1
|
Li Z, Li D, Liu S, Zhao H, Li B, Shan S, Zhu Y, Sun J, Hou J. Impact of elevated CO 2 on microbial communities and functions in riparian sediments: Role of pollution levels in modulating effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176481. [PMID: 39341255 DOI: 10.1016/j.scitotenv.2024.176481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/14/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
The impact of elevated CO2 levels on microorganisms is a focal point in studying the environmental effects of global climate change. A growing number of studies have demonstrated the importance of the direct effects of elevated CO2 on microorganisms, which are confounded by indirect effects that are not easily identified. Riparian zones have become key factor in identifying the environmental effects of global climate change because of their special location. However, the direct effects of elevated CO2 levels on microbial activity and function in riparian zone sediments remain unclear. In this study, three riparian sediments with different pollution risk levels of heavy metals and nutrients were selected to explore the direct response of microbial communities and functions to elevated CO2 excluding plants. The results showed that the short-term effects of elevated CO2 did not change the diversity of the bacterial and fungal communities, but altered the composition of their communities. Additionally, differences were observed in the responses of microbial functions to elevated CO2 levels among the three regions. Elevated CO2 promoted the activities of nitrification and denitrification enzymes and led to significant increases in N2O release in the three sediments, with the greatest increase of 76.09 % observed in the Yuyangshan Bay (YYS). Microbial carbon metabolism was promoted by elevated CO2 in YYS but was significantly inhibited by elevated CO2 in Gonghu Bay and Meiliang Bay. Moreover, TOC, TN, and Pb contents were identified as key factors contributing to the different microbial responses to elevated CO2 in sediments with different heavy metal and nutrient pollution. In conclusion, this study provides in-depth insights into the responses of bacteria and fungi in polluted riparian sediments to elevated CO2, which helps elucidate the complex interactions between microbial activity and environmental stressors.
Collapse
Affiliation(s)
- Ziyu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Songqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huilin Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sujie Shan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yizhi Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jingqiu Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
2
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. Plant Defense Mechanisms against Polycyclic Aromatic Hydrocarbon Contamination: Insights into the Role of Extracellular Vesicles. TOXICS 2024; 12:653. [PMID: 39330582 PMCID: PMC11436043 DOI: 10.3390/toxics12090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that pose significant environmental and health risks. These compounds originate from both natural phenomena, such as volcanic activity and wildfires, and anthropogenic sources, including vehicular emissions, industrial processes, and fossil fuel combustion. Their classification as carcinogenic, mutagenic, and teratogenic substances link them to various cancers and health disorders. PAHs are categorized into low-molecular-weight (LMW) and high-molecular-weight (HMW) groups, with HMW PAHs exhibiting greater resistance to degradation and a tendency to accumulate in sediments and biological tissues. Soil serves as a primary reservoir for PAHs, particularly in areas of high emissions, creating substantial risks through ingestion, dermal contact, and inhalation. Coastal and aquatic ecosystems are especially vulnerable due to concentrated human activities, with PAH persistence disrupting microbial communities, inhibiting plant growth, and altering ecosystem functions, potentially leading to biodiversity loss. In plants, PAH contamination manifests as a form of abiotic stress, inducing oxidative stress, cellular damage, and growth inhibition. Plants respond by activating antioxidant defenses and stress-related pathways. A notable aspect of plant defense mechanisms involves plant-derived extracellular vesicles (PDEVs), which are membrane-bound nanoparticles released by plant cells. These PDEVs play a crucial role in enhancing plant resistance to PAHs by facilitating intercellular communication and coordinating defense responses. The interaction between PAHs and PDEVs, while not fully elucidated, suggests a complex interplay of cellular defense mechanisms. PDEVs may contribute to PAH detoxification through pollutant sequestration or by delivering enzymes capable of PAH degradation. Studying PDEVs provides valuable insights into plant stress resilience mechanisms and offers potential new strategies for mitigating PAH-induced stress in plants and ecosystems.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
St Mary L, Trine LSD, Roper C, Wiley J, Craciunescu L, Sotorrios L, Paterson M, Massey Simonich SL, McCoustra M, Henry TB. Environmental significance of PAH photoproduct formation: TiO 2 nanoparticle influence, altered bioavailability, and potential photochemical mechanisms. CHEMOSPHERE 2024; 360:142384. [PMID: 38797205 PMCID: PMC11321274 DOI: 10.1016/j.chemosphere.2024.142384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/17/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Interactions between polycyclic aromatic hydrocarbons (PAHs) and titanium dioxide (TiO2) nanoparticles (NPs) can produce unforeseen photoproducts in the aqueous phase. Both PAHs and TiO2-NPs are well-studied and highly persistent environmental pollutants, but the consequences of PAH-TiO2-NP interactions are rarely explored. We investigated PAH photoproduct formation over time for benzo[a]pyrene (BaP), fluoranthene (FLT), and pyrene (PYR) in the presence of ultraviolet A (UVA) using a combination of analytical and computational methods including, identification of PAH photoproducts, assessment of expression profiles for gene indicators of PAH metabolism, and computational evaluation of the reaction mechanisms through which certain photoproducts might be formed. Chemical analyses identified diverse photoproducts, but all PAHs shared a primary photoproduct, 9,10-phenanthraquinone (9,10-PQ), regardless of TiO2-NP presence. The computed reaction mechanisms revealed the roles photodissociation and singlet oxygen chemistry likely play in PAH mediated photochemical processes that result in the congruent production of 9,10-PQ within this study. Our investigation of PAH photoproduct formation has provided substantial evidence of the many, diverse and congruent, photoproducts formed from physicochemically distinct PAHs and how TiO2-NPs influence bioavailability and time-related formation of PAH photoproducts.
Collapse
Affiliation(s)
- Lindsey St Mary
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK; Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon, 97333, USA.
| | - Lisandra S D Trine
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon, 97333, USA
| | - Courtney Roper
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon, 97333, USA; Department of Biomolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | - Jackson Wiley
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon, 97333, USA
| | - Luca Craciunescu
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| | - Lia Sotorrios
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| | - Martin Paterson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| | - Staci L Massey Simonich
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon, 97333, USA
| | - Martin McCoustra
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| | - Theodore B Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| |
Collapse
|
4
|
Xu M, Xu Q, Wang G, Du W, Zhu J, Yin Y, Ji R, Wang X, Guo H. Elevated CO 2 aggravated polystyrene microplastics effects on the rice-soil system under field conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120603. [PMID: 36343858 DOI: 10.1016/j.envpol.2022.120603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Polystyrene microplastics (PS) are decomposed very slowly due to their recalcitrance and inevitably interact with the changing climate. How the interaction between PS and increasing CO2 concentration affects the plant-soil system is rarely investigated. Here, a free-air CO2 enrichment system in farm fields was used to study the impacts of PS added to soil at 10 mg kg-1 on rice and soil bacterial communities at different CO2 levels (ambient∼390 ppm and elevated∼590 ppm). Results showed that single PS interfered with Fe, Mn and Zn uptake of rice, and it increased the abundances of bacteria taxa assigned to N turnover and urease activities, leading to altered soil N transformation and availability. Elevated CO2 alone enhanced rice photosynthesis, decreased the abundances of nitrogen-fixation bacteria, and induced co-occurrence patterns between bacteria simplified and decentralized. Combined PS and elevated CO2 significantly decreased rice stomatal conductance and transpiration rate by 56.70% and 29.46%, respectively, and further inhibited elements uptake. Besides, combined exposure significantly disturbed bacterial amino acid metabolism, and stimulated the adaptative responses of resistant bacteria. Overall, this study revealed that increasing CO2 concentrations may exacerbate the impacts of PS on rice performance and soil bacterial communities, providing new insights into the interaction between microplastics and climate change.
Collapse
Affiliation(s)
- Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qiao Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Guobing Wang
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
5
|
Mao L, Wang YB, Zhu CW, Yin Y, Guo HY. Effects of Decabromodiphenyl Ether and Elevated Carbon Dioxide on Rice (Oryza sativa L.). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:237-243. [PMID: 32651610 DOI: 10.1007/s00128-020-02928-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
We assessed the effects of carbon dioxide (CO2) and decabromodiphenyl ether (BDE-209, 0, 3 and 30 mg/kg) on rice (Oryza sativa L. cv. Wuyunjing) in field free-air CO2 enrichment system. Rice at elevated (580 ppm) CO2 had increased net photosynthetic rate, intercellular CO2 concentration, shoot biomass, yield and phosphorus content in grains. However, there were no significant changes in such parameters observed on rice at elevated CO2 combined with BDE-209 (3 and 30 mg/kg). Elevated CO2 alone had no significant effects on sugar or starch content in rice grains, whereas its combination with BDE-209 (3 mg/kg) significantly decreased grain sugar and starch content. In conclusion, rice reared in soil polluted by BDE-209 under elevated CO2 modulates the effects in grain feature.
Collapse
Affiliation(s)
- Lu Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ya-Bo Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Chun-Wu Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hong-Yan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
6
|
Abstract
Rice, a staple food for more than half of the world's population, is grown in >100 countries with 90% of the total global production from Asia. Although there are more than 110,000 cultivated varieties of rice that vary in quality and nutritional content, after post-harvest processing, rice can be categorized as either white or brown. Regional and cultural preferences as well as need for stability during storage and transport are the final determinants of market availability and final consumption. In addition to calories, rice is a good source of magnesium, phosphorus, manganese, selenium, iron, folic acid, thiamin and niacin; but it is low in fiber and fat. Although brown rice is promoted as being "healthier" because of bioactive compounds, including minerals and vitamins not present in white rice after polishing, white rice is more widely consumed than brown. This is for several reasons, including cooking ease, palatability, and shelf life. Polished rice has a higher glycemic load and may impact glucose homeostasis but when combined with other foods, it can be considered part of a "healthy" plate. With the projected increase in the global population, rice will remain a staple. However, it will be important to encourage intake of the whole grain (brown rice) and to identify ways to harness the phytonutrients that are lost during milling. Furthermore, as the world faces environmental challenges, changing demographics and consumer demands, farmers, healthcare providers, food manufacturers and nutritionists must work collaboratively to assure adequate supply, nutritional integrity and sustainability of rice production systems globally.
Collapse
|