1
|
Fleskes RE, Johnson SJ, Honap TP, Abin CA, Gilmore JK, Oubré L, Bueschgen WD, Abel SM, Ofunniyin AA, Lewis CM, Schurr TG. Oral microbial diversity in 18th century African individuals from South Carolina. Commun Biol 2024; 7:1213. [PMID: 39342044 PMCID: PMC11439080 DOI: 10.1038/s42003-024-06893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
As part of the Anson Street African Burial Ground Project, we characterized the oral microbiomes of twelve 18th century African-descended individuals (Ancestors) from Charleston, South Carolina, USA, to study their oral health and diet. We found that their oral microbiome composition resembled that of other historic (18th-19th century) dental calculus samples but differed from that of modern samples, and was not influenced by indicators of oral health and wear observed in the dentition. Phylogenetic analysis of the oral bacteria, Tannerella forsythia and Pseudoramibacter alactolyticus, revealed varied patterns of lineage diversity and replacement in the Americas, with the Ancestors carrying strains similar to historic period Europeans and Africans. Functional profiling of metabolic pathways suggested that the Ancestors consumed a diet low in animal protein. Overall, our study reveals important insights into the oral microbial histories of African-descended individuals, particularly oral health and diet in colonial North American enslavement contexts.
Collapse
Affiliation(s)
- Raquel E Fleskes
- Department of Anthropology, Dartmouth College, Hanover, NH, USA.
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA.
| | - Sarah J Johnson
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Tanvi P Honap
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Christopher A Abin
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Joanna K Gilmore
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA
- Department of Sociology and Anthropology, College of Charleston, Charleston, SC, USA
| | - La'Sheia Oubré
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA
| | | | - Suzanne M Abel
- Charleston County Coroner's Office, North Charleston, SC, USA
| | - Ade A Ofunniyin
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA
- Department of Sociology and Anthropology, College of Charleston, Charleston, SC, USA
| | - Cecil M Lewis
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA.
- Department of Anthropology, University of Oklahoma, Norman, OK, USA.
| | - Theodore G Schurr
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA.
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Bozzi D, Neuenschwander S, Cruz Dávalos DI, Sousa da Mota B, Schroeder H, Moreno-Mayar JV, Allentoft ME, Malaspinas AS. Towards predicting the geographical origin of ancient samples with metagenomic data. Sci Rep 2024; 14:21794. [PMID: 39294129 PMCID: PMC11411106 DOI: 10.1038/s41598-023-40246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/07/2023] [Indexed: 09/20/2024] Open
Abstract
Reconstructing the history-such as the place of birth and death-of an individual sample is a fundamental goal in ancient DNA (aDNA) studies. However, knowing the place of death can be particularly challenging when samples come from museum collections with incomplete or erroneous archives. While analyses of human DNA and isotope data can inform us about the ancestry of an individual and provide clues about where the person lived, they cannot specifically trace the place of death. Moreover, while ancient human DNA can be retrieved, a large fraction of the sequenced molecules in ancient DNA studies derive from exogenous DNA. This DNA-which is usually discarded in aDNA analyses-is constituted mostly by microbial DNA from soil-dwelling microorganisms that have colonized the buried remains post-mortem. In this study, we hypothesize that remains of individuals buried in the same or close geographic areas, exposed to similar microbial communities, could harbor more similar metagenomes. We propose to use metagenomic data from ancient samples' shotgun sequencing to locate the place of death of a given individual which can also help to solve cases of sample mislabeling. We used a k-mer-based approach to compute similarity scores between metagenomic samples from different locations and propose a method based on dimensionality reduction and logistic regression to assign a geographical origin to target samples. We apply our method to several public datasets and observe that individual samples from closer geographic locations tend to show higher similarities in their metagenomes compared to those of different origin, allowing good geographical predictions of test samples. Moreover, we observe that the genus Streptomyces commonly infiltrates ancient remains and represents a valuable biomarker to trace the samples' geographic origin. Our results provide a proof of concept and show how metagenomic data can also be used to shed light on the place of origin of ancient samples.
Collapse
Affiliation(s)
- Davide Bozzi
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| | - Samuel Neuenschwander
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Vital-IT, SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Diana Ivette Cruz Dávalos
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Bárbara Sousa da Mota
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Hannes Schroeder
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Víctor Moreno-Mayar
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Anna-Sapfo Malaspinas
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| |
Collapse
|
3
|
Putrino A, Marinelli E, Galeotti A, Ferrazzano GF, Ciribè M, Zaami S. A Journey into the Evolution of Human Host-Oral Microbiome Relationship through Ancient Dental Calculus: A Scoping Review. Microorganisms 2024; 12:902. [PMID: 38792733 PMCID: PMC11123932 DOI: 10.3390/microorganisms12050902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
One of the most promising areas of research in palaeomicrobiology is the study of the human microbiome. In particular, ancient dental calculus helps to reconstruct a substantial share of oral microbiome composition by mapping together human evolution with its state of health/oral disease. This review aims to trace microbial characteristics in ancient dental calculus to describe the evolution of the human host-oral microbiome relationship in oral health or disease in children and adults. Following the PRISMA-Extension for Scoping Reviews guidelines, the main scientific databases (PubMed, Scopus, Lilacs, Cochrane Library) have been drawn upon. Eligibility criteria were established, and all the data collected on a purpose-oriented collection form were analysed descriptively. From the initial 340 records, only 19 studies were deemed comprehensive enough for the purpose of this review. The knowledge of the composition of ancient oral microbiomes has broadened over the past few years thanks to increasingly well-performing decontamination protocols and additional analytical avenues. Above all, metagenomic sequencing, also implemented by state-of-the-art bioinformatics tools, allows for the determination of the qualitative-quantitative composition of microbial species associated with health status and caries/periodontal disease. Some microbial species, especially periodontal pathogens, do not appear to have changed in history, while others that support caries disease or oral health could be connected to human evolution through lifestyle and environmental contributing factors.
Collapse
Affiliation(s)
- Alessandra Putrino
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
| | - Angela Galeotti
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
- U.N.-E.U. INTERNATIONAL RESEARCH PROJECT ON HUMAN HEALTH-ORAL HEALTH SECTION, 1200 Géneve, Switzerland;
| | - Gianmaria Fabrizio Ferrazzano
- U.N.-E.U. INTERNATIONAL RESEARCH PROJECT ON HUMAN HEALTH-ORAL HEALTH SECTION, 1200 Géneve, Switzerland;
- UNESCO Chair in Health Education and Sustainable Development, Dentistry Section, University of Naples “Federico II”, 80138 Naples, Italy
- East-Asian-Pacific International Academic Consortium
| | - Massimiliano Ciribè
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
4
|
Jackson I, Woodman P, Dowd M, Fibiger L, Cassidy LM. Ancient Genomes From Bronze Age Remains Reveal Deep Diversity and Recent Adaptive Episodes for Human Oral Pathobionts. Mol Biol Evol 2024; 41:msae017. [PMID: 38533900 PMCID: PMC10966897 DOI: 10.1093/molbev/msae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 03/28/2024] Open
Abstract
Ancient microbial genomes can illuminate pathobiont evolution across millenia, with teeth providing a rich substrate. However, the characterization of prehistoric oral pathobiont diversity is limited. In Europe, only preagricultural genomes have been subject to phylogenetic analysis, with none compared to more recent archaeological periods. Here, we report well-preserved microbiomes from two 4,000-year-old teeth from an Irish limestone cave. These contained bacteria implicated in periodontitis, as well as Streptococcus mutans, the major cause of caries and rare in the ancient genomic record. Despite deriving from the same individual, these teeth produced divergent Tannerella forsythia genomes, indicating higher levels of strain diversity in prehistoric populations. We find evidence of microbiome dysbiosis, with a disproportionate quantity of S. mutans sequences relative to other oral streptococci. This high abundance allowed for metagenomic assembly, resulting in its first reported ancient genome. Phylogenetic analysis indicates major postmedieval population expansions for both species, highlighting the inordinate impact of recent dietary changes. In T. forsythia, this expansion is associated with the replacement of older lineages, possibly reflecting a genome-wide selective sweep. Accordingly, we see dramatic changes in T. forsythia's virulence repertoire across this period. S. mutans shows a contrasting pattern, with deeply divergent lineages persisting in modern populations. This may be due to its highly recombining nature, allowing for maintenance of diversity through selective episodes. Nonetheless, an explosion in recent coalescences and significantly shorter branch lengths separating bacteriocin-carrying strains indicate major changes in S. mutans demography and function coinciding with sugar popularization during the industrial period.
Collapse
Affiliation(s)
- Iseult Jackson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
- The SFI Centre for Research Training in Genomics Data Science, University of Galway, Galway, Ireland
| | - Peter Woodman
- Department of Archaeology, University College Cork, Cork, Ireland
| | - Marion Dowd
- Faculty of Science, Atlantic Technological University, Sligo, Ireland
| | - Linda Fibiger
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Lara M Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
5
|
Shang J, Liu H, Zheng Y, Zhang Z. Role of oxidative stress in the relationship between periodontitis and systemic diseases. Front Physiol 2023; 14:1210449. [PMID: 37501927 PMCID: PMC10369007 DOI: 10.3389/fphys.2023.1210449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Periodontitis is a common inflammatory disease. It is characterized by destruction of the supporting structures of the teeth and could lead to tooth loss and systemic inflammation. Bacteria in inflamed gingival tissue and virulence factors are capable of entering the bloodstream to induce systemic inflammatory response, thus influencing the pathological process of many diseases, such as cardiovascular diseases, diabetes, chronic kidney disease, as well as liver injury. An increasing body of evidence show the complex interplay between oxidative stress and inflammation in disease pathogenesis. When periodontitis occurs, increased reactive oxygen species accumulation leads to oxidative stress. Oxidative stress contributes to major cellular components damage, including DNA, proteins, and lipids. In this article, the focus will be on oxidative stress in periodontal disease, the relationship between periodontitis and systemic inflammation, and the impact of periodontal therapy on oxidative stress parameters.
Collapse
Affiliation(s)
- Jiaxin Shang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Haifeng Liu
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Youli Zheng
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Zheng Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| |
Collapse
|
6
|
Li Q, Luo K, Su Z, Huang F, Wu Y, Zhou F, Li Y, Peng X, Li J, Ren B. Dental calculus: A repository of bioinformation indicating diseases and human evolution. Front Cell Infect Microbiol 2022; 12:1035324. [PMID: 36579339 PMCID: PMC9791188 DOI: 10.3389/fcimb.2022.1035324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Dental calculus has long been considered as a vital contributing factor of periodontal diseases. Our review focuses on the role of dental calculus as a repository and discusses the bioinformation recently reported to be concealed in dental calculus from three perspectives: time-varying oral condition, systemic diseases, and anthropology at various times. Molecular information representing an individual's contemporary oral health status could be detected in dental calculus. Additionally, pathogenic factors of systemic diseases were found in dental calculus, including bacteria, viruses and toxic heavy metals. Thus, dental calculus has been proposed to play a role as biological data storage for detection of molecular markers of latent health concerns. Through the study of environmental debris in dental calculus, an overview of an individual's historical dietary habits and information about the environment, individual behaviors and social culture changes can be unveiled. This review summarizes a new role of dental calculus as a repository of bioinformation, with potential use in the prediction of oral diseases, systemic diseases, and even anthropology.
Collapse
Affiliation(s)
- Qinyang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kaihua Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhifei Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangting Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yajie Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangjie Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Jiyao Li, ; Biao Ren,
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Jiyao Li, ; Biao Ren,
| |
Collapse
|
7
|
Warinner C. An Archaeology of Microbes. JOURNAL OF ANTHROPOLOGICAL RESEARCH 2022. [DOI: 10.1086/721976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christina Warinner
- Department of Anthropology, Harvard University, Cambridge MA, USA 02138, and Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany 04103
| |
Collapse
|
8
|
van der Kuyl AC. Historic and Prehistoric Epidemics: An Overview of Sources Available for the Study of Ancient Pathogens. EPIDEMIOLOGIA 2022; 3:443-464. [PMID: 36547255 PMCID: PMC9778136 DOI: 10.3390/epidemiologia3040034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Since life on earth developed, parasitic microbes have thrived. Increases in host numbers, or the conquest of a new species, provide an opportunity for such a pathogen to enjoy, before host defense systems kick in, a similar upsurge in reproduction. Outbreaks, caused by "endemic" pathogens, and epidemics, caused by "novel" pathogens, have thus been creating chaos and destruction since prehistorical times. To study such (pre)historic epidemics, recent advances in the ancient DNA field, applied to both archeological and historical remains, have helped tremendously to elucidate the evolutionary trajectory of pathogens. These studies have offered new and unexpected insights into the evolution of, for instance, smallpox virus, hepatitis B virus, and the plague-causing bacterium Yersinia pestis. Furthermore, burial patterns and historical publications can help in tracking down ancient pathogens. Another source of information is our genome, where selective sweeps in immune-related genes relate to past pathogen attacks, while multiple viruses have left their genomes behind for us to study. This review will discuss the sources available to investigate (pre)historic diseases, as molecular knowledge of historic and prehistoric pathogens may help us understand the past and the present, and prepare us for future epidemics.
Collapse
Affiliation(s)
- Antoinette C. van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; ; Tel.: +31-205-666-778
- Amsterdam Institute for Infection and Immunity, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
9
|
Changes in the oral status and periodontal pathogens in a Sardinian rural community from pre-industrial to modern time. Sci Rep 2022; 12:15895. [PMID: 36151274 PMCID: PMC9508227 DOI: 10.1038/s41598-022-20193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
The oral microbial profile in humans has evolved in response to lifestyle changes over the course of different eras. Here, we investigated tooth lesions and the microbial profile of periodontal bacteria (PB) in dental calculus of a Sardinian pre-industrial rural community. In total, 51 teeth belonging to 12 historical individuals buried in an ossuary in the early 1800s and 26 modern teeth extracted from 26 individuals from the same geographical area were compared to determine the oral health status, bacterial load and amount of most relevant PB. Total caries and bacterial genomes count appeared to be sex-related in historical samples. Historical females presented a higher incidence of caries, PB pathogens and a higher bacterial load than historical males. Furthermore, we compared the PB profile of the historical individuals with the modern ones, revealing a notable increase in modern individuals of PB belonging to “Red complex bacteria” often associated with periodontitis and other chronic diseases of modern life. Our findings could be explained through an analysis of environmental factors such as socioeconomic, hygienic and healthy conditions that can have a great impact on oral health and bacterial composition among individuals of the same and different eras.
Collapse
|
10
|
Li Q, Zhou F, Su Z, Li Y, Li J. Corynebacterium matruchotii: A Confirmed Calcifying Bacterium With a Potentially Important Role in the Supragingival Plaque. Front Microbiol 2022; 13:940643. [PMID: 35875585 PMCID: PMC9298747 DOI: 10.3389/fmicb.2022.940643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
Corynebacterium matruchotii is a reported calcifying bacterium that can usually be isolated from dental calculus and induce mineralization in vitro. In recent years, based on in situ hybridization probe and sequencing technology, researchers have discovered the central "pillar" role of C. matruchotii in supragingival plaque, and many studies focused on bacterial interactions in the biofilm structure dominated by C. matruchotii have been conducted. Besides, C. matruchotii seems to be an indicator of "caries-free" oral status according to imaging and sequencing studies. Therefore, in this review, we summarize C. matruchotii 's role in supragingival plaque based on the structure, interactions, and potential connections with oral diseases.
Collapse
Affiliation(s)
- Qinyang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangjie Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhifei Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Oliveira SG, Nishiyama RR, Trigo CAC, Mattos-Guaraldi AL, Dávila AMR, Jardim R, Aguiar FHB. Core of the saliva microbiome: an analysis of the MG-RAST data. BMC Oral Health 2021; 21:351. [PMID: 34271900 PMCID: PMC8283749 DOI: 10.1186/s12903-021-01719-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Oral microbiota is considered as the second most complex in the human body and its dysbiosis can be responsible for oral diseases. Interactions between the microorganism communities and the host allow establishing the microbiological proles. Identifying the core microbiome is essential to predicting diseases and changes in environmental behavior from microorganisms. Methods Projects containing the term “SALIVA”, deposited between 2014 and 2019 were recovered on the MG-RAST portal. Quality (Failed), taxonomic prediction (Unknown and Predicted), species richness (Rarefaction), and species diversity (Alpha) were analyzed according to sequencing approaches (Amplicon sequencing and Shotgun metagenomics). All data were checked for normality and homoscedasticity. Metagenomic projects were compared using the Mann–Whitney U test and Spearman's correlation. Microbiome cores were inferred by Principal Component Analysis. For all statistical tests, p < 0.05 was used. Results The study was performed with 3 projects, involving 245 Amplicon and 164 Shotgun metagenome datasets. All comparisons of variables, according to the type of sequencing, showed significant differences, except for the Predicted. In Shotgun metagenomics datasets the highest correlation was between Rarefaction and Failed (r = − 0.78) and the lowest between Alpha and Unknown (r = − 0.12). In Amplicon sequencing datasets, the variables Rarefaction and Unknown (r = 0.63) had the highest correlation and the lowest was between Alpha and Predicted (r = − 0.03). Shotgun metagenomics datasets showed a greater number of genera than Amplicon. Propionibacterium, Lactobacillus, and Prevotella were the most representative genera in Amplicon sequencing. In Shotgun metagenomics, the most representative genera were Escherichia, Chitinophaga, and Acinetobacter. Conclusions Core of the salivary microbiome and genera diversity are dependent on the sequencing approaches. Available data suggest that Shotgun metagenomics and Amplicon sequencing have similar sensitivities to detect the taxonomic level investigated, although Shotgun metagenomics allows a deeper analysis of the microorganism diversity. Microbiome studies must consider characteristics and limitations of the sequencing approaches. Were identified 20 genera in the core of saliva microbiome, regardless of the health condition of the host. Some bacteria of the core need further study to better understand their role in the oral cavity. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01719-5.
Collapse
Affiliation(s)
- Simone G Oliveira
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901, Piracicaba, Brazil.,Faculty of Dentistry, Rio de Janeiro State University, Boulevard 28 de setembro, 157, Rio de Janeiro, Brazil
| | - Rafaela R Nishiyama
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901, Piracicaba, Brazil
| | - Claudio A C Trigo
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901, Piracicaba, Brazil
| | - Ana Luiza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, Rio de Janeiro State University, Boulevard 28 de setembro, 77, Rio de Janeiro, Brazil
| | - Alberto M R Dávila
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Rio de Janeiro, Brazil
| | - Rodrigo Jardim
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Rio de Janeiro, Brazil.
| | - Flavio H B Aguiar
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901, Piracicaba, Brazil
| |
Collapse
|
12
|
Heterogeneous Hunter-Gatherer and Steppe-Related Ancestries in Late Neolithic and Bell Beaker Genomes from Present-Day France. Curr Biol 2021; 31:1072-1083.e10. [PMID: 33434506 DOI: 10.1016/j.cub.2020.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
The transition from the Late Neolithic to the Bronze Age has witnessed important population and societal changes in western Europe.1 These include massive genomic contributions of pastoralist herders originating from the Pontic-Caspian steppes2,3 into local populations, resulting from complex interactions between collapsing hunter-gatherers and expanding farmers of Anatolian ancestry.4-8 This transition is documented through extensive ancient genomic data from present-day Britain,9,10 Ireland,11,12 Iberia,13 Mediterranean islands,14,15 and Germany.8 It remains, however, largely overlooked in France, where most focus has been on the Middle Neolithic (n = 63),8,9,16 with the exception of one Late Neolithic genome sequenced at 0.05× coverage.16 This leaves the key transitional period covering ∼3,400-2,700 cal. years (calibrated years) BCE genetically unsampled and thus the exact time frame of hunter-gatherer persistence and arrival of steppe migrations unknown. To remediate this, we sequenced 24 ancient human genomes from France spanning ∼3,400-1,600 cal. years BCE. This reveals Late Neolithic populations that are genetically diverse and include individuals with dark skin, hair, and eyes. We detect heterogeneous hunter-gatherer ancestries within Late Neolithic communities, reaching up to ∼63.3% in some individuals, and variable genetic contributions of steppe herders in Bell Beaker populations. We provide an estimate as late as ∼3,800 years BCE for the admixture between Neolithic and Mesolithic populations and as early as ∼2,650 years BCE for the arrival of steppe-related ancestry. The genomic heterogeneity characterized underlines the complex history of human interactions even at the local scale.
Collapse
|
13
|
Weyrich LS. The evolutionary history of the human oral microbiota and its implications for modern health. Periodontol 2000 2020; 85:90-100. [PMID: 33226710 DOI: 10.1111/prd.12353] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous biological and cultural factors influence the microbial communities (microbiota) that inhabit the human mouth, including diet, environment, hygiene, physiology, health status, genetics, and lifestyle. As oral microbiota can underpin oral and systemic diseases, tracing the evolutionary history of oral microbiota and the factors that shape its origins will unlock information to mitigate disease today. Despite this, the origins of many oral microbes remain unknown, and the key factors in the past that shaped our oral microbiota are only now emerging. High throughput DNA sequencing of oral microbiota using ancient DNA and comparative anthropological methodologies has been employed to investigate oral microbiota origins, revealing a complex, rich history. Here, I review the current literature on the factors that shaped and guided oral microbiota evolution, both in Europe and globally. In Europe, oral microbiota evolution was shaped by interactions with Neandertals, the adaptation of farming, widespread integration of industrialization, and postindustrial lifestyles that emerged after World War II. Globally, evidence for a multitude of different oral microbiota histories is emerging, likely supporting dissimilarities in modern oral health across discrete human populations. I highlight how these evolutionary changes are linked to the development of modern oral diseases and discuss the remaining factors that need to be addressed to improve this embryonic field of research. I argue that understanding the evolutionary history of our oral microbiota is necessary to identify new treatment and prevention options to improve oral and systemic health in the future.
Collapse
Affiliation(s)
- Laura S Weyrich
- Department of Anthropology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Vergara Serpa OV, Cortina Gutiérrez A, Serna Otero DA, Zuluaga Salazar JF, Reyes Jaraba CA. Porphyromonas gingivalis ligada a enfermedad periodontal y su relación con la artritis reumatoide: identificación de nuevos mecanismos biomoleculares. ACTA ODONTOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/aoc.v10n2.85185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objetivo: revisar la literatura científica existente con respecto a la patogenicidad de Porphyromonas gingivalis, ligada a enfermedad periodontal (EP) (disbiosis oral), y su asociación con la activación de mecanismos fisiopatológicos en la artritis reumatoide (AR), a fin de exponer los nuevos mecanismos biomoleculares implicados. Métodos: búsqueda sistemática en la base de datos del Medical Subject Headings (MeSH), PubMed, Science Direct, Nature y Google académico usando las palabras clave: Aggregatibacter actinomycetemcomitans; artritis reumatoide; citrulinación; disbiosis; odontología; periodontitis; Porphyromonas gingivalis y reumatología. De un total de 297 publicaciones, se seleccionaron 52, todas a partir del año 2018; la selección fue hecha a partir de los criterios de inclusión y exclusión establecidos por los autores. Resultados: la infección por Porphyromonas gingivalis, ligada a la EP, está fuertemente implicada en la patogénesis y desarrollo de AR. Su relación se vincula con el proceso de citrulinación y producción de anticuerpos antipéptidos citrulinados. Se han identificado asociaciones entre la virulencia microbiana de dicho agente y la expresión de múltiples genes, relacionados con la activación de la respuesta inmune y el inicio del proceso inflamatorio crónico. Conclusiones: existe una alta asociación entre la patogenia de ambas enfermedades, donde microorganismos ligados a la EP, como Porphyromonas gingivalis, tienen la capacidad de aumentar la citrulinación, galactosilación, fucosilación, así como la excesiva glicosilación de Fragmentos de unión al antígeno (Fab), y por lo tanto, la agresividad de la AR.
Collapse
|
15
|
Tu Y, Wang Y, Su L, Shao B, Duan Z, Deng S. In vivo Microbial Diversity Analysis on Different Surfaces of Dental Restorative Materials via 16S rDNA Sequencing. Med Sci Monit 2020; 26:e923509. [PMID: 32627765 PMCID: PMC7362708 DOI: 10.12659/msm.923509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background This study aimed to provide precise material selection guidance for proper clinical restoration and treatment of plaque-related oral diseases, such as dental caries and periodontal diseases. Material/Methods Four groups (n=24) of restorative material sheets (n=24) were prepared using 3M Z350 composite resin (ZR), zinc phosphate cement (ZPC), glass-ionomer (GI), and ICON permeable resin (IPR). Six volunteers wore a plaque-collection device equipped with the 4 restorative material sheets for 48 hours. Plaque samples were collected, and Miseq sequencing was applied to obtain template DNA fragments for microbial diversity analysis. The data were analyzed with nonparametric tests. Results The microbial diversity on the ZPC surface was significantly lower than that on GI and IPR surfaces. The abundance of Firmicutes and Streptococcus on the ZPC surface was significantly higher than on the surfaces of GI and IPR. In contrast, the abundance of Porphyromonas on the surface of ZPC was significantly lower than that on GI and IPR surfaces. (P<0.05). Conclusions The results of the present study might serve as a basis for material selection under different oral microbial conditions to provide more accurate treatments and restorative procedures in the oral cavity.
Collapse
Affiliation(s)
- Yan Tu
- Department of Endodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland).,Department of Endodontics, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, China (mainland)
| | - Yuan Wang
- Department of Endodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland).,Department of Endodontics, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, China (mainland)
| | - Lingkai Su
- Department of Endodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland).,Department of Endodontics, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, China (mainland)
| | - Beibei Shao
- Department of Stomatology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China (mainland)
| | - Zhuhui Duan
- Department of Endodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland).,Department of Endodontics, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, China (mainland).,Department of Stomatology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China (mainland)
| | - Shuli Deng
- Department of Endodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland).,Department of Endodontics, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
16
|
Liu BY, Liu J, Zhang D, Yang ZL, Feng YP, Wang M. Effect of silver diammine fluoride on micro-ecology of plaque from extensive caries of deciduous teeth - in vitro study. BMC Oral Health 2020; 20:151. [PMID: 32448221 PMCID: PMC7247265 DOI: 10.1186/s12903-020-01141-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/17/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The mechanism of action of silver diammine fluoride (SDF) on plaque micro-ecology is seldom studied. This study investigated micro-ecological changes in dental plaque on extensive caries of deciduous teeth after topical SDF treatment. METHODS Deciduous teeth with extensive caries freshly removed from school children were collected in clinic. Unstimulated saliva collection and initial plaque sampling were done before tooth extraction, then each caries was topically treated with 38% SDF in vitro. After intervention, each tooth was stored respectively in artificial saliva at 37 °C. Repeated plaque collections were done at 24 h and 1 week post-intervention. Post-intervention micro-ecological changes including microbial diversity, microbial metabolism function as well as species correlations were analyzed and compared after pyrosequencing of the DNA from the plaque sample using Illumina MiSeq platform. RESULTS After SDF application, microbial diversity decreased (P > 0.05), although not statistically significant. Microbial community composition post-intervention was noticeably different from that of supragingival and pre-intervention plaque as well as saliva. At 1 week post-intervention, the relative content of Pseudomonas, Fusobacterium and Pseudoramibacter were higher than before, while most of the other bacteria were reduced, although the changes were not statistically significant (P > 0.05). The inter-microbial associations became more complex, much more positive associations among survived bacteria were observed than negative ones. COG function classification diagram showed carbohydrate transportation and metabolic functions in the plaque were significantly reduced at 24 h and 1 week post-intervention. CONCLUSIONS SDF has extensive antimicrobial effect on dental plaque, which may reduce carbohydrate metabolism in dental plaque and help promote new balance of the plaque flora.
Collapse
Affiliation(s)
- Bao ying Liu
- The First Affiliated Hospital of Zhengzhou University (School and Hospital of Stomatology), No 1 Jianshe Road, Pingdingshan, 450001 Henan Province China
| | - Jin Liu
- The First Affiliated Hospital of Zhengzhou University (School and Hospital of Stomatology), No 1 Jianshe Road, Pingdingshan, 450001 Henan Province China
| | - Di Zhang
- The First Affiliated Hospital of Zhengzhou University (School and Hospital of Stomatology), No 1 Jianshe Road, Pingdingshan, 450001 Henan Province China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province China
| | - Zhi lei Yang
- The First Affiliated Hospital of Zhengzhou University (School and Hospital of Stomatology), No 1 Jianshe Road, Pingdingshan, 450001 Henan Province China
| | - Ya ping Feng
- The Second Affiliated Hospital of Pingdingshan College, Pingdingshan, Henan Province China
| | - Meng Wang
- The Second Affiliated Hospital of Pingdingshan College, Pingdingshan, Henan Province China
| |
Collapse
|
17
|
Gu Y, Han X. Toll-Like Receptor Signaling and Immune Regulatory Lymphocytes in Periodontal Disease. Int J Mol Sci 2020; 21:ijms21093329. [PMID: 32397173 PMCID: PMC7247565 DOI: 10.3390/ijms21093329] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/27/2022] Open
Abstract
Periodontitis is known to be initiated by periodontal microbiota derived from biofilm formation. The microbial dysbiotic changes in the biofilm trigger the host immune and inflammatory responses that can be both beneficial for the protection of the host from infection, and detrimental to the host, causing tissue destruction. During this process, recognition of Pathogen-Associated Molecular Patterns (PAMPs) by the host Pattern Recognition Receptors (PRRs) such as Toll-like receptors (TLRs) play an essential role in the host–microbe interaction and the subsequent innate as well as adaptive responses. If persistent, the adverse interaction triggered by the host immune response to the microorganisms associated with periodontal biofilms is a direct cause of periodontal inflammation and bone loss. A large number of T and B lymphocytes are infiltrated in the diseased gingival tissues, which can secrete inflammatory mediators and activate the osteolytic pathways, promoting periodontal inflammation and bone resorption. On the other hand, there is evidence showing that immune regulatory T and B cells are present in the diseased tissue and can be induced for the enhancement of their anti-inflammatory effects. Changes and distribution of the T/B lymphocytes phenotype seem to be a key determinant of the periodontal disease outcome, as the functional activities of these cells not only shape up the overall immune response pattern, but may directly regulate the osteoimmunological balance. Therefore, interventional strategies targeting TLR signaling and immune regulatory T/B cells may be a promising approach to rebalance the immune response and alleviate bone loss in periodontal disease. In this review, we will examine the etiological role of TLR signaling and immune cell osteoclastogenic activity in the pathogenesis of periodontitis. More importantly, the protective effects of immune regulatory lymphocytes, particularly the activation and functional role of IL-10 expressing regulatory B cells, will be discussed.
Collapse
Affiliation(s)
- Yingzhi Gu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA;
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA;
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
18
|
Ozga AT, Gilby I, Nockerts RS, Wilson ML, Pusey A, Stone AC. Oral microbiome diversity in chimpanzees from Gombe National Park. Sci Rep 2019; 9:17354. [PMID: 31758037 PMCID: PMC6874655 DOI: 10.1038/s41598-019-53802-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
Historic calcified dental plaque (dental calculus) can provide a unique perspective into the health status of past human populations but currently no studies have focused on the oral microbial ecosystem of other primates, including our closest relatives, within the hominids. Here we use ancient DNA extraction methods, shotgun library preparation, and next generation Illumina sequencing to examine oral microbiota from 19 dental calculus samples recovered from wild chimpanzees (Pan troglodytes schweinfurthii) who died in Gombe National Park, Tanzania. The resulting sequences were trimmed for quality, analyzed using MALT, MEGAN, and alignment scripts, and integrated with previously published dental calculus microbiome data. We report significant differences in oral microbiome phyla between chimpanzees and anatomically modern humans (AMH), with chimpanzees possessing a greater abundance of Bacteroidetes and Fusobacteria, and AMH showing higher Firmicutes and Proteobacteria. Our results suggest that by using an enterotype clustering method, results cluster largely based on host species. These clusters are driven by Porphyromonas and Fusobacterium genera in chimpanzees and Haemophilus and Streptococcus in AMH. Additionally, we compare a nearly complete Porphyromonas gingivalis genome to previously published genomes recovered from human gingiva to gain perspective on evolutionary relationships across host species. Finally, using shotgun sequence data we assessed indicators of diet from DNA in calculus and suggest exercising caution when making assertions related to host lifestyle. These results showcase core differences between host species and stress the importance of continued sequencing of nonhuman primate microbiomes in order to fully understand the complexity of their oral ecologies.
Collapse
Affiliation(s)
- Andrew T Ozga
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA. .,Institute of Human Origins, Arizona State University, Tempe, Arizona, USA. .,Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida, USA.
| | - Ian Gilby
- Institute of Human Origins, Arizona State University, Tempe, Arizona, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Rebecca S Nockerts
- Department of Anthropology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael L Wilson
- Department of Anthropology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anne Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Anne C Stone
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA.,Institute of Human Origins, Arizona State University, Tempe, Arizona, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
19
|
Rossoni RD, Ribeiro FDC, dos Santos HFS, dos Santos JD, Oliveira NDS, Dutra MTDS, de Lapena SAB, Junqueira JC. Galleria mellonella as an experimental model to study human oral pathogens. Arch Oral Biol 2019; 101:13-22. [DOI: 10.1016/j.archoralbio.2019.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 12/28/2022]
|