencing analysis. Front Pharmacol 2023; 14:1123882. [PMID: 37274101 PMCID: PMC10232735 DOI: 10.3389/fphar.2023.1123882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Objective: Autophagy plays an important role in the occurrence and development of chronic obstructive pulmonary disease (COPD). We evaluated the effect of Xuanfei Pingchuan capsule (XFPC) on autophagy-related genes of COPD by a bioinformatics analysis and experimental verification. Methods: The best treatment duration was screened by CCK8 assays. HBE cells were divided into three groups: blank, CSE and XFPC. After intervened by XFPC, HBE cells were collected and sent to Shenzhen Huada Gene Company for transcriptome sequencing. Subsequently, differential expression analyses, target gene prediction, and function enrichment analyses were carried out. Expression changes were verified in HBE cells by real-time Quantitative PCR (RT-qPCR) and western blotting (WB). Results: The result of differential expression analysis displayed that 125 target genes of HBE cells were mainly related to mitogen-activated protein kinase (MKK) binding, interleukin 33 binding, 1-Pyrroline-5-carboxylate dehydrogenase activity, and the mitogen-activated protein kinase (MAPK) signal pathway. Among the target genes, the core genes related to autophagy obtained by maximum neighborhood component algorithm were CSF1, AREG, MAPK9, MAP3K7, and AKT3. RT-qPCR and WB methods were used to verify the result, it showed similar expression changes in CSF1, MAPK9, MAP3K7, and AKT3 in bronchial epithelial cells to those in the bioinformatics analysis. Conclusion: Through transcriptome sequencing and validation analysis, we predicted that CSF1, MAPK9, MAP3K7, and AKT3 may be the potential autophagy-related genes that play an important role in the pathogenesis of COPD. XFPC may regulate autophagy by down-regulating the expression of CSF1, MAPK9, MAP3K7, and AKT3, thus achieving the purpose of treating chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
| | - Xiaoming Xue
- Graduate School, Shanxi University of Chinese Medicine, Taiyuan, China
| | | | | | | | | | | |
Collapse
|
9
|
Tinè M, Neri T, Biondini D, Bernardinello N, Casara A, Conti M, Minniti M, Cosio MG, Saetta M, Celi A, Nieri D, Bazzan E. Do Circulating Extracellular Vesicles Strictly Reflect Bronchoalveolar Lavage Extracellular Vesicles in COPD? Int J Mol Sci 2023; 24:ijms24032966. [PMID: 36769286 PMCID: PMC9918055 DOI: 10.3390/ijms24032966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Cell-derived extracellular vesicles (EVs) found in the circulation and body fluids contain biomolecules that could be used as biomarkers for lung and other diseases. EVs from bronchoalveolar lavage (BAL) might be more informative of lung abnormalities than EVs from blood, where information might be diluted. To compare EVs' characteristics in BAL and blood in smokers with and without COPD. Same-day BAL and blood samples were obtained in 9 nonsmokers (NS), 11 smokers w/o COPD (S), and 9 with COPD (SCOPD) (FEV1: 59 ± 3% pred). After differential centrifugation, EVs (200-500 nm diameter) were identified by flow cytometry and labeled with cell-type specific antigens: CD14 for macrophage-derived EVs, CD326 for epithelial-derived EVs, CD146 for endothelial-derived EVs, and CD62E for activated-endothelial-derived EVs. In BAL, CD14-EVs were increased in S compared to NS [384 (56-567) vs. 172 (115-282) events/μL; p = 0.007] and further increased in SCOPD [619 (224-888)] compared to both S (p = 0.04) and NS (p < 0.001). CD326-EVs were increased in S [760 (48-2856) events/μL, p < 0.001] and in SCOPD [1055 (194-11,491), p < 0.001] when compared to NS [15 (0-68)]. CD146-EVs and CD62E-EVs were similar in the three groups. In BAL, significant differences in macrophage and epithelial-derived EVs can be clearly detected between NS, S and SCOPD, while these differences were not found in plasma. This suggests that BAL is a better medium than blood to study EVs in lung diseases.
Collapse
Affiliation(s)
- Mariaenrica Tinè
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Tommaso Neri
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy
- Correspondence:
| | - Davide Biondini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Nicol Bernardinello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Alvise Casara
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Maria Conti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Marianna Minniti
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy
| | - Manuel G. Cosio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
- Meakins-Christie Laboratories, Respiratory Division, McGill University, Montreal, QC H3A 0G4, Canada
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Alessandro Celi
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy
| | - Dario Nieri
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| |
Collapse
|
10
|
Neri T, Celi A, Tinè M, Bernardinello N, Cosio MG, Saetta M, Nieri D, Bazzan E. The Emerging Role of Extracellular Vesicles Detected in Different Biological Fluids in COPD. Int J Mol Sci 2022; 23:ijms23095136. [PMID: 35563528 PMCID: PMC9101666 DOI: 10.3390/ijms23095136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023] Open
Abstract
The pathogenesis of chronic obstructive pulmonary disease (COPD) is characterized by complex cellular and molecular mechanisms, not fully elucidated so far. It involves inflammatory cells (monocytes/macrophages, neutrophils, lymphocytes), cytokines, chemokines and, probably, new players yet to be clearly identified and described. Chronic local and systemic inflammation, lung aging and cellular senescence are key pathological events in COPD development and progression over time. Extracellular vesicles (EVs), released by virtually all cells both as microvesicles and exosomes into different biological fluids, are involved in intercellular communication and, therefore, represent intriguing players in pathobiological mechanisms (including those characterizing aging and chronic diseases); moreover, the role of EVs as biomarkers in different diseases, including COPD, is rapidly gaining recognition. In this review, after recalling the essential steps of COPD pathogenesis, we summarize the current evidence on the roles of EVs collected in different biological mediums as biomarkers in COPD and as potential players in the specific mechanisms leading to disease development. We will also briefly review the data on EV as potential therapeutic targets and potential therapeutic agents.
Collapse
Affiliation(s)
- Tommaso Neri
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy; (T.N.); (A.C.); (D.N.)
| | - Alessandro Celi
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy; (T.N.); (A.C.); (D.N.)
| | - Mariaenrica Tinè
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.T.); (N.B.); (M.G.C.); (M.S.)
| | - Nicol Bernardinello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.T.); (N.B.); (M.G.C.); (M.S.)
| | - Manuel G. Cosio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.T.); (N.B.); (M.G.C.); (M.S.)
- Meakins-Christie Laboratories, Respiratory Division, McGill University, Montreal, QC H3A 0G4, Canada
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.T.); (N.B.); (M.G.C.); (M.S.)
| | - Dario Nieri
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy; (T.N.); (A.C.); (D.N.)
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.T.); (N.B.); (M.G.C.); (M.S.)
- Correspondence: ; Tel.: +39-049-821-3449
| |
Collapse
|
11
|
Gomez N, James V, Onion D, Fairclough LC. Extracellular vesicles and chronic obstructive pulmonary disease (COPD): a systematic review. Respir Res 2022; 23:82. [PMID: 35382831 PMCID: PMC8985325 DOI: 10.1186/s12931-022-01984-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/12/2022] [Indexed: 12/15/2022] Open
Abstract
Background Chronic Obstructive Pulmonary Disease (COPD) is a common inflammatory disease of the airways characterized by irreversible airflow limitation, ranking the third highest cause of death worldwide. Extracellular vesicles (EVs) are important intercellular communication mediators released by cells into their extracellular environment with the capacity to transfer biological signals. EVs involved in COPD hold great potential to understand disease pathogenesis and identify important biomarkers. This systematic review aims to examine all available research on EVs in the pathogenesis and diagnosis of COPD to identify existing knowledge and support further research within the field. Methods Publications were searched using PubMed and EMBASE with the search terms (Exosomes or extracellular vesicles or microvesicles or microparticles or ectosomes) AND (chronic obstructive pulmonary disease or COPD or emphysema or bronchitis). Results Initial search yielded 512 papers of which 142 were manually selected for review and 43 were eligible for analyses. The studies were divided into groups according to the role of EVs in pathogenesis, EV origin and cargo, their role in COPD exacerbations and their diagnostic utility. EVs were found to be involved in the mechanism of pathogenesis of COPD, derived from various cell types, as well as containing modified levels of miRNAs. EVs also varied according to the pathophysiological status of disease, therefore presenting a possible method for COPD diagnosis and progress monitoring. Conclusion The current findings show the limited but good quality research looking at the role of EVs in COPD, demonstrating the need for more studies to better define and provide further insight into the functional characteristics of EV in COPD pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01984-0.
Collapse
Affiliation(s)
- Nancy Gomez
- School of Life Sciences, The University of Nottingham, Life Sciences Building, Nottingham, NG7 2RD, UK
| | - Victoria James
- School of Veterinary Medicine and Science, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - David Onion
- School of Life Sciences, The University of Nottingham, Life Sciences Building, Nottingham, NG7 2RD, UK
| | - Lucy C Fairclough
- School of Life Sciences, The University of Nottingham, Life Sciences Building, Nottingham, NG7 2RD, UK.
| |
Collapse
|
12
|
Wang M, Wang K, Liao X, Hu H, Chen L, Meng L, Gao W, Li Q. Carnitine Palmitoyltransferase System: A New Target for Anti-Inflammatory and Anticancer Therapy? Front Pharmacol 2021; 12:760581. [PMID: 34764874 PMCID: PMC8576433 DOI: 10.3389/fphar.2021.760581] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/17/2021] [Indexed: 11/20/2022] Open
Abstract
Lipid metabolism involves multiple biological processes. As one of the most important lipid metabolic pathways, fatty acid oxidation (FAO) and its key rate-limiting enzyme, the carnitine palmitoyltransferase (CPT) system, regulate host immune responses and thus are of great clinical significance. The effect of the CPT system on different tissues or organs is complex: the deficiency or over-activation of CPT disrupts the immune homeostasis by causing energy metabolism disorder and inflammatory oxidative damage and therefore contributes to the development of various acute and chronic inflammatory disorders and cancer. Accordingly, agonists or antagonists targeting the CPT system may become novel approaches for the treatment of diseases. In this review, we first briefly describe the structure, distribution, and physiological action of the CPT system. We then summarize the pathophysiological role of the CPT system in chronic obstructive pulmonary disease, bronchial asthma, acute lung injury, chronic granulomatous disease, nonalcoholic fatty liver disease, hepatic ischemia–reperfusion injury, kidney fibrosis, acute kidney injury, cardiovascular disorders, and cancer. We are also concerned with the current knowledge in either preclinical or clinical studies of various CPT activators/inhibitors for the management of diseases. These compounds range from traditional Chinese medicines to novel nanodevices. Although great efforts have been made in studying the different kinds of CPT agonists/antagonists, only a few pharmaceuticals have been applied for clinical uses. Nevertheless, research on CPT activation or inhibition highlights the pharmacological modulation of CPT-dependent FAO, especially on different CPT isoforms, as a promising anti-inflammatory/antitumor therapeutic strategy for numerous disorders.
Collapse
Affiliation(s)
- Muyun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ximing Liao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyang Hu
- Department of Vascular Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Liangzhi Chen
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linlin Meng
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Ionescu M, Stoian AP, Rizzo M, Serban D, Nuzzo D, Mazilu L, Suceveanu AI, Dascalu AM, Parepa IR. The Role of Endothelium in COVID-19. Int J Mol Sci 2021; 22:11920. [PMID: 34769350 PMCID: PMC8584762 DOI: 10.3390/ijms222111920] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 01/08/2023] Open
Abstract
The 2019 novel coronavirus, known as severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19), is causing a global pandemic. The virus primarily affects the upper and lower respiratory tracts and raises the risk of a variety of non-pulmonary consequences, the most severe and possibly fatal of which are cardiovascular problems. Data show that almost one-third of the patients with a moderate or severe form of COVID-19 had preexisting cardiovascular comorbidities such as diabetes mellitus, obesity, hypertension, heart failure, or coronary artery disease. SARS-CoV2 causes hyper inflammation, hypoxia, apoptosis, and a renin-angiotensin system imbalance in a variety of cell types, primarily endothelial cells. Profound endothelial dysfunction associated with COVID-19 can be the cause of impaired organ perfusion that may generate acute myocardial injury, renal failure, and a procoagulant state resulting in thromboembolic events. We discuss the most recent results on the involvement of endothelial dysfunction in the pathogenesis of COVID-19 in patients with cardiometabolic diseases in this review. We also provide insights on treatments that may reduce the severity of this viral infection.
Collapse
Affiliation(s)
- Mihaela Ionescu
- Cardiology Department, Faculty of Medicine, Ovidius University of Constanţa, 900527 Constanţa, Romania; (M.I.); (I.R.P.)
| | - Anca Pantea Stoian
- Diabetes, Nutrition, and Metabolic Diseases Department, Faculty of Medicine, Carol Davila University, 050474 Bucharest, Romania; (A.P.S.); (M.R.)
| | - Manfredi Rizzo
- Diabetes, Nutrition, and Metabolic Diseases Department, Faculty of Medicine, Carol Davila University, 050474 Bucharest, Romania; (A.P.S.); (M.R.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Dragos Serban
- Forth Surgery Department, Emergency University Hospital Bucharest and Faculty of Medicine, Carol Davila University, 050474 Bucharest, Romania;
| | - Domenico Nuzzo
- Italian National Research Council, Institute for Research and Biomedical Innovation (CNR-IRIB), 90100 Palermo, Italy
| | - Laura Mazilu
- Oncology Department, Faculty of Medicine, Ovidius University of Constanţa, 900527 Constanţa, Romania;
| | - Andra Iulia Suceveanu
- Internal Medicine Department, Faculty of Medicine, Ovidius University of Constanţa, 900527 Constanţa, Romania;
| | - Ana Maria Dascalu
- Department of Ophthalmology, Emergency University Hospital Bucharest and Faculty of Medicine, Carol Davila University, 050474 Bucharest, Romania;
| | - Irinel Raluca Parepa
- Cardiology Department, Faculty of Medicine, Ovidius University of Constanţa, 900527 Constanţa, Romania; (M.I.); (I.R.P.)
| |
Collapse
|
14
|
Circulating Cell Biomarkers in Pulmonary Arterial Hypertension: Relationship with Clinical Heterogeneity and Therapeutic Response. Cells 2021; 10:cells10071688. [PMID: 34359858 PMCID: PMC8304946 DOI: 10.3390/cells10071688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Endothelial dysfunction is central to PAH. In this study, we simultaneously analysed circulating levels of endothelial microvesicles (EMVs) and progenitor cells (PCs) in PAH and in controls, as biomarkers of pulmonary endothelial integrity and evaluated differences among PAH subtypes and as a response to treatment. METHODS Forty-seven controls and 144 patients with PAH (52 idiopathic, 9 heritable, 31 associated with systemic sclerosis, 15 associated with other connective tissue diseases, 20 associated with HIV and 17 associated with portal hypertension) were evaluated. Forty-four patients with scleroderma and 22 with HIV infection, but without PAH, were also studied. Circulating levels of EMVs, total (CD31+CD42b-) and activated (CD31+CD42b-CD62E+), as well as circulating PCs (CD34+CD133+CD45low) were measured by flow cytometry and the EMVs/PCs ratio was computed. In treatment-naïve patients, measurements were repeated after 3 months of PAH therapy. RESULTS Patients with PAH showed higher numbers of EMVs and a lower percentage of PCs, compared with healthy controls. The EMV/PC ratio was increased in PAH patients, and in patients with SSc or HIV without PAH. After starting PAH therapy, individual changes in EMVs and PCs were variable, without significant differences being observed as a group. Conclusion: PAH patients present disturbed vascular homeostasis, reflected in changes in circulating EMV and PC levels, which are not restored with PAH targeted therapy. Combined measurement of circulating EMVs and PCs could be foreseen as a potential biomarker of endothelial dysfunction in PAH.
Collapse
|
15
|
Abdelhafez AT, Gomaa AMS, Ahmed AM, Sayed MM, Ahmed MA. Pioglitazone and/or irbesartan ameliorate COPD-induced endothelial dysfunction in side stream cigarette smoke-exposed mice model. Life Sci 2021; 280:119706. [PMID: 34102190 DOI: 10.1016/j.lfs.2021.119706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 01/18/2023]
Abstract
AIMS Cigarette smoking (CS) is the main cause of chronic obstructive pulmonary disease (COPD). Endothelial dysfunction is related to the severity of pulmonary disease in COPD. This study aimed to evaluate the effectiveness of single and combined administration of pioglitazone (Pio) and irbesartan (Irb) against COPD-induced endothelial dysfunction in mice and the involvement of NO and H2S in their effects. MATERIALS AND METHODS Adult male Swiss mice (n = 40, weighing 25-30 g) were assigned into 5 groups. The normal control group received 1% carboxy methyl cellulose (CMC). The CS group was exposed to CS and administered 1% CMC for 3 months. The CS + Pio, CS + Irb, and CS + Pio/Irb groups were subjected to CS and received Pio (60 mg/kg), Irb (50 mg/kg), and their combination respectively, daily orally for 3 months. Body weight gain, mean blood pressure, urinary albumin, serum NO and ET-1 levels with TNF-α and IL-2 levels in lung tissue and bronchoalveolar lavage were measured. Lung H2S and ET-1 levels, protein expression of PPARγ in lung and VEGF in lung and aortic tissues with histological changes were assessed. KEY FINDINGS Our results illustrated that CS induced a model of COPD with endothelial dysfunction in mice. Pio/Irb singly and in combination elicited protective effects against the pathophysiology of the disease with more improvement in the combined group. There is a strong correlation between NO and H2S as well as the other measured parameters. SIGNIFICANCE Collectively, both drugs performed these effects via their anti-inflammatory potential and increasing H2S and NO levels.
Collapse
Affiliation(s)
- Alaa T Abdelhafez
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M S Gomaa
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M Ahmed
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Manal M Sayed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
16
|
Rodríguez C, Luque N, Blanco I, Sebastian L, Barberà JA, Peinado VI, Tura-Ceide O. Pulmonary Endothelial Dysfunction and Thrombotic Complications in Patients with COVID-19. Am J Respir Cell Mol Biol 2021; 64:407-415. [PMID: 33180562 PMCID: PMC8008805 DOI: 10.1165/rcmb.2020-0359ps] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new strain of a Coronaviridae virus that presents 79% genetic similarity to the severe acute respiratory syndrome coronavirus, has been recently recognized as the cause of a global pandemic by the World Health Organization, implying a major threat to world public health. SARS-CoV-2 infects host human cells by binding through the viral spike proteins to the ACE-2 (angiotensin-converting enzyme 2) receptor, fuses with the cell membrane, enters, and starts its replication process to multiply its viral load. Coronavirus disease (COVID-19) was initially considered a respiratory infection that could cause pneumonia. However, in severe cases, it extends beyond the respiratory system and becomes a multiorgan disease. This transition from localized respiratory infection to multiorgan disease is due to two main complications of COVID-19. On the one hand, it is due to the so-called cytokine storm: an uncontrolled inflammatory reaction of the immune system in which defensive molecules become aggressive for the body itself. On the other hand, it is due to the formation of a large number of thrombi that can cause myocardial infarction, stroke, and pulmonary embolism. The pulmonary endothelium actively participates in these two processes, becoming the last barrier before the virus spreads throughout the body. In this review, we examine the role of the pulmonary endothelium in response to COVID-19, the existence of potential biomarkers, and the development of novel therapies to restore vascular homeostasis and to protect and/or treat coagulation, thrombosis patients. In addition, we review the thrombotic complications recently observed in patients with COVID-19 and its potential threatening sequelae.
Collapse
Affiliation(s)
- Cristina Rodríguez
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital of Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute, Girona, Spain.,Department of Pulmonary Medicine, Hospital Clínic-Biomedical Research Institute August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and
| | - Neus Luque
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital of Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute, Girona, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-Biomedical Research Institute August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Laura Sebastian
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital of Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute, Girona, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Biomedical Research Institute August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Víctor I Peinado
- Department of Pulmonary Medicine, Hospital Clínic-Biomedical Research Institute August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital of Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute, Girona, Spain.,Department of Pulmonary Medicine, Hospital Clínic-Biomedical Research Institute August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; and.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| |
Collapse
|
17
|
Fujimoto S, Fujita Y, Kadota T, Araya J, Kuwano K. Intercellular Communication by Vascular Endothelial Cell-Derived Extracellular Vesicles and Their MicroRNAs in Respiratory Diseases. Front Mol Biosci 2021; 7:619697. [PMID: 33614707 PMCID: PMC7890564 DOI: 10.3389/fmolb.2020.619697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory diseases and their comorbidities, such as cardiovascular disease and muscle atrophy, have been increasing in the world. Extracellular vesicles (EVs), which include exosomes and microvesicles, are released from almost all cell types and play crucial roles in intercellular communication, both in the regulation of homeostasis and the pathogenesis of various diseases. Exosomes are of endosomal origin and range in size from 50 to 150 nm in diameter, while microvesicles are generated by the direct outward budding of the plasma membrane in size ranges of 100-2,000 nm in diameter. EVs can contain various proteins, metabolites, and nucleic acids, such as mRNA, non-coding RNA species, and DNA fragments. In addition, these nucleic acids in EVs can be functional in recipient cells through EV cargo. The endothelium is a distributed organ of considerable biological importance, and disrupted endothelial function is involved in the pathogenesis of respiratory diseases such as chronic obstructive pulmonary disease, pulmonary hypertension, and acute respiratory distress syndrome. Endothelial cell-derived EVs (EC-EVs) play crucial roles in both physiological and pathological conditions by traveling to distant sites through systemic circulation. This review summarizes the pathological roles of vascular microRNAs contained in EC-EVs in respiratory diseases, mainly focusing on chronic obstructive pulmonary disease, pulmonary hypertension, and acute respiratory distress syndrome. Furthermore, this review discusses the potential clinical usefulness of EC-EVs as therapeutic agents in respiratory diseases.
Collapse
Affiliation(s)
- Shota Fujimoto
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yu Fujita
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Department of Translational Research for Exosomes, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsukasa Kadota
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Jun Araya
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Li Y, Sun X, Zhang X, Zhou H, Wang D, Xia Y, Li X. Functional damage of endothelial progenitor cells is attenuated by 14-3-3-n through inhibition of mitochondrial injury and oxidative stress. Cell Biol Int 2020; 45:839-848. [PMID: 33325040 DOI: 10.1002/cbin.11529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/13/2020] [Accepted: 12/13/2020] [Indexed: 11/10/2022]
Abstract
Endothelial progenitor cells (EPCs) are precursor cells of vascular endothelial cells, which are widely involved in the pathological process of cardiovascular diseases. EPCs apoptosis could accelerate the process of cardiovascular diseases. 14-3-3-η protein has been proved to be a potent antiapoptosis molecule. However, inhibition of EPCs apoptosis by 14-3-3-η and further specific mechanism have not been investigated. EPCs were isolated from human cord blood, and identified using VEGFR2 and CD34. 14-3-3-η overexpression model in vitro was established. Cell invasion, apoptosis, and proliferation were measured by transwell, flow cytometry, and Cell Counting Kit-8, respectively. Expression of 14-3-3-η, Bcl-2, and voltage-dependent anion channel 1 (VDAC1) were measured using quantitative real-time polymerase chain reaction and western blot analysis. Reactive oxygen species (ROS) intensity was measured using 2'-7' dichlorofluorescin diacetate probe. Mitochondrial membrane potential was detected using JC-1 dye. Overexpression of 14-3-3-η significantly promoted invasion and proliferation, but suppressed apoptosis of EPCs. Overexpression of 14-3-3-η remarkably inhibited ROS and promoted antioxidant enzyme levels in EPCs. 14-3-3-η might inhibit apoptosis of EPCs through attenuating mitochondrial injury. This study might provide a new target, 14-3-3-η, for the prevention and treatment of cardiovascular diseases through targeting EPCs.
Collapse
Affiliation(s)
- Yunde Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xinglan Sun
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xuemei Zhang
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Hui Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Dan Wang
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yi Xia
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiuli Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
19
|
Bazzan E, Radu CM, Tinè M, Neri T, Biondini D, Semenzato U, Casara A, Balestro E, Simioni P, Celi A, Cosio MG, Saetta M. Microvesicles in bronchoalveolar lavage as a potential biomarker of COPD. Am J Physiol Lung Cell Mol Physiol 2020; 320:L241-L245. [PMID: 33146565 DOI: 10.1152/ajplung.00362.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Microvesicles (MVs) released from almost all cells are recognized as cell communication tools. MVs have been investigated in several inflammatory diseases but poorly in biological fluids like bronchoalveolar lavage (BAL) of smokers. The purpose of this study was to investigate the presence and source of MVs in BAL of smokers with and without chronic obstructive pulmonary disease (COPD) compared with nonsmoking controls. Using flow cytometry in BAL, we detected endothelial and alveolar macrophage (AM)-derived MVs and found a higher number of AM-MVs in the BAL of smokers with COPD than in smokers without COPD and nonsmokers, which correlated with the pack-years (r = 0.46; P = 0.05) and with the degree of airway obstruction measured by the forced expiratory volume in 1 s percent predicted (r = -0.56; P = 0.01). Endothelial and alveolar macrophage-derived MVs are present and measurable in human BAL fluid. In response to smoking and to the development of COPD, inflammatory signals in AM-derived MVs can be quantified, and their numbers are related to the pack-years and the decrease in lung function. These results open the opportunity for future investigation of these microvesicles as biomarkers and possible mechanistic guides in COPD.
Collapse
Affiliation(s)
- Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy
| | - Claudia Maria Radu
- Department of Women's and Children's Health, University of Padova, Padua, Italy.,Department of Medicine, University of Padova, Padua, Italy
| | - Mariaenrica Tinè
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy
| | - Tommaso Neri
- Respiratory Pathophysiology Unit, Department of Surgery, Medicine, Molecular Biology, and Critical Care, University of Pisa, Pisa, Italy
| | - Davide Biondini
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy
| | - Umberto Semenzato
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy
| | - Alvise Casara
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy
| | - Elisabetta Balestro
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy
| | - Paolo Simioni
- Department of Medicine, University of Padova, Padua, Italy
| | - Alessandro Celi
- Respiratory Pathophysiology Unit, Department of Surgery, Medicine, Molecular Biology, and Critical Care, University of Pisa, Pisa, Italy
| | - Manuel G Cosio
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy.,Meakins-Christie Laboratories, Respiratory Division, McGill University, Montreal, Quebec, Canada
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy
| |
Collapse
|
20
|
Froldi G, Dorigo P. Endothelial dysfunction in Coronavirus disease 2019 (COVID-19): Gender and age influences. Med Hypotheses 2020; 144:110015. [PMID: 32592919 PMCID: PMC7305765 DOI: 10.1016/j.mehy.2020.110015] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
Several risk factors are associated with a worse outcome for COVID-19 patients; the most recognized are demographic characteristics such as older age and male gender, and pre-existing cardiovascular conditions. About the latter, hypertension and coronary heart disease are among the most common comorbidities recorded in infected patients, together with type 2 diabetes mellitus (T2DM). Data from Istituto Superiore di Sanità (ISS, Italy) show that more than 68.3% of patients had hypertension, 28.2% ischemic heart disease, 22.5% atrial fibrillation, while 30.1% T2DM. Several authors suggested that cardiovascular diseases and diabetes mellitus are linked to endothelial dysfunction, and all of them are strictly related to aging. Considering the impact of the gender on the COVID-19 epidemic, even if confirmed cases from each nation are changing every day, epidemiological data clearly evidence that in men the infection causes worse outcomes compared to women. In Italy, up to 21 May, in the age range of 60-89 years, male deaths were 63.9% of total cases. The reason behind this difference between genders appears not clear; however, the diversity in sex-hormones and styles of life are believed to play a role in the patient's susceptibility to severe SARS-CoV-2 outcomes. It is known that the activation of endothelial estrogen receptors increases NO and decreases ROS, protecting the vascular system from angiotensin II-mediated vasoconstriction, inflammation, and ROS production. During the pandemic, joining forces is vital; thus, as people help doctors by limiting their displacements out of their houses avoiding hence the spread of the infection, doctors help patients to overcome severe SARS-CoV-2 infections by using multiple pharmacological approaches. In this context, the preservation of endothelial function and the mitigation of vascular inflammation are prominent targets, essential to reduce severe outcomes also in male older patients.
Collapse
Affiliation(s)
- Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences (DSF), University of Padova, 35131 Padova, Italy.
| | - Paola Dorigo
- Department of Pharmaceutical and Pharmacological Sciences (DSF), University of Padova, 35131 Padova, Italy
| |
Collapse
|
21
|
Piccari L, Del Pozo R, Blanco I, García-Lucio J, Torralba Y, Tura-Ceide O, Moises J, Sitges M, Peinado VI, Barberà JA. Association Between Systemic and Pulmonary Vascular Dysfunction in COPD. Int J Chron Obstruct Pulmon Dis 2020; 15:2037-2047. [PMID: 32904646 PMCID: PMC7457710 DOI: 10.2147/copd.s257679] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction In chronic obstructive pulmonary disease (COPD), endothelial dysfunction and stiffness of systemic arteries may contribute to increased cardiovascular risk. Pulmonary vascular disease (PVD) is frequent in COPD. The association between PVD and systemic vascular dysfunction has not been thoroughly evaluated in COPD. Methods A total of 108 subjects were allocated into four groups (non-smoking controls, smoking controls, COPD without PVD and COPD with PVD). In systemic arteries, endothelial dysfunction was assessed by flow-mediated dilation (FMD) and arterial stiffness by pulse wave analysis (PWA) and pulse wave velocity (PWV). PVD was defined by a mean pulmonary artery pressure (PAP) ≥25 mmHg at right heart catheterization or by a tricuspid regurgitation velocity >2.8 m/s at doppler echocardiography. Biomarkers of inflammation and endothelial damage were assessed in peripheral blood. Results FMD was lower in COPD patients, with or without PVD, compared to non-smoking controls; and in patients with COPD and PVD compared to smoking controls. PWV was higher in COPD with PVD patients compared to both non-smoking and smoking controls in a model adjusted by age and the Framingham score; PWV was also higher in patients with COPD and PVD compared to COPD without PVD patients in the non-adjusted analysis. FMD and PWV correlated significantly with forced expiratory volume in the first second (FEV1), diffusing capacity for carbon monoxide (DLCO) and systolic PAP. FMD and PWV were correlated in all subjects. Discussion We conclude that endothelial dysfunction of systemic arteries is common in COPD, irrespective if they have PVD or not. COPD patients with PVD show increased stiffness and greater impairment of endothelial function in systemic arteries. These findings suggest the association of vascular impairment in both pulmonary and systemic territories in a subset of COPD patients.
Collapse
Affiliation(s)
- Lucilla Piccari
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Roberto Del Pozo
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Jessica García-Lucio
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Yolanda Torralba
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Jorge Moises
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Marta Sitges
- Department of Cardiology, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Víctor Ivo Peinado
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| |
Collapse
|
22
|
Brodskaya TA, Nevzorova VA, Vasileva MS, Lavrenyuk VV. [Endothelium-related and neuro-mediated mechanisms of emphysema development in chronic obstructive pulmonary disease]. TERAPEVT ARKH 2020; 92:116-124. [PMID: 32598803 DOI: 10.26442/00403660.2020.03.000347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 11/22/2022]
Abstract
Emphysema is one of the main manifestations of chronic obstructive pulmonary disease (COPD), and smoking is one of the most significant risk factors. The results of studies in humans and animals show the vascular endothelium initiates and modulates the main pathological processes in COPD and smoking is an important factor initiating, developing and persisting inflammation and remodeling of blood vessels and tissues, including the destruction of small respiratory tracts with the development of lung tissue destruction and emphysema. The latest studies describe mechanisms not just associated with the endothelium, but specific neuro-mediated mechanisms. There is reason to believe that neuro-mediated and neuro-similar mechanisms associated and not related to endothelial dysfunction may play the significant role in the pathogenesis of COPD and emphysema formation. Information about components and mechanisms of neurogenic inflammation in emphysema development is fragmentary and not systematized in the literature. It is described that long-term tobacco smoking can initiate processes not only of cells and tissues damage, but also become a trigger for excessive release of neurotransmitters, which entails whole cascades of adverse reactions that have an effect on emphysema formation. With prolonged and/or intensive stimulation of sensor fibers, excessive release of neuropeptides is accompanied by a number of plastic and destructive processes due to a cascade of pathological reactions of neurogenic inflammation, the main participants of which are classical neuropeptides and their receptors. The most important consequences can be the maintenance and stagnation of chronic inflammation, activation of the mechanisms of destruction and remodeling, inadequate repair processes in response to damage, resulting in irreversible loss of lung tissue. For future research, there is interest to evaluate the possibilities of therapeutic and prophylactic effects on neuro-mediated mechanisms of endothelial dysfunction and damage emphysema in COPD and smoking development.
Collapse
|
23
|
Jung AL, Møller Jørgensen M, Bæk R, Griss K, Han M, Auf Dem Brinke K, Timmesfeld N, Bertrams W, Greulich T, Koczulla R, Hippenstiel S, Suttorp N, Schmeck B. Surface Proteome of Plasma Extracellular Vesicles as Biomarkers for Pneumonia and Acute Exacerbation of Chronic Obstructive Pulmonary Disease. J Infect Dis 2019; 221:325-335. [DOI: 10.1093/infdis/jiz460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 01/09/2023] Open
Abstract
Abstract
Background
Community-acquired pneumonia (CAP) and acute exacerbation of chronic obstructive pulmonary disease (AECOPD) represent a major burden of disease and death and their differential diagnosis is critical. A potential source of relevant accessible biomarkers are blood-borne small extracellular vesicles (sEVs).
Methods
We performed an extracellular vesicle array to find proteins on plasma sEVs that are differentially expressed and possibly allow the differential diagnosis between CAP and AECOPD. Plasma samples were analyzed from 21 healthy controls, 24 patients with CAP, and 10 with AECOPD . The array contained 40 antibodies to capture sEVs, which were then visualized with a cocktail of biotin-conjugated CD9, CD63, and CD81 antibodies.
Results
We detected significant differences in the protein decoration of sEVs between healthy controls and patients with CAP or AECOPD. We found CD45 and CD28 to be the best discrimination markers between CAP and AECOPD in receiver operating characteristic analyses, with an area under the curve >0.92. Additional ensemble feature selection revealed the possibility to distinguish between CAP and AECOPD even if the patient with CAP had COPD, with a panel of CD45, CD28, CTLA4 (cytotoxic T-lymphocyte-associated protein 4), tumor necrosis factor–R-II, and CD16.
Conclusion
The discrimination of sEV-associated proteins is a minimally invasive method with potential to discriminate between CAP and AECOPD.
Collapse
Affiliation(s)
- Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
| | | | - Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Kathrin Griss
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
- Medizinische Klinik m.S. Infektiologie und Pneumologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Han
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
- Medizinische Klinik m.S. Hämatologie und Onkologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Kristina Auf Dem Brinke
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
| | - Nina Timmesfeld
- Abteilung für Medizinische Informatik, Biometrie und Epidemiologie, Ruhr-Universität Bochum, Bochum, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
| | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
| | - Rembert Koczulla
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
| | - Stefan Hippenstiel
- Medizinische Klinik m.S. Infektiologie und Pneumologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Suttorp
- Medizinische Klinik m.S. Infektiologie und Pneumologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
24
|
Lima TRL, Almeida VP, Ferreira AS, Guimarães FS, Lopes AJ. Handgrip Strength and Pulmonary Disease in the Elderly: What is the Link? Aging Dis 2019; 10:1109-1129. [PMID: 31595206 PMCID: PMC6764733 DOI: 10.14336/ad.2018.1226] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022] Open
Abstract
Societies in developed countries are aging at an unprecedented rate. Considering that aging is the most significant risk factor for many chronic lung diseases (CLDs), understanding this process may facilitate the development of new interventionist approaches. Skeletal muscle dysfunction is a serious problem in older adults with CLDs, reducing their quality of life and survival. In this study, we reviewed the possible links between handgrip strength (HGS)—a simple, noninvasive, low-cost measure of muscle function—and CLDs in the elderly. Different mechanisms appear to be involved in this association, including systemic inflammation, chronic hypoxemia, physical inactivity, malnutrition, and corticosteroid use. Respiratory and peripheral myopathy, associated with muscle atrophy and a shift in muscle fiber type, also seem to be major etiological contributors to CLDs. Moreover, sarcopenic obesity, which occurs in older adults with CLDs, impairs common inflammatory pathways that can potentiate each other and further accelerate the functional decline of HGS. Our findings support the concept that the systemic effects of CLDs may be determined by HGS, and HGS is a relevant measurement that should be considered in the clinical assessment of the elderly with CLDs. These reasons make HGS a useful practical tool for indirectly evaluating functional status in the elderly. At present, early muscle reconditioning and optimal nutrition appear to be the most effective approaches to reduce the impact of CLDs and low muscle strength on the quality of life of these individuals. Nonetheless, larger in-depth studies are needed to evaluate the link between HGS and CLDs.
Collapse
Affiliation(s)
- Tatiana Rafaela Lemos Lima
- 1Rehabilitation Sciences Post-Graduate Program, Augusto Motta University Center (UNISUAM), Bonsucesso, 21041-010, Rio de Janeiro, Brazil
| | - Vívian Pinto Almeida
- 1Rehabilitation Sciences Post-Graduate Program, Augusto Motta University Center (UNISUAM), Bonsucesso, 21041-010, Rio de Janeiro, Brazil
| | - Arthur Sá Ferreira
- 1Rehabilitation Sciences Post-Graduate Program, Augusto Motta University Center (UNISUAM), Bonsucesso, 21041-010, Rio de Janeiro, Brazil
| | - Fernando Silva Guimarães
- 1Rehabilitation Sciences Post-Graduate Program, Augusto Motta University Center (UNISUAM), Bonsucesso, 21041-010, Rio de Janeiro, Brazil
| | - Agnaldo José Lopes
- 1Rehabilitation Sciences Post-Graduate Program, Augusto Motta University Center (UNISUAM), Bonsucesso, 21041-010, Rio de Janeiro, Brazil.,2Post-graduate Program in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro (UERJ), Vila Isabel, 20550-170, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Gong J, Zhao H, Liu T, Li L, Cheng E, Zhi S, Kong L, Yao HW, Li J. Cigarette Smoke Reduces Fatty Acid Catabolism, Leading to Apoptosis in Lung Endothelial Cells: Implication for Pathogenesis of COPD. Front Pharmacol 2019; 10:941. [PMID: 31555131 PMCID: PMC6727183 DOI: 10.3389/fphar.2019.00941] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
Endothelial cell (EC) apoptosis contributes to cigarette smoke (CS)-induced pulmonary emphysema. Metabolism of glucose, glutamine, and fatty acid is dysregulated in patients with chronic obstructive pulmonary disease (COPD). Whether CS causes metabolic dysregulation in ECs leading to development of COPD remains elusive. We hypothesized that CS alters metabolism, resulting in apoptosis in lung ECs. To test this hypothesis, we treated primary mouse pulmonary microvascular ECs (PMVECs) with CS extract (CSE) and employed PMVECs from healthy subjects and COPD patients. We found that mitochondrial respiration was reduced in CSE-treated PMVECs and in PMVECs from COPD patients. Specifically, oxidation of fatty acids (FAO) was reduced in these cells, which linked to reduced carnitine palmitoyltransferase 1a (Cpt1a), an essential enzyme for carnitine shuttle. CSE-induced apoptosis was further increased when cells were treated with a specific Cpt1 inhibitor etomoxir or transfected with Cpt1a siRNA. L-Carnitine treatment augmented FAO but attenuated CSE-induced apoptosis by upregulating Cpt1a. CSE treatment increased palmitate-derived ceramide synthesis, which was reduced by L-carnitine. Although CSE treatment increased glycolysis, inhibiting glycolysis with 2-deoxy-d-glucose had no effects on CSE-mediated apoptosis in lung ECs. Conclusively, FAO reduction increases ceramide and apoptosis in lung ECs treated with CSE, which may contribute to the pathogenesis of COPD/emphysema.
Collapse
Affiliation(s)
- Jiannan Gong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Tanzhen Liu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lifang Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Erjing Cheng
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuyin Zhi
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lufei Kong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hong-Wei Yao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianqiang Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
26
|
Tura-Ceide O, Pizarro S, García-Lucio J, Ramírez J, Molins L, Blanco I, Torralba Y, Sitges M, Bonjoch C, Peinado VI, Barberà JA. Progenitor cell mobilisation and recruitment in pulmonary arteries in chronic obstructive pulmonary disease. Respir Res 2019; 20:74. [PMID: 30992021 PMCID: PMC6469212 DOI: 10.1186/s12931-019-1024-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Background Pulmonary vascular abnormalities are a characteristic feature of chronic obstructive pulmonary disease (COPD). Cigarette smoking is the most important risk factor for COPD. It is believed that its constant exposure triggers endothelial cell damage and vascular remodelling. Under pathological conditions, progenitor cells (PCs) are mobilized from the bone marrow and recruited to sites of vascular injury. The aim of the study was to investigate whether in COPD the number of circulating PCs is related to the presence of bone marrow-derived cells in pulmonary arteries and the association of these phenomena to both systemic and pulmonary endothelial dysfunction. Methods Thirty-nine subjects, 25 with COPD, undergoing pulmonary resection because of a localized carcinoma, were included. The number of circulating PCs was assessed by flow cytometry using a triple combination of antibodies against CD45, CD133 and CD34. Infiltrating CD45+ cells were identified by immunohistochemistry in pulmonary arteries. Endothelial function in systemic and pulmonary arteries was measured by flow-mediated dilation and adenosine diphosphate-induced vasodilation, respectively. Results COPD patients had reduced numbers of circulating PCs (p < 0.05) and increased numbers of CD45+ cells (< 0.05) in the pulmonary arterial wall than non-COPD subjects, being both findings inversely correlated (r = − 0.35, p < 0.05). In pulmonary arteries, the number of CD45+ cells correlated with the severity of vascular remodelling (r = 0.4, p = 0.01) and the endothelium-dependent vasodilation (r = − 0.3, p = 0.05). Systemic endothelial function was unrelated to the number of circulating PCs and changes in pulmonary vessels. Conclusion In COPD, the decrease of circulating PCs is associated with their recruitment in pulmonary arteries, which in turn is associated with endothelial dysfunction and vessel remodelling, suggesting a mechanistic link between these phenomena. Our findings are consistent with the notion of an imbalance between endothelial damage and repair capacity in the pathogenesis of pulmonary vascular abnormalities in COPD. Electronic supplementary material The online version of this article (10.1186/s12931-019-1024-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain. .,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain. .,Servei de Pneumologia, Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain.
| | - Sandra Pizarro
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jéssica García-Lucio
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Josep Ramírez
- Department of Pathology, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Laureano Molins
- Department of Thoracic Surgery, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Yolanda Torralba
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Marta Sitges
- Department of Cardiology, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Cristina Bonjoch
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Victor I Peinado
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain. .,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain. .,Servei de Pneumologia, Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain.
| |
Collapse
|