1
|
Promtang S, Sanguanphun T, Chalorak P, Rodma D, Sunan R, Pe LS, Niamnont N, Chompoopong S, Sobhon P, Meemon K. Neurorestorative properties of 2-butoxytetrahydrofuran from Holothuria scabra via activation of stress resistance and detoxification in a 6-OHDA-induced C. elegans model of Parkinson's disease. Biomed Pharmacother 2025; 188:118158. [PMID: 40381502 DOI: 10.1016/j.biopha.2025.118158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025] Open
Abstract
Holothuria scabra (H. scabra), a marine organism traditionally known for its health benefits, has been utilized in both food and medicine. Our previous studies indicated that 2-butoxytetrahydrofuran (2-BTHF), which is isolated from H. scabra, possesses the potential to alleviate amyloid-β and α-synuclein accumulations associated with Alzheimer's and Parkinson's diseases (AD and PD), respectively. However, the mechanisms through which 2-BTHF mitigates PD-related neurotoxicity remain unclear. In this study, we investigated the effects of 2-BTHF on a 6-hydroxydopamine (6-OHDA)-induced Caenorhabditis elegans (C. elegans) model. Our results demonstrated that 2-BTHF recovered dopaminergic (DAergic) neurons from degeneration and restored dopamine-related behaviors. Furthermore, 2-BTHF reduced reactive oxygen species (ROS) production, preserved mitochondrial fluorescence, and decreased both mitochondrial and cytoplasmic unfolded protein responses (UPRmt and UPRcyto) activation. Transcriptome sequencing analysis revealed the critical roles of various systems, including the immune system, nervous system, glutathione (GSH) metabolism, xenobiotics, terpenoids, energy metabolism, cell growth and death, and aging-related longevity pathways. Additionally, 2-BTHF showed potential interactions with stress resistance and detoxification transcription factors, promoting the nuclear translocation of DAF-16 and SKN-1, which in turn activated their targets, including SOD-3, CTL-2, GCS-1, and GST-4. Moreover, 2-BTHF increased total GSH levels and reduced the ced-3-related cascade. This study demonstrates that 2-BTHF holds promise as a therapeutic agent for treating 6-OHDA-induced DAergic neurodegeneration in the C. elegans model.
Collapse
Affiliation(s)
- Sukrit Promtang
- Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; Division of Basic and Medical Sciences, Faculty of Allied Health Sciences, Pathumthani University, Mueang Pathum Thani, Pathum Thani 12000, Thailand
| | - Tanatcha Sanguanphun
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Pawanrat Chalorak
- Department of Radiological Technology and Medical Physics, Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Darunee Rodma
- Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; Division of Basic and Medical Sciences, Faculty of Allied Health Sciences, Pathumthani University, Mueang Pathum Thani, Pathum Thani 12000, Thailand
| | - Rungsarit Sunan
- Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; Division of Basic and Medical Sciences, Faculty of Allied Health Sciences, Pathumthani University, Mueang Pathum Thani, Pathum Thani 12000, Thailand
| | - Laurence S Pe
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Nakorn Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand
| | - Supin Chompoopong
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok 10700, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand.
| |
Collapse
|
2
|
Huang Y, Wang Y, Deng J, Gao S, Qiu J, He J, Yang T, Tan N, Cheng S, Song Z. Research on the anti-oxidant and anti-aging effects of Polygonatum kingianum saponins in Caenorhabditis elegans. Heliyon 2024; 10:e35556. [PMID: 39170193 PMCID: PMC11336756 DOI: 10.1016/j.heliyon.2024.e35556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Oxidative stress and its impact on aging are critical areas of research. Natural anti-oxidants, such as saponins found in Polygonatum sibiricum, hold promise as potential clinical interventions against aging. In this study, we utilized the nematode model organism, Caenorhabditis elegans, to investigate the pharmacological effects of Polygonatum sibiricum saponins (PKS) on antioxidation and anti-aging. The results demonstrated a significant anti-aging biological activity associated with PKS. Through experiments involving lifespan and stress, lipofuscin, q-PCR, and ROS measurement, we found that PKS effectively mitigated aging-related processes. Furthermore, the mechanism underlying these anti-aging effects was linked to the SKN-1 signaling pathway. PKS increased the nuclear localization of the SKN-1 transcription factor, leading to the up-regulation of downstream anti-oxidant genes, such as gst-4 and sod-3, and a substantial reduction in intracellular ROS levels within the nematode. In conclusion, our study sheds light on the anti-oxidant and anti-aging properties of PKS in C. elegans. This research not only contributes to understanding the biological mechanisms involved but also highlights the potential therapeutic applications of these natural compounds in combating aging-related processes.
Collapse
Affiliation(s)
- Yaqi Huang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yetong Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jia Deng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Sijie Gao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jiakang Qiu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Tong Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Nianhua Tan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Shaowu Cheng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|
3
|
Mo A, Liang Y, Cao X, Jiang J, Liu Y, Cao X, Qiu Y, He D. Polymer chain extenders induce significant toxicity through DAF-16 and SKN-1 pathways in Caenorhabditis elegans: A comparative analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134730. [PMID: 38797076 DOI: 10.1016/j.jhazmat.2024.134730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Polymer chain extenders, commonly used in plastic production, have garnered increasing attention due to their potential environmental impacts. However, a comprehensive understanding of their ecological risks remains largely unknown. In this study, we employed the model organism Caenorhabditis elegans to investigate toxicological profiles of ten commonly-used chain extenders. Exposure to environmentally relevant concentrations of these chain extenders (ranging from 0.1 µg L-1 to 10 mg L-1) caused significant variations in toxicity. Lethality assays demonstrated the LC50 values ranged from 92.42 µg L-1 to 1553.65 mg L-1, indicating marked differences in acute toxicity. Sublethal exposures could inhibit nematodes' growth, shorten lifespan, and induce locomotor deficits, neuronal damage, and reproductive toxicity. Molecular analyses further elucidated the involvement of the DAF-16 and SKN-1 signaling pathways, as evidenced by upregulated expression of genes including ctl-1,2,3, sod-3, gcs-1, and gst-4. It implicates these pathways in mediating oxidative stress and toxicities induced by chain extenders. Particularly, hexamethylene diisocyanate and diallyl maleate exhibited markedly high toxicity among the chain extenders, as revealed through a comparative analysis of multiple endpoints. These findings demonstrate the potential ecotoxicological risks of polymer chain extenders, and suggest the need for more rigorous environmental safety assessments.
Collapse
Affiliation(s)
- Aoyun Mo
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Yuqing Liang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Xiaomu Cao
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Jie Jiang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Yan Liu
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Xuelong Cao
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Yuping Qiu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Defu He
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, China.
| |
Collapse
|
4
|
Fryer E, Guha S, Rogel-Hernandez LE, Logan-Garbisch T, Farah H, Rezaei E, Mollhoff IN, Nekimken AL, Xu A, Seyahi LS, Fechner S, Druckmann S, Clandinin TR, Rhee SY, Goodman MB. A high-throughput behavioral screening platform for measuring chemotaxis by C. elegans. PLoS Biol 2024; 22:e3002672. [PMID: 38935621 PMCID: PMC11210793 DOI: 10.1371/journal.pbio.3002672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/11/2024] [Indexed: 06/29/2024] Open
Abstract
Throughout history, humans have relied on plants as a source of medication, flavoring, and food. Plants synthesize large chemical libraries and release many of these compounds into the rhizosphere and atmosphere where they affect animal and microbe behavior. To survive, nematodes must have evolved the sensory capacity to distinguish plant-made small molecules (SMs) that are harmful and must be avoided from those that are beneficial and should be sought. This ability to classify chemical cues as a function of their value is fundamental to olfaction and represents a capacity shared by many animals, including humans. Here, we present an efficient platform based on multiwell plates, liquid handling instrumentation, inexpensive optical scanners, and bespoke software that can efficiently determine the valence (attraction or repulsion) of single SMs in the model nematode, Caenorhabditis elegans. Using this integrated hardware-wetware-software platform, we screened 90 plant SMs and identified 37 that attracted or repelled wild-type animals but had no effect on mutants defective in chemosensory transduction. Genetic dissection indicates that for at least 10 of these SMs, response valence emerges from the integration of opposing signals, arguing that olfactory valence is often determined by integrating chemosensory signals over multiple lines of information. This study establishes that C. elegans is an effective discovery engine for determining chemotaxis valence and for identifying natural products detected by the chemosensory nervous system.
Collapse
Affiliation(s)
- Emily Fryer
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Sujay Guha
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Lucero E. Rogel-Hernandez
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Theresa Logan-Garbisch
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Neurosciences Graduate Program, Stanford University, Stanford, California, United States of America
| | - Hodan Farah
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Ehsan Rezaei
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Iris N. Mollhoff
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Adam L. Nekimken
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Angela Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Lara Selin Seyahi
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Sylvia Fechner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
| | - Thomas R. Clandinin
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
| | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
5
|
Fryer E, Guha S, Rogel-Hernandez LE, Logan-Garbisch T, Farah H, Rezaei E, Mollhoff IN, Nekimken AL, Xu A, Selin Seyahi L, Fechner S, Druckmann S, Clandinin TR, Rhee SY, Goodman MB. An efficient behavioral screening platform classifies natural products and other chemical cues according to their chemosensory valence in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.02.542933. [PMID: 37333363 PMCID: PMC10274637 DOI: 10.1101/2023.06.02.542933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Throughout history, humans have relied on plants as a source of medication, flavoring, and food. Plants synthesize large chemical libraries and release many of these compounds into the rhizosphere and atmosphere where they affect animal and microbe behavior. To survive, nematodes must have evolved the sensory capacity to distinguish plant-made small molecules (SMs) that are harmful and must be avoided from those that are beneficial and should be sought. This ability to classify chemical cues as a function of their value is fundamental to olfaction, and represents a capacity shared by many animals, including humans. Here, we present an efficient platform based on multi-well plates, liquid handling instrumentation, inexpensive optical scanners, and bespoke software that can efficiently determine the valence (attraction or repulsion) of single SMs in the model nematode, Caenorhabditis elegans. Using this integrated hardware-wetware-software platform, we screened 90 plant SMs and identified 37 that attracted or repelled wild-type animals, but had no effect on mutants defective in chemosensory transduction. Genetic dissection indicates that for at least 10 of these SMs, response valence emerges from the integration of opposing signals, arguing that olfactory valence is often determined by integrating chemosensory signals over multiple lines of information. This study establishes that C. elegans is an effective discovery engine for determining chemotaxis valence and for identifying natural products detected by the chemosensory nervous system.
Collapse
Affiliation(s)
- Emily Fryer
- Department of Plant Biology, Carnegie Institution for Science
- Department of Molecular and Cellular Physiology, Stanford University
| | - Sujay Guha
- Department of Molecular and Cellular Physiology, Stanford University
| | | | - Theresa Logan-Garbisch
- Department of Molecular and Cellular Physiology, Stanford University
- Neurosciences Graduate Program, Stanford University
| | - Hodan Farah
- Department of Plant Biology, Carnegie Institution for Science
- Department of Molecular and Cellular Physiology, Stanford University
| | - Ehsan Rezaei
- Department of Molecular and Cellular Physiology, Stanford University
| | - Iris N. Mollhoff
- Department of Plant Biology, Carnegie Institution for Science
- Department of Molecular and Cellular Physiology, Stanford University
- Department of Biology, Stanford University
| | - Adam L. Nekimken
- Department of Molecular and Cellular Physiology, Stanford University
- Department of Mechanical Engineering, Stanford University
| | - Angela Xu
- Department of Plant Biology, Carnegie Institution for Science
| | - Lara Selin Seyahi
- Department of Plant Biology, Carnegie Institution for Science
- Department of Molecular and Cellular Physiology, Stanford University
| | - Sylvia Fechner
- Department of Molecular and Cellular Physiology, Stanford University
| | | | | | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for Science
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University
| |
Collapse
|
6
|
Escudero-Leyva E, Quirós-Guerrero L, Vásquez-Chaves V, Pereira-Reyes R, Chaverri P, Tamayo-Castillo G. Differential Volatile Organic Compound Expression in the Interaction of Daldinia eschscholtzii and Mycena citricolor. ACS OMEGA 2023; 8:31373-31388. [PMID: 37663497 PMCID: PMC10468842 DOI: 10.1021/acsomega.3c03865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
Fungi exhibit a wide range of ecological guilds, but those that live within the inner tissues of plants (also known as endophytes) are particularly relevant due to the benefits they sometimes provide to their hosts, such as herbivory deterrence, disease protection, and growth promotion. Recently, endophytes have gained interest as potential biocontrol agents against crop pathogens, for example, coffee plants (Coffea arabica). Published results from research performed in our laboratory showed that endophytic fungi isolated from wild Rubiaceae plants were effective in reducing the effects of the American leaf spot of coffee (Mycena citricolor). One of these isolates (GU11N) from the plant Randia grandifolia was identified as Daldinia eschscholtzii (Xylariales). Its antagonism mechanisms, effects, and chemistry against M. citricolor were investigated by analyzing its volatile profile alone and in the presence of the pathogen in contactless and dual culture assays. The experimental design involved direct sampling of agar plugs in vials for headspace (HS) and headspace solid-phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS) analysis. Additionally, we used ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS/MS) to identify nonvolatile compounds from organic extracts of the mycelia involved in the interaction. Results showed that more volatile compounds were identified using HS-SPME (39 components) than those by the HS technique (13 components), sharing only 12 compounds. Statistical tests suggest that D. eschscholtzii inhibited the growth of M. citricolor through the release of VOCs containing a combination of 1,8-dimethoxynapththalene and terpene compounds affecting M. citricolor pseudopilei. The damaging effects of 1,8-dimethoxynaphthalene were corroborated in an in vitro test against M. citricolor pseudopilei; scanning electron microscopy (SEM) photographs confirmed structural damage. After analyzing the UHPLC-HRMS/MS data, a predominance of fatty acid derivatives was found among the putatively identified compounds. However, a considerable proportion of features (37.3%) remained unannotated. In conclusion, our study suggests that D. eschscholtzii has potential as a biocontrol agent against M. citricolor and that 1,8-dimethoxynaphthalene contributes to the observed damage to the pathogen's reproductive structures.
Collapse
Affiliation(s)
- Efraín Escudero-Leyva
- Centro
de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11520-2060 San José, Costa Rica
- Escuela
de Biología, Universidad de Costa
Rica, 11520-2060 San José, Costa Rica
| | - Luis Quirós-Guerrero
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1205 Geneva, Switzerland
- School
of Pharmaceutical Sciences, University of
Geneva, 1205 Geneva, Switzerland
| | - Víctor Vásquez-Chaves
- Centro
de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11520-2060 San José, Costa Rica
| | - Reinaldo Pereira-Reyes
- Laboratorio
Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología, 10109 San Jose, Costa Rica
| | - Priscila Chaverri
- Centro
de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11520-2060 San José, Costa Rica
- Escuela
de Biología, Universidad de Costa
Rica, 11520-2060 San José, Costa Rica
- Department
of Natural Sciences, Bowie State University, Bowie, Maryland 20715, United States
| | - Giselle Tamayo-Castillo
- Centro
de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11520-2060 San José, Costa Rica
- Escuela
de Química, Universidad de Costa
Rica, 11520-2060 San José, Costa Rica
| |
Collapse
|
7
|
Sun Y, Xie J, Tang L, Odiba AS, Chen Y, Fang W, Wu X, Wang B. Isolation, Identification and Molecular Mechanism Analysis of the Nematicidal Compound Spectinabilin from Newly Isolated Streptomyces sp. DT10. Molecules 2023; 28:4365. [PMID: 37298840 PMCID: PMC10254515 DOI: 10.3390/molecules28114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Plant parasitic nematodes (PPNs) are highly destructive and difficult to control, while conventional chemical nematicides are highly toxic and cause serious environmental pollution. Additionally, resistance to existing pesticides is becoming increasingly common. Biological control is the most promising method for the controlling of PPNs. Therefore, the screening of nematicidal microbial resources and the identification of natural products are of great significance and urgency for the environmentally friendly control of PPNs. In this study, the DT10 strain was isolated from wild moss samples and identified as Streptomyces sp. by morphological and molecular analysis. Using Caenorhabditis elegans as a model, the extract of DT10 was screened for nematicidal activity, which elicited 100% lethality. The active compound was isolated from the extracts of strain DT10 using silica gel column chromatography and semipreparative high-performance liquid chromatography (HPLC). The compound was identified as spectinabilin (chemical formula C28H31O6N) using liquid chromatography mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR). Spectinabilin exhibited a good nematicidal activity on C. elegans L1 worms, with a half-maximal inhibitory concentration (IC50) of 2.948 μg/mL at 24 h. The locomotive ability of C. elegans L4 worms was significantly reduced when treated with 40 μg/mL spectinabilin. Further analysis of spectinabilin against known nematicidal drug target genes in C. elegans showed that it acts via target(s) different from those of some currently used nematicidal drugs such as avermectin and phosphine thiazole. This is the first report on the nematicidal activity of spectinabilin on C. elegans and the southern root-knot nematode Meloidogyne incognita. These findings may pave the way for further research and application of spectinabilin as a potential biological nematicide.
Collapse
Affiliation(s)
- Yuchen Sun
- College of Agriculture, Guangxi University, Nanning 530004, China
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China (W.F.)
| | - Jin Xie
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China (W.F.)
| | - Lihua Tang
- College of Agriculture, Guangxi University, Nanning 530004, China
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China (W.F.)
| | - Arome Solomon Odiba
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China (W.F.)
| | - Yanlu Chen
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China (W.F.)
| | - Wenxia Fang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China (W.F.)
| | - Xiaogang Wu
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Bin Wang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China (W.F.)
| |
Collapse
|
8
|
Wang Y, Wang Y, Zhang Q, Fan H, Wang X, Wang J, Zhou Y, Chen Z, Sun F, Cui X. Saline-Alkali Soil Property Improved by the Synergistic Effects of Priestia aryabhattai JL-5, Staphylococcus pseudoxylosus XW-4, Leymus chinensis and Soil Microbiota. Int J Mol Sci 2023; 24:ijms24097737. [PMID: 37175442 PMCID: PMC10178608 DOI: 10.3390/ijms24097737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Two saline-alkali-tolerant bacterial strains, Priestia aryabhattai JL-5 and Staphylococcus pseudoxylosus XW-4, were isolated, with high capabilities of hydrolyzing phosphate and producing cellulase, respectively. The molecular mechanisms regulating the saline-alkali tolerance in the strain JL-5 were further investigated using transcriptome analysis. The contents of lactic acid and proline and the enzymatic activity of glutamine synthetase in the strain JL-5 were significantly increased. The properties of saline-alkali soils were significantly improved by the enhanced growth of the indicator plant Leymus chinensis under the combined applications of the strains JL-5 and XW-4 mixed with corn straw. The contents of catalase, peroxidase, superoxide dismutase and proline of L. chinensis were significantly increased, and the content of malondialdehyde was significantly decreased in the combined treatment of both bacterial strains. The contents of available nitrogen, phosphorus and potassium and organic matters in the soil treated with both strains were significantly increased, as well as the diversity and abundance of the soil microbiota. Our study evidently demonstrated the synergistic effects of the strains JL-5 and XW-4, indicator plants and the local microbiota in terms of improving the saline-alkali soil properties, providing strong experimental evidence to support the commercial development of the combined application of both strains to improve the properties of saline-alkali soils.
Collapse
Affiliation(s)
- Yujue Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Yan Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Qian Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Hangzhe Fan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Xinyu Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Jianan Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Zhanyu Chen
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Xiyan Cui
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
9
|
Nguyen VT, Park AR, Duraisamy K, Vo DD, Kim JC. Elucidation of the nematicidal mode of action of grammicin on Caenorhabditis elegans. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105244. [PMID: 36464355 DOI: 10.1016/j.pestbp.2022.105244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Grammicin (Gra) is derived from the endophytic fungus Xylaria grammica EL000614 and shows nematicidal activity against the devastating root-knot nematode Meloidogyne incognita in-vitro, in planta, and in-field experiments. However, the mechanism of the nematicidal action of Gra remains unclear. In this study, Gra exposure to the model genetic organism Caenorhabditis elegans affected its L1, L2/3, L4, and young adult stages. In addition, Gra treatment increased the intracellular reactive oxygen species (ROS) levels of C. elegans and M. incognita. Molecular docking interaction analysis indicated that Gra could bind and interact with GCS-1, GST-4, and DAF-16a in order of low binding energy, followed by SOD-3, SKN-1, and DAF-16b. This implies that the anthelmintic action of Gra is related to the oxidative stress response. To validate this mechanism, we examined the expression of the genes involved in the oxidative stress responses following treatment with Gra using transgenic C. elegans strains such as the TJ356 strain zIs356 [daf-16p::daf-16a/b::GFP + rol-6 (su1006)], LD1 ldIs7 [skn-1p::skn-1b/c::GFP + rol-6 (su1006)], LD1171 ldIs3 [gcs-1p::GFP + rol-6 (su1006)], CL2166 dvIs19 [(pAF15) gst-4p::GFP::NLS], and CF1553 strain muIs84 [(pAD76) sod-3p::GFP + rol-6 (su1006)]. Gra treatment caused nuclear translocation of DAF-16/FoxO and enhanced gst-4::GFP expression, but it had no change in sod-3::GFP expression. These results indicate that Gra induces oxidative stress response via phase II detoxification without reduced cellular redox machinery. Gra treatment also inhibited the nuclear localization of SKN-1::GFP in the intestine, which may lead to a condition in which oxidative stress tolerance is insufficient to protect C. elegans by the inactivation of SKN-1, thus inducing nematode lethality. Furthermore, Gra caused the mortality of two mutant strains of C. elegans, CB113 and DA1316, which are resistant to aldicarb and ivermectin, respectively. This indicates that the mode of action of Gra is different from the traditional nematicides currently in use, suggesting that it could help develop novel approaches to control plant-parasitic nematodes.
Collapse
Affiliation(s)
- Van Thi Nguyen
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kalaiselvi Duraisamy
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Duc Duy Vo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
10
|
Liu Y, Zhou Z, Yin L, Zhu M, Wang F, Zhang L, Wang H, Zhou Z, Zhu H, Huang C, Fan S. Tangeretin promotes lifespan associated with insulin/insulin-like growth factor-1 signaling pathway and heat resistance in Caenorhabditis elegans. Biofactors 2022; 48:442-453. [PMID: 34580918 DOI: 10.1002/biof.1788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022]
Abstract
Tangeretin is a polymethoxylated flavonoid naturally occurred in citrus fruits with many pharmacological activities, such as anti-inflammatory, antiproliferative, and neuroprotective properties. A previous study reported that tangeretin-enriched orange extract could prolong the lifespan in Caenorhabditis elegans. However, the antiaging effect of tangeretin remains uncertain. In this study, we used the model organism C. elegans to conduct a lifespan test, observed the aging-related functional changes of nematodes, the fluorescence changes of stress-related proteins (DAF-16 and HSP-16.2) and its response to stress assay, and monitored the effect of tangeretin on the mRNA expression levels. The results showed that tangeretin supplementation (30 and 100 μM) extended the mean lifespan, slowed aging-related functional declines, and increased the resistance against heat-shock stress. Furthermore, tangeretin upregulated the mRNA expression of daf-16, hsp-16.2, and hsp-16.49, promoted the nuclear localization of DAF-16, and enhanced the fluorescence intensity of HSP-16.2, while it had no effect on the lifespan of daf-2, age-1, and daf-16 mutants. The current findings suggest that tangeretin can significantly extend the lifespan and enhance heat stress tolerance in an insulin/insulin-like growth factor signaling dependent manner.
Collapse
Affiliation(s)
- Yalei Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenyu Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liufang Yin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fei Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongqing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Zhou L, Liu J, Bu LL, Liao DF, Cheng SW, Zheng XL. Curcumin Acetylsalicylate Extends the Lifespan of Caenorhabditis elegans. Molecules 2021; 26:molecules26216609. [PMID: 34771018 PMCID: PMC8586958 DOI: 10.3390/molecules26216609] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Aspirin and curcumin have been reported to be beneficial to anti-aging in a variety of biological models. Here, we synthesized a novel compound, curcumin acetylsalicylate (CA), by combining aspirin and curcumin. We characterized how CA affects the lifespan of Caenorhabditis elegans (C. elegans) worms. Our results demonstrated that CA extended the lifespan of worms in a dose-dependent manner and reached its highest anti-aging effect at the concentration of 20 μM. In addition, CA reduced the deposition of lipofuscin or "age pigment" without affecting the reproductivity of worms. CA also caused a rightward shift of C. elegans lifespan curves in the presence of paraquat-induced (5 mM) oxidative stress or 37 °C acute heat shock. Additionally, CA treatment decreased the reactive oxygen species (ROS) level in C. elegans and increased the expression of downstream genes superoxide dismutase (sod)-3, glutathione S-transferase (gst)-4, heat shock protein (hsp)-16.2, and catalase-1 (ctl-1). Notably, CA treatment resulted in nuclear translocation of the DAF-16 transcription factor, which is known to stimulate the expression of SOD-3, GST-4, HSP-16, and CTL-1. CA did not produce a longevity effect in daf-16 mutants. In sum, our data indicate that CA delayed the aging of C. elegans without affecting reproductivity, and this effect may be mediated by its activation of DAF-16 and subsequent expression of antioxidative genes, such as sod-3 and gst-4. Our study suggests that novel anti-aging drugs may be developed by combining two individual drugs.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (J.L.)
| | - Jin Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (J.L.)
| | - Lan-Lan Bu
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Shao-Wu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (J.L.)
- Correspondence: (S.-W.C.); (X.-L.Z.); Tel.: +1 (403)-220-8715 (X.-L.Z.); Fax: +1 (403)-210-9180 (X.-L.Z.)
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Correspondence: (S.-W.C.); (X.-L.Z.); Tel.: +1 (403)-220-8715 (X.-L.Z.); Fax: +1 (403)-210-9180 (X.-L.Z.)
| |
Collapse
|
12
|
Sanadhya P, Kumar A, Bucki P, Fitoussi N, Carmeli-Weissberg M, Borenstein M, Brown-Miyara S. Tomato Divinyl Ether-Biosynthesis Pathway Is Implicated in Modulating of Root-Knot Nematode Meloidogyne javanica's Parasitic Ability. FRONTIERS IN PLANT SCIENCE 2021; 12:670772. [PMID: 34512679 PMCID: PMC8424051 DOI: 10.3389/fpls.2021.670772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/21/2021] [Indexed: 05/27/2023]
Abstract
The role of the 9-lipoxygenase (9-LOX)-derived oxylipins in plant defense is mainly known in solanaceous plants. In this work, we identify the functional role of the tomato divinyl ether synthase (LeDES) branch, which exclusively converts 9-hydroperoxides to the 9-divinyl ethers (DVEs) colneleic acid (CA) and colnelenic acid (CnA), during infection by the root-knot nematode Meloidogyne javanica. Analysis of LeDES expression in roots indicated a concurrent response to nematode infection, demonstrating a sharp increase in expression during the molting of third/fourth-stage juveniles, 15 days after inoculation. Spatiotemporal expression analysis using an LeDES promoter:GUS tomato line showed high GUS activity associated with the developing gall; however the GUS signal became more constricted as infection progressed to the mature nematode feeding sites, and eventually disappeared. Wounding did not activate the LeDES promoter, but auxins and methyl salicylate triggered LeDES expression, indicating a hormone-mediated function of DVEs. Heterologous expression of LeDES in Arabidopsis thaliana rendered the plants more resistant to nematode infection and resulted in a significant reduction in third/fourth-stage juveniles and adult females as compared to a vector control and the wild type. To further evaluate the nematotoxic activity of the DVEs CA and CnA, recombinant yeast that catalyzes the formation of CA and CnA from 9-hydroperoxides was generated. Transgenic yeast accumulating CnA was tested for its impact on M. javanica juveniles, indicating a decrease in second-stage juvenile motility. Taken together, our results suggest an important role for LeDES as a determinant in the defense response during M. javanica parasitism, and indicate two functional modes: directly via DVE motility inhibition effect and through signal molecule-mediated defense reactions to nematodes that depend on methyl salicylate.
Collapse
Affiliation(s)
- Payal Sanadhya
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Anil Kumar
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
- Department of Plant Pathology and Microbiology, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mira Carmeli-Weissberg
- Metabolomics, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Menachem Borenstein
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Sigal Brown-Miyara
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| |
Collapse
|
13
|
Liarzi O, Benichis M, Gamliel A, Ezra D. trans-2-Octenal, a single compound of a fungal origin, controls Sclerotium rolfsii, both in vitro and in soil. PEST MANAGEMENT SCIENCE 2020; 76:2068-2071. [PMID: 31943663 DOI: 10.1002/ps.5744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/24/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sclerotium rolfsii is a soil-borne phytopathogenic fungus that causes diseases in economically important crops. Eradication of the fungus is hampered by its wide range of hosts, as well as its capacity to form sclerotia. Recently, we have shown that the endophytic fungus Daldinia cf. concentrica emits biologically active volatile organic compounds (VOCs); we also demonstrated that one VOC, trans-2-octenal, was the most effective against various phytopathogenic fungi. Thus, the aim of this study was to examine the potential of this compound to control hyphae and sclerotia of S. rolfsii, both in vitro and in soil. RESULTS We found that in vitro exposure of S. rolfsii mycelium to trans-2-octenal in air fully inhibits and kills the fungus. Elimination of sclerotia viability occurred at the same concentration, but direct contact between the sclerotia and the compound was needed. trans-2-Octenal also affected the viability of both hyphae and sclerotia of S. rolfsii in small pots containing loam soil. CONCLUSION We suggest the use of trans-2-octenal as a novel compound to control S. rolfsii. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Orna Liarzi
- Department of Plant Pathology and Weed Research, ARO - the Volcani Center, Rishon LeZion, Israel
| | - Marina Benichis
- Laboratory for Pest Management Research, Institute of Agricultural Engineering, ARO - the Volcani Center, Rishon LeZion, Israel
| | - Abraham Gamliel
- Laboratory for Pest Management Research, Institute of Agricultural Engineering, ARO - the Volcani Center, Rishon LeZion, Israel
| | - David Ezra
- Department of Plant Pathology and Weed Research, ARO - the Volcani Center, Rishon LeZion, Israel
| |
Collapse
|