1
|
Stellingwerff T, Burke LM, Caldwell HG, Gathercole RJ, McNeil CJ, Napier C, Purcell SA, Boegman S, Johnson E, Hoar SD, Coates AM, Bennett EV, McKay AKA, Heikura IA, Joyner MJ, Burr JF. Integrative Field-Based Health and Performance Research: A Narrative Review on Experimental Methods and Logistics to Conduct Competition and Training Camp Studies in Athletes. Sports Med 2025:10.1007/s40279-025-02227-0. [PMID: 40257737 DOI: 10.1007/s40279-025-02227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 04/22/2025]
Abstract
Field-based sport research involves studies that collect data from athletes and/or teams during competition and/or their daily training environments. Over the last decade, sport-specific field-based research projects have significantly increased in number and complexity, partially owing to the further development of more portable measurement equipment (e.g., indirect calorimetry, desktop blood/gas analyzers, portable laboratories, etc.) and/or wearable or consumable technologies (e.g., smart watches, sensors, core temp pills, etc.). However, given these rapid advances and novelty, challenges remain in the validity and applicability of these devices. Unfortunately, there are no global ethical or best-practice standards for the use of portable devices and/or wearables in sport; however, this review will outline various opportunities and challenges. Many decision trade-offs are required when designing field-based research studies to balance gold-standard scientific rigor and strict research control with highly applied, but less-controlled, "real-world" conditions. To our knowledge, there are no narrative reviews that take a wholistic view of the logistical and methodological considerations of field-based research in athletes. Accordingly, this review takes a multi-disciplinary methodological approach (physiological, nutritional/energetic, biomechanical, musculoskeletal, cognitive, and psychosocial factors), along with the logistical considerations involved in project planning, research design, and ethics of field-based research with elite athletes and/or teams. We also provide practical guidance for characterizing the extreme demands of elite training and competition to support research that ultimately catalyzes improved understanding of the limits of human capacity. We hope this review can serve as a practical guide for researchers undertaking elite athlete field-based research.
Collapse
Affiliation(s)
- Trent Stellingwerff
- Canadian Sport Institute-Pacific, Victoria, British Columbia, Canada.
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, British Columbia, Canada.
- School of Kinesiology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Louise M Burke
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Hannah G Caldwell
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Robert J Gathercole
- Product Innovation Team, Lululemon Athletica, Vancouver, British Columbia, Canada
| | - Chris J McNeil
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Christopher Napier
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Sarah A Purcell
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
- Centre for Chronic Disease Prevention and Management, Southern Medical Program, Department of Medicine, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Susan Boegman
- Canadian Sport Institute-Pacific, Victoria, British Columbia, Canada
| | - Elizabeth Johnson
- Canadian Sport Institute-Pacific, Victoria, British Columbia, Canada
| | - Sharleen D Hoar
- Canadian Sport Institute-Pacific, Victoria, British Columbia, Canada
| | - Alexandra M Coates
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Erica V Bennett
- School of Kinesiology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Alannah K A McKay
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Ida A Heikura
- Canadian Sport Institute-Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jamie F Burr
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Poitras I, Clouâtre J, Campeau-Lecours A, Mercier C. Exploring the Link Between Motor Functions and the Relative Use of the More Affected Arm in Adults with Cerebral Palsy. SENSORS (BASEL, SWITZERLAND) 2025; 25:660. [PMID: 39943298 PMCID: PMC11819957 DOI: 10.3390/s25030660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Individuals with hemiparetic cerebral palsy (CP) exhibit reduced use of their more affected (MA) arm, yet the factors that influence its use during activities of daily living remain elusive. The objectives of this study were to describe the relative use of the MA arm during an ecological task, examine its relationship with the level of impairment, and investigate its association with performance in various unilateral and bilateral tasks. METHODS Participants took part in two sessions comprising robotic assessments and clinical assessments of motor functions, as well as accelerometry measurement during kitchen tasks. Four variables were derived from accelerometry data. Stepwise regression analyses were used to identify the best contributors to the accelerometry variables among robotic and clinical assessments. RESULTS Nineteen adults with CP (34.3 years old ± 11.5; MACS I = 7, II = 6, III = 6) were included. The Use Ratio measured during the kitchen tasks ranged between 0.10 and 0.63. The best predictors of all accelerometry metrics were two bilateral assessments (r2 = 0.23-0.64). CONCLUSIONS The importance of assessing bilateral tasks was reaffirmed by the key role played by two bilateral tasks in determining the relative use of the MA arm. The results support the use of intensity-based accelerometry metrics to measure MA arm use.
Collapse
Affiliation(s)
- Isabelle Poitras
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada; (I.P.); (J.C.); (A.C.-L.)
- School of Rehabilitation Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Jade Clouâtre
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada; (I.P.); (J.C.); (A.C.-L.)
- Department of Mechanical Engineering, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Alexandre Campeau-Lecours
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada; (I.P.); (J.C.); (A.C.-L.)
- Department of Mechanical Engineering, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Catherine Mercier
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada; (I.P.); (J.C.); (A.C.-L.)
- School of Rehabilitation Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Poitras I, Dukelow SP, Campeau-Lecours A, Mercier C. Robotic assessment of bilateral and unilateral upper limb functions in adults with cerebral palsy. J Neuroeng Rehabil 2024; 21:144. [PMID: 39169408 PMCID: PMC11340066 DOI: 10.1186/s12984-024-01415-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/04/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Children with unilateral cerebral palsy (CP) exhibit motor impairments predominantly on one side of the body, while also having ipsilesional and bilateral impairments. These impairments are known to persist through adulthood, but their extent have not been described in adults with CP. This study's aim is to characterize bilateral and unilateral upper limbs impairments in adults with CP. METHODS Nineteen adults with CP (34.3 years old ± 11.5) performed three robotic assessments in the Kinarm Exoskeleton Lab, including two bilateral tasks (Object Hit [asymmetric independent goals task] and Ball on Bar [symmetric common goal task]) and one unilateral task (Visually Guided Reaching, performed with the more affected arm [MA] and less affected arm [LA]). Individual results were compared to sex, age and handedness matched normative data, describing the proportion of participants exhibiting impairments in each task-specific variable (e.g., Hand speed), each performance category (e.g., Feedforward control) and in global task performance. Associations were assessed using Spearman correlation coefficients between: 1: the results of the MA and LA of each limb in the unilateral task; and 2: the results of each limb in the unilateral vs. the bilateral tasks. RESULTS The majority of participants exhibited impairments in bilateral tasks (84%). The bilateral performance categories (i.e., Bimanual) identifying bilateral coordination impairments were impaired in the majority of participants (Object Hit: 57.8%; Ball on Bar: 31.6%). Most of the participants were impaired when performing a unilateral task with their MA arm (63%) and a smaller proportion with their LA arm (31%). The Feedforward control was the unilateral performance category showing the highest proportion of impaired participants while displaying the strongest relationship between the MA and LA arms impairments (rs = 0.93). Feedback control was the unilateral performance category most often associated with impairments in bilateral tasks (6 out of 8 performance categories). CONCLUSIONS Adults with CP experienced more impairment in bilateral tasks while still having substantial impairments in unilateral tasks. They frequently display Feedforward control impairments combined with a higher reliance on Feedback control during both bilateral and unilateral tasks, leading to poorer motor performance.
Collapse
Affiliation(s)
- I Poitras
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Quebec, Canada
- School of Rehabilitation Sciences, Laval University, Quebec City, Quebec, Canada
| | - S P Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - A Campeau-Lecours
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Quebec, Canada
- Department of Mechanical Engineering, Laval University, Quebec City, Quebec, Canada
| | - C Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Quebec, Canada.
- School of Rehabilitation Sciences, Laval University, Quebec City, Quebec, Canada.
| |
Collapse
|
4
|
Poitras I, Campeau-Lecours A, Mercier C. Relationship between somatosensory and visuo-perceptual impairments and motor functions in adults with hemiparetic cerebral palsy. Front Neurol 2024; 15:1425124. [PMID: 39087017 PMCID: PMC11290339 DOI: 10.3389/fneur.2024.1425124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Children with cerebral palsy (CP) exhibit a variety of sensory impairments that can interfere with motor performance, but how these impairments persist into adulthood needs further investigation. The objective of this study was to describe the sensory impairments in adults having CP and how they relate to motor impairments. Methods Nineteen adults having CP performed a set of robotic and clinical assessments. These assessments were targeting different sensory functions and motor functions (bilateral and unilateral tasks). Frequency of each type of impairments was determined by comparing individual results to normative data. Association between the sensory and motor impairments was assessed with Spearman correlation coefficient. Results Impairment in stereognosis was the most frequent, affecting 57.9% of participants. Although less frequently impaired (26.3%), tactile discrimination was associated with all the motor tasks (unilateral and bilateral, either robotic or clinical). Performance in robotic motor assessments was more frequently associated with sensory impairments than with clinical assessments. Finally, sensory impairments were not more closely associated with bilateral tasks than with unilateral tasks. Discussion Somatosensory and visuo-perceptual impairments are frequent among adults with CP, with 84.2% showing impairments in at least one sensory function. These sensory impairments show a moderate association with motor impairments.
Collapse
Affiliation(s)
- Isabelle Poitras
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS de la Capitale-Nationale, Quebec City, QC, Canada
- School of Rehabilitation Sciences, Laval University, Quebec City, QC, Canada
| | - Alexandre Campeau-Lecours
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS de la Capitale-Nationale, Quebec City, QC, Canada
- Department of Mechanical Engineering, Laval University, Quebec City, QC, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS de la Capitale-Nationale, Quebec City, QC, Canada
- Department of Mechanical Engineering, Laval University, Quebec City, QC, Canada
| |
Collapse
|
5
|
Tamilselvam YK, Jog MS, Patel RV. Robotics-Based Characterization of Sensorimotor Integration in Parkinson's Disease and the Effect of Medication. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3201-3211. [PMID: 37506007 DOI: 10.1109/tnsre.2023.3299884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Integration of multi-modal sensory inputs and modulation of motor outputs based on perceptual estimates is called Sensorimotor Integration (SMI). Optimal functioning of SMI is essential for perceiving the environment, modulating the motor outputs, and learning or modifying motor skills to suit the demands of the environment. Growing evidence suggests that patients diagnosed with Parkinson's Disease (PD) may suffer from an impairment in SMI that contributes to perceptual deficits, leading to motor abnormalities. However, the exact nature of the SMI impairment is still unclear. This study uses a robot-assisted assessment tool to quantitatively characterize SMI impairments in PD patients and how they affect voluntary movements. A set of assessment tasks was developed using a robotic manipulandum equipped with a virtual-reality system. The sensory conditions of the virtual environment were varied to facilitate the assessment of SMI. A hundred PD patients (before and after medication) and forty-three control subjects completed the tasks under varying sensory conditions. The kinematic measures obtained from the robotic device were used to evaluate SMI. The findings reveal that across all sensory conditions, PD patients had 36% higher endpoint error, 38% higher direction error in reaching tasks, and 43% higher number of violations in tracing tasks than control subjects due to impairment in integrating sensory inputs. However, they still retained motor learning ability and the ability to modulate motor outputs. The medication worsened the SMI deficits as PD patients, after medication, performed worse than before medication when encountering dynamic sensory environments and exhibited impaired motor learning ability.
Collapse
|
6
|
Tamilselvam YK, Jog M, Patel RV. Robot-assisted investigation of sensorimotor control in Parkinson's disease. Sci Rep 2023; 13:4751. [PMID: 36959273 PMCID: PMC10036530 DOI: 10.1038/s41598-023-31299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
Sensorimotor control (SMC) is a complex function that involves sensory, cognitive, and motor systems working together to plan, update and execute voluntary movements. Any abnormality in these systems could lead to deficits in SMC, which would negatively impact an individual's ability to execute goal-directed motions. Recent studies have shown that patients diagnosed with Parkinson's disease (PD) have dysfunctions in sensory, motor, and cognitive systems, which could give rise to SMC deficits. However, SMC deficits in PD and how they affect a patient's upper-limb movements have not been well understood. The objective of the study was to investigate SMC deficits in PD and how they affect the planning and correction of upper-limb motions. This was accomplished using a robotic manipulandum equipped with a virtual-reality system. Twenty age-matched healthy controls and fifty-six PD patients (before and after medication) completed an obstacle avoidance task under dynamic conditions (target and obstacles in moving or stationary form, with and without mechanical perturbations). Kinematic information from the robot was used to extract eighteen features that evaluated the SMC functions of the participants. The findings show that the PD patients before medication were 32% slower, reached 16% fewer targets, hit 41% more obstacles, and were 26% less efficient than the control participants, and the difference in these features was statistically significant under dynamic conditions. In addition to the motor deficits, the PD patients also showed deficits in handling high cognitive loads and interpreting sensory cues. Further, the PD patients after medication exhibited worse sensory and cognitive performance than before medication under complex testing conditions. The PD patients also showed deficits in following the computational models leading to poor motor planning.
Collapse
Affiliation(s)
- Yokhesh K Tamilselvam
- Canadian Surgical Technologies and Advanced Robotics (CSTAR), University of Western Ontario (UWO), London, ON, N6A 5B9, Canada.
- Department of Electrical and Computer Engineering, University of Western Ontario (UWO), London, ON, N6A 5B9, Canada.
| | - Mandar Jog
- Department of Electrical and Computer Engineering, University of Western Ontario (UWO), London, ON, N6A 5B9, Canada
- Department of Clinical Neurological Sciences, UWO, and the London Movement Disorders Centre, London, ON, Canada
| | - Rajni V Patel
- Canadian Surgical Technologies and Advanced Robotics (CSTAR), University of Western Ontario (UWO), London, ON, N6A 5B9, Canada
- Department of Electrical and Computer Engineering, University of Western Ontario (UWO), London, ON, N6A 5B9, Canada
- Department of Clinical Neurological Sciences, UWO, London, ON, Canada
- Department of Surgery, UWO, London, ON, Canada
| |
Collapse
|
7
|
Moulton RH, Rudie K, Dukelow SP, Benson BW, Scott SH. Capacity Limits Lead to Information Bottlenecks in Ongoing Rapid Motor Behaviors. eNeuro 2023; 10:ENEURO.0289-22.2023. [PMID: 36858823 PMCID: PMC10012325 DOI: 10.1523/eneuro.0289-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
Studies of ongoing, rapid motor behaviors have often focused on the decision-making implicit in the task. Here, we instead study how decision-making integrates with the perceptual and motor systems and propose a framework of limited-capacity, pipelined processing with flexible resources to understand rapid motor behaviors. Results from three experiments show that human performance is consistent with our framework: participants perform objectively worse as task difficulty increases, and, surprisingly, this drop in performance is largest for the most skilled performers. As well, our analysis shows that the worst-performing participants can perform equally well under increased task demands, which is consistent with flexible neural resources being allocated to reduce bottleneck effects and improve overall performance. We conclude that capacity limits lead to information bottlenecks and that processes like attention help reduce the effects that these bottlenecks have on maximal performance.
Collapse
Affiliation(s)
- Richard Hugh Moulton
- Department of Electrical and Computer Engineering, Queen's University, Kingston, Ontario, ON K7L 3N6, Canada
| | - Karen Rudie
- Department of Electrical and Computer Engineering, Queen's University, Kingston, Ontario, ON K7L 3N6, Canada
- School of Computing, Queen's University, Kingston, Ontario, ON K7L 2N8, Canada
- Ingenuity Labs Research Institute, Queen's University, Kingston, Ontario, ON K7L 3N6, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, AB T2N 1N4, Canada
| | - Brian W Benson
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, AB T2N 1N4, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, AB T2N 1N4, Canada
- Benson Concussion Institute, Calgary, Alberta, AB T3B 6B7, Canada
- Canadian Sport Institute Calgary, Calgary, Alberta, AB T3B 5R5, Canada
| | - Stephen H Scott
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, ON K7L 3N6, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, ON K7L 3N6, Canada
| |
Collapse
|
8
|
Ferris J, Greeley B, Yeganeh NM, Rinat S, Ramirez J, Black S, Boyd L. Exploring biomarkers of processing speed and executive function: The role of the anterior thalamic radiations. Neuroimage Clin 2022; 36:103174. [PMID: 36067614 PMCID: PMC9460835 DOI: 10.1016/j.nicl.2022.103174] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/08/2022] [Accepted: 08/27/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Processing speed and executive function are often impaired after stroke and in typical aging. However, there are no reliable neurological markers of these cognitive impairments. The trail making test (TMT) is a common index of processing speed and executive function. Here, we tested candidate MRI markers of TMT performance in a cohort of older adults and individuals with chronic stroke. METHODS In 61 older adults and 32 individuals with chronic stroke, we indexed white matter structure with region-specific lesion load (of white matter hyperintensities (WMHs) and stroke lesions) and diffusion tensor imaging (DTI) from four regions related to TMT performance: the anterior thalamic radiations (ATR), superior longitudinal fasciculus (SLF), forceps minor, and cholinergic pathways. Regression modelling was used to identify the marker(s) that explained the most variance in TMT performance. RESULTS DTI metrics of the ATR related to processing speed in both the older adult (TMT A: β = -3.431, p < 0.001) and chronic stroke (TMT A: β = 11.282, p < 0.001) groups. In the chronic stroke group executive function was best predicted by a combination of ATR and forceps minor DTI metrics (TMT B: adjustedR2 = 0.438, p < 0.001); no significant predictors of executive function (TMT B) emerged in the older adult group. No imaging metrics related to set shifting (TMT B-A). Regional DTI metrics predicted TMT performance above and beyond whole-brain stroke and WMH volumes and removing whole-brain lesion volumes improved model fits. CONCLUSIONS In this comprehensive assessment of candidate imaging markers, we demonstrate an association between ATR microstructure and processing speed and executive function performance. Regional DTI metrics provided better predictors of cognitive performance than whole-brain lesion volumes or regional lesion load, emphasizing the importance of lesion location in understanding cognition. We propose ATR DTI metrics as novel candidate imaging biomarker of post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Jennifer Ferris
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada,Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada
| | - Brian Greeley
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
| | - Negin Motamed Yeganeh
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Shie Rinat
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada,Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada
| | - Joel Ramirez
- LC Campbell Cognitive Neurology Research Unit, Dr Sandra Black Centre for Brain Resilience and Recovery, Toronto, Canada,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Sandra Black
- LC Campbell Cognitive Neurology Research Unit, Dr Sandra Black Centre for Brain Resilience and Recovery, Toronto, Canada,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Lara Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada,Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada,Corresponding author at: University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada.
| |
Collapse
|
9
|
Magnuson JR, Kang HJ, Dalton BH, McNeil CJ. Neural effects of sleep deprivation on inhibitory control and emotion processing. Behav Brain Res 2022; 426:113845. [PMID: 35304184 DOI: 10.1016/j.bbr.2022.113845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/21/2022] [Accepted: 03/12/2022] [Indexed: 12/26/2022]
Abstract
Sleep deprivation is commonplace and impairs memory, inhibition, cognitive flexibility and attention. However, little is known about the neurophysiological impact of sleep deprivation in the context of go/no-go (GNG) task performance and emotion processing. To address this knowledge gap, 12 females performed two computerized GNG tasks (shapes; emotional facial expressions) and an object hit and avoid (OHA) task after a night of typical sleep and 24hours without sleep. Electroencephalographic (EEG) recordings were taken during a 3-minute eyes-open resting period as well as during GNG task performance. Resting EEG power in the theta band was 33% higher for the sleep-deprived than control condition (p < 0.05), whereas alpha activity was unchanged. When sleep deprived, participants had ~6% slower response times (go trials) and made ~7% more total errors during GNG tasks (p < 0.05). Reaction time and overall accuracy were ~25% and ~9% worse for the emotional compared to shape GNG task (p < 0.05), respectively, which suggests interference of emotion processing on task performance. Smaller differences in amplitude between go and no-go trials for the N2 and both the N2 and P3 event-related potential components were found during sleep deprivation for the emotional and shape GNG tasks, respectively (p < 0.05). No changes to the N170 component were found. Lastly, participants hit more distractors during the OHA when sleep deprived (p < 0.05). Altogether, these results indicate sleep deprivation slows neural processing and impairs inhibitory task performance, possibly due to a more bottom-up, stimulus-driven approach to inhibiting motor responses.
Collapse
Affiliation(s)
- Justine R Magnuson
- School of Health and Exercise Sciences and Centre for Heart, Lung and Vascular Health, The University of British Columbia, Kelowna, BC, Canada
| | - Hogun J Kang
- School of Health and Exercise Sciences and Centre for Heart, Lung and Vascular Health, The University of British Columbia, Kelowna, BC, Canada
| | - Brian H Dalton
- School of Health and Exercise Sciences and Centre for Heart, Lung and Vascular Health, The University of British Columbia, Kelowna, BC, Canada
| | - Chris J McNeil
- School of Health and Exercise Sciences and Centre for Heart, Lung and Vascular Health, The University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
10
|
Muffel T, Shih PC, Kalloch B, Nikulin V, Villringer A, Sehm B. Differential effects of anodal and dual tDCS on sensorimotor functions in chronic hemiparetic stroke patients. Brain Stimul 2022; 15:509-522. [DOI: 10.1016/j.brs.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
|
11
|
Maldonado-Rodriguez N, Crocker CV, Taylor E, Jones KE, Rothlander K, Smirl J, Wallace C, van Donkelaar P. Characterization of Cognitive-Motor Function in Women Who Have Experienced Intimate Partner Violence-Related Brain Injury. J Neurotrauma 2021; 38:2723-2730. [PMID: 34036801 DOI: 10.1089/neu.2021.0042] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intimate partner violence (IPV) affects at least one in three women worldwide, and up to 92% report symptoms consistent with brain injury (BI). Although a handful of studies have examined different aspects of brain structure and function in this population, none has characterized potential deficits in cognitive-motor function. This knowledge gap was addressed in the current study by having participants who had experienced IPV complete the bimanual Object Hit & Avoid (OHA) task in a Kinesiological Instrument for Normal and Altered Reaching Movement (KINARM) End-Point Laboratory. BI load, post-traumatic stress disorder (PTSD), anxiety, depression, substance use, and history of abuse were also assessed. A stepwise multiple regression was undertaken to explore the relationship between BI load and task performance while accounting for comorbid psychopathologies. Results demonstrated that BI load accounted for a significant amount of variability in the number of targets hit and the average hand speed. PTSD, anxiety, and depression also contributed significantly to the variability in these measures as well as to the number and proportion of distractor hits, and the object processing rate. Taken together, these findings suggest that IPV-related BI, as well as comorbid PTSD, anxiety, and depression, disrupt the processing required to quickly and accurately hit targets while avoiding distractors. This pattern of results reflects the complex interaction between the physical injuries induced by the episodes of IPV and the resulting impacts that these experiences have on mental health.
Collapse
Affiliation(s)
- Naomi Maldonado-Rodriguez
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Clara Val Crocker
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Edward Taylor
- School of Social Work, University of British Columbia, Kelowna, British Columbia, Canada
| | - K Elisabeth Jones
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Krystal Rothlander
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jon Smirl
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Colin Wallace
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Paul van Donkelaar
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
12
|
Watral AT, Trewartha KM. Measuring age differences in executive control using rapid motor decisions in a robotic object hit and avoid task. Psychol Aging 2021; 36:917-927. [PMID: 34498893 DOI: 10.1037/pag0000641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Age-related declines in executive control are commonly assessed with neuropsychological tests that also rely on sensory and motor processes that are not typically measured in those tasks. It is therefore difficult to isolate the cognitive contributions from sensorimotor contributions to performance impairments. Rapid motor decision-making tasks may also be sensitive to age differences in executive control but allow for the measurement of sensorimotor contributors to task performance. Recently developed object hit (OH) and object hit and avoid (OHA) tasks using a robotic manipulandum are sensitive to motor and cognitive aspects of performance in stroke and Parkinson's disease. However, the impact of healthy aging, and the specific cognitive mechanisms involved in these tasks has not been assessed. We administered the OH and OHA tasks to 77 younger and 59 healthy older adults to evaluate the relative age differences in the perceptual-motor/sensory, movement coordination, and cognitive measures of performance. The Trail Making Test (TMT) Parts A and B were administered to assess the extent to which the cognitive contributors to OHA task performance are associated with executive functioning. After controlling for hand movement speed, age differences were largest for cognitive measures, with smaller differences in perceptual-motor speed and sensory measures, and little differences in bimanual and spatial coordination measures of performance. The cognitive measures were associated with executive functioning measures from the TMT task. These findings provide evidence that rapid motor decision-making tasks are sensitive to age differences in executive control and can isolate the cognitive from the sensorimotor contributions to task performance. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
13
|
Zbytniewska M, Kanzler CM, Jordan L, Salzmann C, Liepert J, Lambercy O, Gassert R. Reliable and valid robot-assisted assessments of hand proprioceptive, motor and sensorimotor impairments after stroke. J Neuroeng Rehabil 2021; 18:115. [PMID: 34271954 PMCID: PMC8283922 DOI: 10.1186/s12984-021-00904-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
Background Neurological injuries such as stroke often differentially impair hand motor and somatosensory function, as well as the interplay between the two, which leads to limitations in performing activities of daily living. However, it is challenging to identify which specific aspects of sensorimotor function are impaired based on conventional clinical assessments that are often insensitive and subjective. In this work we propose and validate a set of robot-assisted assessments aiming at disentangling hand proprioceptive from motor impairments, and capturing their interrelation (sensorimotor impairments). Methods A battery of five complementary assessment tasks was implemented on a one degree-of-freedom end-effector robotic platform acting on the index finger metacarpophalangeal joint. Specifically, proprioceptive impairments were assessed using a position matching paradigm. Fast target reaching, range of motion and maximum fingertip force tasks characterized motor function deficits. Finally, sensorimotor impairments were assessed using a dexterous trajectory following task. Clinical feasibility (duration), reliability (intra-class correlation coefficient ICC, smallest real difference SRD) and validity (Kruskal-Wallis test, Spearman correlations \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho$$\end{document}ρ with Fugl-Meyer Upper Limb Motor Assessment, kinesthetic Up-Down Test, Box & Block Test) of robotic tasks were evaluated with 36 sub-acute stroke subjects and 31 age-matched neurologically intact controls. Results Eighty-three percent of stroke survivors with varied impairment severity (mild to severe) could complete all robotic tasks (duration: <15 min per tested hand). Further, the study demonstrated good to excellent reliability of the robotic tasks in the stroke population (ICC>0.7, SRD<30%), as well as discriminant validity, as indicated by significant differences (p-value<0.001) between stroke and control subjects. Concurrent validity was shown through moderate to strong correlations (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho$$\end{document}ρ=0.4-0.8) between robotic outcome measures and clinical scales. Finally, robotic tasks targeting different deficits (motor, sensory) were not strongly correlated with each other (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho \le$$\end{document}ρ≤0.32, p-value>0.1), thereby presenting complementary information about a patient’s impairment profile. Conclusions The proposed robot-assisted assessments provide a clinically feasible, reliable, and valid approach to distinctly characterize impairments in hand proprioceptive and motor function, along with the interaction between the two. This opens new avenues to help unravel the contributions of unique aspects of sensorimotor function in post-stroke recovery, as well as to contribute to future developments towards personalized, assessment-driven therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00904-5.
Collapse
Affiliation(s)
- Monika Zbytniewska
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Christoph M Kanzler
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| | - Lisa Jordan
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Christian Salzmann
- Kliniken Schmieder Allensbach, Zum Tafelholz 8, 78476, Allensbach, Germany
| | - Joachim Liepert
- Kliniken Schmieder Allensbach, Zum Tafelholz 8, 78476, Allensbach, Germany
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|
14
|
Vanderlinden JA, Semrau JS, Silver SA, Holden RM, Scott SH, Boyd JG. Acute kidney injury is associated with subtle but quantifiable neurocognitive impairments. Nephrol Dial Transplant 2021; 37:285-297. [PMID: 33881540 DOI: 10.1093/ndt/gfab161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is associated with long-term morbidity and mortality. The effects of AKI on neurocognitive functioning remain unknown. Our objective was to quantify neurocognitive impairment after an episode of AKI. METHODS Survivors of AKI were compared to age-matched controls, as well as a convenience sample of patients matched for cardiovascular risk factors with normal kidney function (active control group). Patients with AKI completed two assessments, while the active control group completed one assessment. The assessment included a standardized test: The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), and a robotic assessment: Kinarm. RESULTS The cohort consisted of 21 patients with AKI, 16 of whom completed both assessments, and 21 active control patients. The majority of patients with AKI had Kidney Disease Improving Global Outcomes stage 3 AKI (86%), 57% received dialysis, and 43% recovered to ≤ 25% of their baseline serum creatinine by their first assessment. Compared to the RBANS, which detected little impairment, the Kinarm categorized patients as impaired in visuomotor (10/21, 48%), attention (10/20, 50%), and executive tasks (11/21, 52%) compared to healthy controls. Additionally, patients with AKI performed significantly worse in attention and visuomotor domains when compared to the active controls. Neurocognitive performance was generally not impacted by the need for dialysis or whether kidney function recovered. CONCLUSION Robotic technology identified quantifiable neurocognitive impairment in survivors of AKI. Deficits were noted particularly in attention, visuomotor, and executive domains. Further investigation into the downstream health consequences of these neurocognitive impairments is warranted.
Collapse
Affiliation(s)
| | - Joanna S Semrau
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Samuel A Silver
- Division of Nephrology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Rachel M Holden
- Division of Nephrology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Division of Neurology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - J Gordon Boyd
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Division of Neurology, Department of Medicine, Queen's University, Kingston, ON, Canada.,Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
15
|
Mang CS, Whitten TA, Cosh MS, Dukelow SP, Benson BW. Assessment of Postural Stability During an Upper Extremity Rapid, Bimanual Motor Task After Sport-Related Concussion. J Athl Train 2020; 55:1160-1173. [PMID: 33064821 DOI: 10.4085/1062-6050-378-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Sport-related concussion (SRC) often presents with multidimensional and subtle neurologic deficits that are difficult to detect with standard clinical tests. New assessment approaches that efficiently quantify deficits across multiple neurologic domains are needed. OBJECTIVE To quantify impairments in postural movements during an assessment of rapid, bimanual motor ability in athletes within 10 days of experiencing an SRC and evaluate relationships between impairments in upper extremity and postural performance. DESIGN Cohort study. SETTING Sports medicine clinic. PATIENTS OR OTHER PARTICIPANTS Initial baseline assessments were completed for 711 athletes. Seventy-five athletes (age = 15.8 ± 3.3 years at baseline) sustained SRCs and were reassessed within 10 days. Seventy-eight athletes (age = 15.5 ± 2.0 years) completed 2 assessments in a healthy state. MAIN OUTCOME MEASURE(S) Athletes stood on force plates and performed a rapid, bimanual motor task, termed the object-hit task, delivered using a Kinesiological Instrument for Normal and Altered Reaching Movements endpoint robot. Measures of postural stability that quantified center-of-pressure movements and measures of upper extremity performance were used to characterize task performance. RESULTS Performance changes across assessments were converted to reliable change indices. We observed a difference in reliable change indices values between athletes with SRC and healthy control athletes on the combined postural measures (P = .01). Using measures to evaluate the change in postural movements from the early, easier portion of the task to the later, more difficult portion, we identified the highest levels of impairment (19%-25% of the sample impaired). We also noted a difference between individuals with concussion and healthy individuals on the combined upper extremity measures (P = .003), but these impairments were largely unrelated to those identified in the postural movements. CONCLUSIONS Measurement of postural movements during the object-hit task revealed impairments in postural stability that were not related to impairments in upper extremity performance. The findings demonstrated the benefits of using assessments that simultaneously evaluate multiple domains of neurologic function (eg, upper extremity and postural control) after SRC.
Collapse
Affiliation(s)
- Cameron S Mang
- Faculty of Kinesiology and Health Studies, University of Regina, SK, Canada
| | - Tara A Whitten
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Madeline S Cosh
- Benson Concussion Institute, Group23 Sports Medicine Clinic, Calgary, AB, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Brian W Benson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, AB, Canada
| |
Collapse
|
16
|
Simmatis LER, Early S, Moore KD, Appaqaq S, Scott SH. Statistical measures of motor, sensory and cognitive performance across repeated robot-based testing. J Neuroeng Rehabil 2020; 17:86. [PMID: 32615979 PMCID: PMC7331240 DOI: 10.1186/s12984-020-00713-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Traditional clinical assessments are used extensively in neurology; however, they can be coarse, which can also make them insensitive to change. Kinarm is a robotic assessment system that has been used for precise assessment of individuals with neurological impairments. However, this precision also leads to the challenge of identifying whether a given change in performance reflects a significant change in an individual's ability or is simply natural variation. Our objective here is to derive confidence intervals and thresholds of significant change for Kinarm Standard Tests™ (KST). METHODS We assessed participants twice within 15 days on all tasks presently available in KST. We determined the 5-95% confidence intervals for each task parameter, and derived thresholds for significant change. We tested for learning effects and corrected for the false discovery rate (FDR) to identify task parameters with significant learning effects. Finally, we calculated intraclass correlation of type ICC [1, 2] (ICC-C) to quantify consistency across assessments. RESULTS We recruited an average of 56 participants per task. Confidence intervals for Z-Task Scores ranged between 0.61 and 1.55, and the threshold for significant change ranged between 0.87 and 2.19. We determined that 4/11 tasks displayed learning effects that were significant after FDR correction; these 4 tasks primarily tested cognition or cognitive-motor integration. ICC-C values for Z-Task Scores ranged from 0.26 to 0.76. CONCLUSIONS The present results provide statistical bounds on individual performance for KST as well as significant changes across repeated testing. Most measures of performance had good inter-rater reliability. Tasks with a higher cognitive burden seemed to be more susceptible to learning effects, which should be taken into account when interpreting longitudinal assessments of these tasks.
Collapse
Affiliation(s)
- Leif E. R. Simmatis
- grid.410356.50000 0004 1936 8331Centre for Neuroscience Studies, Queen’s University, Kingston, ON Canada
| | - Spencer Early
- grid.410356.50000 0004 1936 8331Centre for Neuroscience Studies, Queen’s University, Kingston, ON Canada
| | - Kimberly D. Moore
- grid.410356.50000 0004 1936 8331Centre for Neuroscience Studies, Queen’s University, Kingston, ON Canada
| | - Simone Appaqaq
- grid.410356.50000 0004 1936 8331Centre for Neuroscience Studies, Queen’s University, Kingston, ON Canada
| | - Stephen H. Scott
- grid.410356.50000 0004 1936 8331Centre for Neuroscience Studies, Queen’s University, Kingston, ON Canada ,grid.410356.50000 0004 1936 8331Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada ,grid.410356.50000 0004 1936 8331Department of Medicine, Queen’s University, Kingston, ON Canada
| |
Collapse
|
17
|
Simmatis LER, Jin AY, Keiski M, Lomax LB, Scott SH, Winston GP. Assessing various sensorimotor and cognitive functions in people with epilepsy is feasible with robotics. Epilepsy Behav 2020; 103:106859. [PMID: 31918991 DOI: 10.1016/j.yebeh.2019.106859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Epilepsy is a common neurological disorder characterized by recurrent seizures, along with comorbid cognitive and psychosocial impairment. Current gold standards of assessment can quantify cognitive and motor performance, but may not capture all subtleties of behavior. Here, we study the feasibility of assessing various upper limb sensorimotor and cognition functions in people with epilepsy using the Kinarm robotic assessment system. We quantify performance across multiple behavioral domains and additionally consider the possible effects of epilepsy subtype and medication. METHODS We recruited individuals with a variety of epilepsy subtypes. Participants performed 8 behavioral tasks that tested motor, cognitive, and sensory domains. We collected data on the same tasks from a group of control participants that had no known neurological impairments. We quantified performance using Task Scores, which provide a composite measure of overall performance on a given task and are adjusted for age, sex, and handedness. RESULTS We collected data from 46 individuals with epilepsy and 92 control participants. The assessment was well-tolerated, with no adverse events recorded. Cognitive tasks testing spatial working memory, executive function, and motor response inhibition were the most frequently impaired in the epilepsy cohort, with 33/46 (72%) being outside the normal range on at least one of these tasks. Additionally, 29/46 (63%) were impaired on at least one task testing primarily motor skill, and 14/46 (30%) were impaired on a proprioceptive sensory task. People with either focal epilepsy or generalized epilepsy performed significantly worse on both motor and cognitive tasks than control participants after correcting for multiple comparisons. There were no statistical differences between generalized and focal epilepsy groups on Task Scores. Finally, individuals taking topiramate trended toward having worse performance on a spatial working memory task than other individuals with epilepsy who were not taking topiramate. CONCLUSIONS Kinarm robotic assessment is feasible in individuals with epilepsy and is well-tolerated. Our robotic paradigm can detect impairments in various sensorimotor and cognitive functions across the population with epilepsy. Future studies will explore the role of epilepsy subtype and medications.
Collapse
Affiliation(s)
- Leif E R Simmatis
- Centre for Neuroscience Studies, Botterell Hall, 18 Stuart Street, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Albert Y Jin
- Centre for Neuroscience Studies, Botterell Hall, 18 Stuart Street, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Medicine, Division of Neurology, Etherington Hall, 94 Stuart Street, Queen's University, Kingston, ON K7L 3N6, Canada; Kingston Health Sciences Centre, 76 Stuart St, Kingston, ON K7L 2V7, Canada
| | - Michelle Keiski
- Department of Medicine, Division of Neurology, Etherington Hall, 94 Stuart Street, Queen's University, Kingston, ON K7L 3N6, Canada; Kingston Health Sciences Centre, 76 Stuart St, Kingston, ON K7L 2V7, Canada
| | - Lysa B Lomax
- Centre for Neuroscience Studies, Botterell Hall, 18 Stuart Street, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Medicine, Division of Neurology, Etherington Hall, 94 Stuart Street, Queen's University, Kingston, ON K7L 3N6, Canada; Kingston Health Sciences Centre, 76 Stuart St, Kingston, ON K7L 2V7, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Botterell Hall, 18 Stuart Street, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Biomedical and Molecular Sciences, Botterell Hall, 18 Stuart Street, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Gavin P Winston
- Centre for Neuroscience Studies, Botterell Hall, 18 Stuart Street, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Medicine, Division of Neurology, Etherington Hall, 94 Stuart Street, Queen's University, Kingston, ON K7L 3N6, Canada; Kingston Health Sciences Centre, 76 Stuart St, Kingston, ON K7L 2V7, Canada.
| |
Collapse
|
18
|
Hawe RL, Findlater SE, Kenzie JM, Hill MD, Scott SH, Dukelow SP. Differential Impact of Acute Lesions Versus White Matter Hyperintensities on Stroke Recovery. J Am Heart Assoc 2019; 7:e009360. [PMID: 30371192 PMCID: PMC6222954 DOI: 10.1161/jaha.118.009360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Understanding how the size of acute lesions and white matter hyperintensities (WMH) impact stroke recovery can improve our ability to predict outcomes and tailor treatments. The aim of this exploratory study was to investigate the role of acute lesion volume and WMH volume on longitudinal recovery of specific sensory, motor, and cognitive impairments after stroke using robotic and clinical measures. Methods and Results Eighty‐two individuals were assessed at 1, 6, 12, and 26 weeks poststroke with robotic tasks and commonly used clinical measures. The volumes of acute lesions and WMH were measured on fluid‐attenuated inversion recovery images. Linear mixed models were used to investigate the role of acute lesions and WMH on parameters derived from the robotic tasks and clinical measures. Regression analysis determined the added value of acute lesion and WMH volumes along with measures of initial performance to predict outcomes at 6 months. Acute lesion volume has widespread effects on sensory, motor, and overall functional recovery poststroke. The impact of WMH was specific to cognitive impairments. Apart from the robotic position sense task, neither lesion volume nor WMH measure had significant ability to predict outcomes at 6 months over using initial impairment as measured by robotic assessments alone. Conclusions While acute lesion volume and WMH may impact different impairments poststroke, their clinical utility in predicting outcomes at 6 months poststroke is limited.
Collapse
Affiliation(s)
- Rachel L Hawe
- 1 Department of Clinical Neurosciences Hotchkiss Brain Institute University of Calgary Alberta Canada
| | - Sonja E Findlater
- 1 Department of Clinical Neurosciences Hotchkiss Brain Institute University of Calgary Alberta Canada
| | - Jeffrey M Kenzie
- 1 Department of Clinical Neurosciences Hotchkiss Brain Institute University of Calgary Alberta Canada
| | - Michael D Hill
- 1 Department of Clinical Neurosciences Hotchkiss Brain Institute University of Calgary Alberta Canada
| | - Stephen H Scott
- 2 Department of Biomedical and Molecular Sciences Queen's University Kingston Ontario Canada
| | - Sean P Dukelow
- 1 Department of Clinical Neurosciences Hotchkiss Brain Institute University of Calgary Alberta Canada
| |
Collapse
|
19
|
Mang CS, Whitten TA, Cosh MS, Scott SH, Wiley JP, Debert CT, Dukelow SP, Benson BW. Robotic Assessment of Motor, Sensory, and Cognitive Function in Acute Sport-Related Concussion and Recovery. J Neurotrauma 2019; 36:308-321. [DOI: 10.1089/neu.2017.5587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cameron S. Mang
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Tara A. Whitten
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Madeline S. Cosh
- WinSport Medicine Clinic, Winter Sport Institute, Calgary, Alberta, Canada
| | - Stephen H. Scott
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - J. Preston Wiley
- Faculty of Kinesiology, Sport Medicine Centre, University of Calgary, Calgary, Alberta, Canada
| | - Chantel T. Debert
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Sean P. Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Calgary, Alberta, Canada
- Faculty of Kinesiology, Sport Medicine Centre, University of Calgary, Calgary, Alberta, Canada
| | - Brian W. Benson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- WinSport Medicine Clinic, Winter Sport Institute, Calgary, Alberta, Canada
- Faculty of Kinesiology, Sport Medicine Centre, University of Calgary, Calgary, Alberta, Canada
- Canadian Sport Institute Calgary, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Whitten TA, Mang CS, Cosh MS, Scott SH, Dukelow SP, Benson BW. Spatial working memory performance following acute sport-related concussion. JOURNAL OF CONCUSSION 2018. [DOI: 10.1177/2059700218797818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction An important problem in the field of sport-related concussion is the lack of a ‘gold-standard’ clinical assessment tool. Currently, the diagnosis relies heavily on self-reporting of symptoms and observation of clinical signs by medical professionals. To address this, our group has been motivated to develop objective measures of neurological impairment following concussion. Spatial working memory is an important aspect of cognitive function that might be impaired following concussion. In the present study, we measured spatial working memory using a robotic spatial span task. We first assessed test–retest reliability in 82 healthy athletes who underwent baseline testing across two athletic seasons using intraclass correlation coefficients. We then assessed spatial span performance relative to baseline in 47 athletes acutely following sport-related concussion using a reliable change index with 80% confidence limits to define impairment on an individual basis. Results We found good test–retest reliability for the mean span (a measure of spatial working memory span length; intraclass correlation coefficient = 0.79), and moderate reliability for the response duration (time taken per spatial target; intraclass correlation coefficient = 0.64) in healthy athletes. However, only 19% of acutely concussed athletes showed evidence of impairment relative to baseline in mean span, and even fewer (9%) showed evidence of impairment in response duration. Analysis of serial position curves revealed primacy and recency effects for this task, but no group-level differences between concussed and healthy athletes. Analysis of specific types of errors showed a higher rate of substitution errors in the concussed group at baseline, suggesting possible malingering in a small number of athletes. Conclusion Overall, few athletes showed evidence of impaired spatial working memory acutely following concussion, suggesting either that spatial working memory is not commonly impaired acutely post-concussion, or that the present task is not sufficiently demanding.
Collapse
Affiliation(s)
- Tara A Whitten
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Cameron S Mang
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | | | - Stephen H Scott
- Canada Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Brian W Benson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Group23 Sports Medicine Clinic, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Canadian Sport Institute Calgary, Calgary, Alberta, Canada
| |
Collapse
|