1
|
Goswami P, Šislerová L, Dobrovolná M, Havlík J, Šťastný J, Brázda V. Interaction of C-terminal p53 isoforms depends strongly upon DNA sequence and topology. Biochimie 2022; 208:93-99. [PMID: 36549455 DOI: 10.1016/j.biochi.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The p53 protein is a key tumor suppressor and the most commonly mutated and down-regulated protein in human tumors. It functions mainly through interaction with DNA, and p53 acts as a transcription factor that recognizes the so-called p53 target sites on the promoters of various genes. P53 has been shown to exist as many isoforms, including three C-terminal isoforms that are produced by alternative splicing. Because the C-terminal domain is responsible for sequence-nonspecific binding and regulation of p53 binding, we have analyzed DNA recognition by these C-terminal isoforms. Using atomic force microscopy, we show for the first time that all C-terminal isoforms recognize superhelical DNA. It is particularly noteworthy that a sequence-specific p53 consensus binding site is bound by p53α and β isoforms with similar affinities, whilst p53α shows higher binding to a quadruplex sequence than both p53β and p53γ, and p53γ loses preferential binding to both the consensus binding sequence and the quadruplex-forming sequence. These results show the important role of the variable p53 C-terminal amino acid sequences for DNA recognition.
Collapse
Affiliation(s)
- Pratik Goswami
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Michaela Dobrovolná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Jan Havlík
- Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Jiří Šťastný
- Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| |
Collapse
|
2
|
Bowater RP, Bohálová N, Brázda V. Interaction of Proteins with Inverted Repeats and Cruciform Structures in Nucleic Acids. Int J Mol Sci 2022; 23:ijms23116171. [PMID: 35682854 PMCID: PMC9180970 DOI: 10.3390/ijms23116171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Cruciforms occur when inverted repeat sequences in double-stranded DNA adopt intra-strand hairpins on opposing strands. Biophysical and molecular studies of these structures confirm their characterization as four-way junctions and have demonstrated that several factors influence their stability, including overall chromatin structure and DNA supercoiling. Here, we review our understanding of processes that influence the formation and stability of cruciforms in genomes, covering the range of sequences shown to have biological significance. It is challenging to accurately sequence repetitive DNA sequences, but recent advances in sequencing methods have deepened understanding about the amounts of inverted repeats in genomes from all forms of life. We highlight that, in the majority of genomes, inverted repeats are present in higher numbers than is expected from a random occurrence. It is, therefore, becoming clear that inverted repeats play important roles in regulating many aspects of DNA metabolism, including replication, gene expression, and recombination. Cruciforms are targets for many architectural and regulatory proteins, including topoisomerases, p53, Rif1, and others. Notably, some of these proteins can induce the formation of cruciform structures when they bind to DNA. Inverted repeat sequences also influence the evolution of genomes, and growing evidence highlights their significance in several human diseases, suggesting that the inverted repeat sequences and/or DNA cruciforms could be useful therapeutic targets in some cases.
Collapse
Affiliation(s)
- Richard P. Bowater
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Natália Bohálová
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic;
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Václav Brázda
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic;
- Correspondence:
| |
Collapse
|
3
|
Hussain A, Jiang W, Wang X, Shahid S, Saba N, Ahmad M, Dar A, Masood SU, Imran M, Mustafa A. Mechanistic Impact of Zinc Deficiency in Human Development. Front Nutr 2022; 9:717064. [PMID: 35356730 PMCID: PMC8959901 DOI: 10.3389/fnut.2022.717064] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Zinc (Zn) deficiency in humans is an emerging global health issue affecting approximately two billion people across the globe. The situation prevails due to the intake of Zn deficient grains and vegetables worldwide. Clinical identification of Zn deficiency in humans remains problematic because the symptoms do not appear until impair the vital organs, such as the gastrointestinal track, central nervous system, immune system, skeletal, and nervous system. Lower Zn body levels are also responsible for multiple physiological disorders, such as apoptosis, organs destruction, DNA injuries, and oxidative damage to the cellular components through reactive oxygen species (ROS). The oxidative damage causes chronic inflammation lead toward several chronic diseases, such as heart diseases, cancers, alcohol-related malady, muscular contraction, and neuro-pathogenesis. The present review focused on the physiological and growth-related changes in humans under Zn deficient conditions, mechanisms adopted by the human body under Zn deficiency for the proper functioning of the body systems, and the importance of nutritional and nutraceutical approaches to overcome Zn deficiency in humans and concluded that the biofortified food is the best source of Zn as compared to the chemical supplementation to avoid their negative impacts on human.
Collapse
Affiliation(s)
- Azhar Hussain
- Department of Soil Science, The Islamia Diversity of Bahawalpur, Bahawalpur, Pakistan
| | - Wenting Jiang
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Shumaila Shahid
- Department of Soil Science, The Islamia Diversity of Bahawalpur, Bahawalpur, Pakistan
| | - Noreena Saba
- Qaid-e-Azam Medical College, Bahawal Victoria Hospital, Bahawalpur, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Science, The Islamia Diversity of Bahawalpur, Bahawalpur, Pakistan
| | - Abubakar Dar
- Department of Soil Science, The Islamia Diversity of Bahawalpur, Bahawalpur, Pakistan
| | - Syed Usama Masood
- Clinical Fellow Pediatric Nephrology, Children Hospital and Institute of Child Health Multan, Multan, Pakistan
| | | | - Adnan Mustafa
- Faculty of Chemistry, Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition (FA), Mendel University, Brno, Czechia
- Institute of Environmental Studies, Charles University Prague, Prague, Czechia
| |
Collapse
|
4
|
Ravichandran S, Razzaq M, Parveen N, Ghosh A, Kim KK. The effect of hairpin loop on the structure and gene expression activity of the long-loop G-quadruplex. Nucleic Acids Res 2021; 49:10689-10706. [PMID: 34450640 PMCID: PMC8501965 DOI: 10.1093/nar/gkab739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022] Open
Abstract
G-quadruplex (G4), a four-stranded DNA or RNA structure containing stacks of guanine tetrads, plays regulatory roles in many cellular functions. So far, conventional G4s containing loops of 1–7 nucleotides have been widely studied. Increasing experimental evidence suggests that unconventional G4s, such as G4s containing long loops (long-loop G4s), play a regulatory role in the genome by forming a stable structure. Other secondary structures such as hairpins in the loop might thus contribute to the stability of long-loop G4s. Therefore, investigation of the effect of the hairpin-loops on the structure and function of G4s is required. In this study, we performed a systematic biochemical investigation of model G4s containing long loops with various sizes and structures. We found that the long-loop G4s are less stable than conventional G4s, but their stability increased when the loop forms a hairpin (hairpin-G4). We also verified the biological significance of hairpin-G4s by showing that hairpin-G4s present in the genome also form stable G4s and regulate gene expression as confirmed by in cellulo reporter assays. This study contributes to expanding the scope and diversity of G4s, thus facilitating future studies on the role of G4s in the human genome.
Collapse
Affiliation(s)
- Subramaniyam Ravichandran
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Maria Razzaq
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Nazia Parveen
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Ambarnil Ghosh
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Brázda V, Bartas M, Bowater RP. Evolution of Diverse Strategies for Promoter Regulation. Trends Genet 2021; 37:730-744. [PMID: 33931265 DOI: 10.1016/j.tig.2021.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022]
Abstract
DNA is fundamentally important for all cellular organisms due to its role as a store of hereditary genetic information. The precise and accurate regulation of gene transcription depends primarily on promoters, which vary significantly within and between genomes. Some promoters are rich in specific types of bases, while others have more varied, complex sequence characteristics. However, it is not only base sequence but also epigenetic modifications and altered DNA structure that regulate promoter activity. Significantly, many promoters across all organisms contain sequences that can form intrastrand hairpins (cruciforms) or four-stranded structures (G-quadruplex or i-motif). In this review we integrate recent studies on promoter regulation that highlight the importance of DNA structure in the evolutionary adaptation of promoter sequences.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Richard P Bowater
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
6
|
Bartas M, Červeň J, Guziurová S, Slychko K, Pečinka P. Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins. Int J Mol Sci 2021; 22:ijms22020922. [PMID: 33477647 PMCID: PMC7831508 DOI: 10.3390/ijms22020922] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/20/2022] Open
Abstract
Nucleic acid-binding proteins are traditionally divided into two categories: With the ability to bind DNA or RNA. In the light of new knowledge, such categorizing should be overcome because a large proportion of proteins can bind both DNA and RNA. Another even more important features of nucleic acid-binding proteins are so-called sequence or structure specificities. Proteins able to bind nucleic acids in a sequence-specific manner usually contain one or more of the well-defined structural motifs (zinc-fingers, leucine zipper, helix-turn-helix, or helix-loop-helix). In contrast, many proteins do not recognize nucleic acid sequence but rather local DNA or RNA structures (G-quadruplexes, i-motifs, triplexes, cruciforms, left-handed DNA/RNA form, and others). Finally, there are also proteins recognizing both sequence and local structural properties of nucleic acids (e.g., famous tumor suppressor p53). In this mini-review, we aim to summarize current knowledge about the amino acid composition of various types of nucleic acid-binding proteins with a special focus on significant enrichment and/or depletion in each category.
Collapse
|
7
|
Global analysis of inverted repeat sequences in human gene promoters reveals their non-random distribution and association with specific biological pathways. Genomics 2020; 112:2772-2777. [DOI: 10.1016/j.ygeno.2020.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/02/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
|
8
|
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure. Int J Mol Sci 2019; 20:ijms20225605. [PMID: 31717504 PMCID: PMC6888028 DOI: 10.3390/ijms20225605] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor suppressor functions of p53 and its roles in regulating the cell cycle, apoptosis, senescence, and metabolism are accomplished mainly by its interactions with DNA. p53 works as a transcription factor for a significant number of genes. Most p53 target genes contain so-called p53 response elements in their promoters, consisting of 20 bp long canonical consensus sequences. Compared to other transcription factors, which usually bind to one concrete and clearly defined DNA target, the p53 consensus sequence is not strict, but contains two repeats of a 5′RRRCWWGYYY3′ sequence; therefore it varies remarkably among target genes. Moreover, p53 binds also to DNA fragments that at least partially and often completely lack this consensus sequence. p53 also binds with high affinity to a variety of non-B DNA structures including Holliday junctions, cruciform structures, quadruplex DNA, triplex DNA, DNA loops, bulged DNA, and hemicatenane DNA. In this review, we summarize information of the interactions of p53 with various DNA targets and discuss the functional consequences of the rich world of p53 DNA binding targets for its complex regulatory functions.
Collapse
|
9
|
Cai BH, Chao CF, Huang HC, Lee HY, Kannagi R, Chen JY. Roles of p53 Family Structure and Function in Non-Canonical Response Element Binding and Activation. Int J Mol Sci 2019; 20:ijms20153681. [PMID: 31357595 PMCID: PMC6696488 DOI: 10.3390/ijms20153681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023] Open
Abstract
The p53 canonical consensus sequence is a 10-bp repeat of PuPuPuC(A/T)(A/T)GPyPyPy, separated by a spacer with up to 13 bases. C(A/T)(A/T)G is the core sequence and purine (Pu) and pyrimidine (Py) bases comprise the flanking sequence. However, in the p53 noncanonical sequences, there are many variations, such as length of consensus sequence, variance of core sequence or flanking sequence, and variance in number of bases making up the spacer or AT gap composition. In comparison to p53, the p53 family members p63 and p73 have been found to have more tolerance to bind and activate several of these noncanonical sequences. The p53 protein forms monomers, dimers, and tetramers, and its nonspecific binding domain is well-defined; however, those for p63 or p73 are still not fully understood. Study of p63 and p73 structure to determine the monomers, dimers or tetramers to bind and regulate noncanonical sequence is a new challenge which is crucial to obtaining a complete picture of structure and function in order to understand how p63 and p73 regulate genes differently from p53. In this review, we will summarize the rules of p53 family non-canonical sequences, especially focusing on the structure of p53 family members in the regulation of specific target genes. In addition, we will compare different software programs for prediction of p53 family responsive elements containing parameters with canonical or non-canonical sequences.
Collapse
Affiliation(s)
- Bi-He Cai
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Faye Chao
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsiang-Chi Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsueh-Yi Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | - Jang-Yi Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
10
|
Bestwick CS, Milne L, Dance AM, Cochennec G, Cruickshank G, Allain E, Constable L, Duthie SJ, Thoo Lin PK. Caspase-independence and characterization of bisnaphthalimidopropyl spermidine induced cytotoxicity in HL60 cells. Toxicol In Vitro 2018; 52:342-350. [PMID: 29966682 DOI: 10.1016/j.tiv.2018.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Bisnaphthalimides are DNA intercalators of potential use as chemotherapeutics but for which the range of mechanism of action is only gradually being elucidated. Using human promyelocytic HL-60 cells, we extend characterization of the cytotoxicity of bisnaphthalimidopropylspermidine (BNIPSpd) and examine the relationship with caspase-activity. Within 4 h exposure, BNIPSpd (1-10 μM) induced significant DNA strand breakage. Evidence of apoptosis was progressive through the experimental period. Within 6 h, BNIPSpd increased the proportion of cells exhibiting plasma membrane phosphatidylserine exposure. Within 12 h, active caspase expression increased and was sustained with 5 and 10 μM BNIPSpd. Flow cytometric analysis revealed caspase activity in cells with and without damaged membranes. By 24 h, 5 and 10 μM BNIPSpd increased hypodiploid DNA content and internucleosomal DNA fragmentation (DNA ladders) typical of the later stages of apoptosis. 1 μM BNIPSpd exposure also increased hypodiploid DNA content by 48 h. Polyamine levels decreased by 24 h BNIPSpd exposure. The pan-caspase inhibitor, z-VAD-fmk, significantly decreased DNA degradation (hypodiploid DNA and DNA ladders) and cytotoxicity. Despite this, cell growth and viability remained significantly impaired. We propose that BNIPSpd cytotoxicity arises through DNA damage and not polyamine depletion and that cytotoxicity is dominated by but not dependent upon caspase driven apoptosis.
Collapse
Affiliation(s)
- Charles S Bestwick
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Lesley Milne
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anne-Marie Dance
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gaela Cochennec
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gillian Cruickshank
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Eflamm Allain
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lynda Constable
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; The Robert Gordon University, School of Pharmacy and Life Sciences, Sir Ian Wood Building, Garthdee Road Aberdeen, AB10 1GJ, UK
| | - Susan J Duthie
- The Robert Gordon University, School of Pharmacy and Life Sciences, Sir Ian Wood Building, Garthdee Road Aberdeen, AB10 1GJ, UK
| | - Paul Kong Thoo Lin
- The Robert Gordon University, School of Pharmacy and Life Sciences, Sir Ian Wood Building, Garthdee Road Aberdeen, AB10 1GJ, UK
| |
Collapse
|