1
|
Liang Q, Liu X, Song XP, Li Y, Lin L, Verma KK, Liang GF, Li DM, Li YR, Lin S. Influence of stem and leaf phenotypes, physiological responses and cellular ultrastructure on defoliated sugarcane cultivars. Sci Rep 2024; 14:23633. [PMID: 39384837 PMCID: PMC11464838 DOI: 10.1038/s41598-024-74436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
Defoliation is a primary agronomic traits, its variation depends on different plant species or cultivars. The present article assess the leaf morphological responses, oxidative metabolites and enzymatic activities at sheath base of sugarcane cultivars during defoliation stage of plant leaves. The mature leaf sheath of GT47 strongly wrapped to the stem, and no stem was exposed. The upper and lower edges of the immature fusing abscission zone were parallel, and slightly lower browning area (+ 3 to + 7 leaf position). The ROC22 cultivar was monitored highest leaf sheath-based cellulose and lignin content, followed by GT60 and GT47. Peroxidase activity was higher in leaf sheath base edge (ROC22) as compare to other cultivars. The malondialdehyde content was found highest in GT60, followed by ROC22, and GT47. The exo-β-1,4-glucanase/ cellobiohydrolase activity was found highest in the margin of GT47 than lateral and medial axis of ROC22 and GT60. The axis activity increased exponentially, and ROC22 gradually decreased from the periphery of the mid-axis and lower than GT47 and GT60 in the lateral and mid-axis of leaf. In conclusion, the mature leaves are easy to defoliate mainly loose leaf sheaths, large leaf sheath inclination angles, more deformation during the growth period of the abscission zone, early with large cracks, and slow browning process. Leaf sheaths with high fibre and lignin content showed significant hardness and thickness. The sugarcane cultivars showed positive correlation between peroxidase and malondialdehyde content with the browning process at the base of mature leaf sheaths.
Collapse
Affiliation(s)
- Qiang Liang
- Sugarcane Research Institute, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Xiaoyan Liu
- Sugarcane Research Institute, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Xiu-Peng Song
- Sugarcane Research Institute, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Yijie Li
- Sugarcane Research Institute, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Li Lin
- Sugarcane Research Institute, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Krishan K Verma
- Sugarcane Research Institute, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Guang-Feng Liang
- Sugarcane Research Institute, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Dong-Mei Li
- Sugarcane Research Institute, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Yang-Rui Li
- Sugarcane Research Institute, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.
| | - Shanhai Lin
- Sugarcane Research Institute, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.
| |
Collapse
|