1
|
Dalldorf C, Rychel K, Szubin R, Hefner Y, Patel A, Zielinski DC, Palsson BO. The hallmarks of a tradeoff in transcriptomes that balances stress and growth functions. mSystems 2024; 9:e0030524. [PMID: 38829048 PMCID: PMC11264592 DOI: 10.1128/msystems.00305-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Fast growth phenotypes are achieved through optimal transcriptomic allocation, in which cells must balance tradeoffs in resource allocation between diverse functions. One such balance between stress readiness and unbridled growth in E. coli has been termed the fear versus greed (f/g) tradeoff. Two specific RNA polymerase (RNAP) mutations observed in adaptation to fast growth have been previously shown to affect the f/g tradeoff, suggesting that genetic adaptations may be primed to control f/g resource allocation. Here, we conduct a greatly expanded study of the genetic control of the f/g tradeoff across diverse conditions. We introduced 12 RNA polymerase (RNAP) mutations commonly acquired during adaptive laboratory evolution (ALE) and obtained expression profiles of each. We found that these single RNAP mutation strains resulted in large shifts in the f/g tradeoff primarily in the RpoS regulon and ribosomal genes, likely through modifying RNAP-DNA interactions. Two of these mutations additionally caused condition-specific transcriptional adaptations. While this tradeoff was previously characterized by the RpoS regulon and ribosomal expression, we find that the GAD regulon plays an important role in stress readiness and ppGpp in translation activity, expanding the scope of the tradeoff. A phylogenetic analysis found the greed-related genes of the tradeoff present in numerous bacterial species. The results suggest that the f/g tradeoff represents a general principle of transcriptome allocation in bacteria where small genetic changes can result in large phenotypic adaptations to growth conditions.IMPORTANCETo increase growth, E. coli must raise ribosomal content at the expense of non-growth functions. Previous studies have linked RNAP mutations to this transcriptional shift and increased growth but were focused on only two mutations found in the protein's central region. RNAP mutations, however, commonly occur over a large structural range. To explore RNAP mutations' impact, we have introduced 12 RNAP mutations found in laboratory evolution experiments and obtained expression profiles of each. The mutations nearly universally increased growth rates by adjusting said tradeoff away from non-growth functions. In addition to this shift, a few caused condition-specific adaptations. We explored the prevalence of this tradeoff across phylogeny and found it to be a widespread and conserved trend among bacteria.
Collapse
Affiliation(s)
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Ying Hefner
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Arjun Patel
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
2
|
Qiu S, Wan X, Liang Y, Lamoureux CR, Akbari A, Palsson BO, Zielinski DC. Inferred regulons are consistent with regulator binding sequences in E. coli. PLoS Comput Biol 2024; 20:e1011824. [PMID: 38252668 PMCID: PMC10833566 DOI: 10.1371/journal.pcbi.1011824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/01/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The transcriptional regulatory network (TRN) of E. coli consists of thousands of interactions between regulators and DNA sequences. Regulons are typically determined either from resource-intensive experimental measurement of functional binding sites, or inferred from analysis of high-throughput gene expression datasets. Recently, independent component analysis (ICA) of RNA-seq compendia has shown to be a powerful method for inferring bacterial regulons. However, it remains unclear to what extent regulons predicted by ICA structure have a biochemical basis in promoter sequences. Here, we address this question by developing machine learning models that predict inferred regulon structures in E. coli based on promoter sequence features. Models were constructed successfully (cross-validation AUROC > = 0.8) for 85% (40/47) of ICA-inferred E. coli regulons. We found that: 1) The presence of a high scoring regulator motif in the promoter region was sufficient to specify regulatory activity in 40% (19/47) of the regulons, 2) Additional features, such as DNA shape and extended motifs that can account for regulator multimeric binding, helped to specify regulon structure for the remaining 60% of regulons (28/47); 3) investigating regulons where initial machine learning models failed revealed new regulator-specific sequence features that improved model accuracy. Finally, we found that strong regulatory binding sequences underlie both the genes shared between ICA-inferred and experimental regulons as well as genes in the E. coli core pan-regulon of Fur. This work demonstrates that the structure of ICA-inferred regulons largely can be understood through the strength of regulator binding sites in promoter regions, reinforcing the utility of top-down inference for regulon discovery.
Collapse
Affiliation(s)
- Sizhe Qiu
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| | - Xinlong Wan
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| | - Yueshan Liang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| | - Cameron R. Lamoureux
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| | - Amir Akbari
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
3
|
Lamoureux CR, Decker KT, Sastry AV, Rychel K, Gao Y, McConn J, Zielinski D, Palsson BO. A multi-scale expression and regulation knowledge base for Escherichia coli. Nucleic Acids Res 2023; 51:10176-10193. [PMID: 37713610 PMCID: PMC10602906 DOI: 10.1093/nar/gkad750] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
Transcriptomic data is accumulating rapidly; thus, scalable methods for extracting knowledge from this data are critical. Here, we assembled a top-down expression and regulation knowledge base for Escherichia coli. The expression component is a 1035-sample, high-quality RNA-seq compendium consisting of data generated in our lab using a single experimental protocol. The compendium contains diverse growth conditions, including: 9 media; 39 supplements, including antibiotics; 42 heterologous proteins; and 76 gene knockouts. Using this resource, we elucidated global expression patterns. We used machine learning to extract 201 modules that account for 86% of known regulatory interactions, creating the regulatory component. With these modules, we identified two novel regulons and quantified systems-level regulatory responses. We also integrated 1675 curated, publicly-available transcriptomes into the resource. We demonstrated workflows for analyzing new data against this knowledge base via deconstruction of regulation during aerobic transition. This resource illuminates the E. coli transcriptome at scale and provides a blueprint for top-down transcriptomic analysis of non-model organisms.
Collapse
Affiliation(s)
- Cameron R Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine T Decker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ye Gao
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - John Luke McConn
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Krol E, Werel L, Essen LO, Becker A. Structural and functional diversity of bacterial cyclic nucleotide perception by CRP proteins. MICROLIFE 2023; 4:uqad024. [PMID: 37223727 PMCID: PMC10187061 DOI: 10.1093/femsml/uqad024] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Cyclic AMP (cAMP) is a ubiquitous second messenger synthesized by most living organisms. In bacteria, it plays highly diverse roles in metabolism, host colonization, motility, and many other processes important for optimal fitness. The main route of cAMP perception is through transcription factors from the diverse and versatile CRP-FNR protein superfamily. Since the discovery of the very first CRP protein CAP in Escherichia coli more than four decades ago, its homologs have been characterized in both closely related and distant bacterial species. The cAMP-mediated gene activation for carbon catabolism by a CRP protein in the absence of glucose seems to be restricted to E. coli and its close relatives. In other phyla, the regulatory targets are more diverse. In addition to cAMP, cGMP has recently been identified as a ligand of certain CRP proteins. In a CRP dimer, each of the two cyclic nucleotide molecules makes contacts with both protein subunits and effectuates a conformational change that favors DNA binding. Here, we summarize the current knowledge on structural and physiological aspects of E. coli CAP compared with other cAMP- and cGMP-activated transcription factors, and point to emerging trends in metabolic regulation related to lysine modification and membrane association of CRP proteins.
Collapse
Affiliation(s)
- Elizaveta Krol
- Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Laura Werel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Lars Oliver Essen
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Anke Becker
- Corresponding author. Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg. E-mail:
| |
Collapse
|
5
|
Chen Y, Lin YCD, Luo Y, Cai X, Qiu P, Cui S, Wang Z, Huang HY, Huang HD. Quantitative model for genome-wide cyclic AMP receptor protein binding site identification and characteristic analysis. Brief Bioinform 2023; 24:7145906. [PMID: 37114659 DOI: 10.1093/bib/bbad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Cyclic AMP receptor proteins (CRPs) are important transcription regulators in many species. The prediction of CRP-binding sites was mainly based on position-weighted matrixes (PWMs). Traditional prediction methods only considered known binding motifs, and their ability to discover inflexible binding patterns was limited. Thus, a novel CRP-binding site prediction model called CRPBSFinder was developed in this research, which combined the hidden Markov model, knowledge-based PWMs and structure-based binding affinity matrixes. We trained this model using validated CRP-binding data from Escherichia coli and evaluated it with computational and experimental methods. The result shows that the model not only can provide higher prediction performance than a classic method but also quantitatively indicates the binding affinity of transcription factor binding sites by prediction scores. The prediction result included not only the most knowns regulated genes but also 1089 novel CRP-regulated genes. The major regulatory roles of CRPs were divided into four classes: carbohydrate metabolism, organic acid metabolism, nitrogen compound metabolism and cellular transport. Several novel functions were also discovered, including heterocycle metabolic and response to stimulus. Based on the functional similarity of homologous CRPs, we applied the model to 35 other species. The prediction tool and the prediction results are online and are available at: https://awi.cuhk.edu.cn/∼CRPBSFinder.
Collapse
Affiliation(s)
- Yigang Chen
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yang-Chi-Dung Lin
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yijun Luo
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Xiaoxuan Cai
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Peng Qiu
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Shidong Cui
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Zhe Wang
- School of Humanities and Social Science, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Hsi-Yuan Huang
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Hsien-Da Huang
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| |
Collapse
|
6
|
Dalldorf C, Rychel K, Szubin R, Hefner Y, Patel A, Zielinski DC, Palsson BO. The hallmarks of a tradeoff in transcriptomes that balances stress and growth functions. RESEARCH SQUARE 2023:rs.3.rs-2729651. [PMID: 37090546 PMCID: PMC10120744 DOI: 10.21203/rs.3.rs-2729651/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Fit phenotypes are achieved through optimal transcriptomic allocation. Here, we performed a high-resolution, multi-scale study of the transcriptomic tradeoff between two key fitness phenotypes, stress response (fear) and growth (greed), in Escherichia coli. We introduced twelve RNA polymerase (RNAP) mutations commonly acquired during adaptive laboratory evolution (ALE) and found that single mutations resulted in large shifts in the fear vs. greed tradeoff, likely through destabilizing the rpoB-rpoC interface. RpoS and GAD regulons drive the fear response while ribosomal proteins and the ppGpp regulon underlie greed. Growth rate selection pressure during ALE results in endpoint strains that often have RNAP mutations, with synergistic mutations reflective of particular conditions. A phylogenetic analysis found the tradeoff in numerous bacteria species. The results suggest that the fear vs. greed tradeoff represents a general principle of transcriptome allocation in bacteria where small genetic changes can result in large phenotypic adaptations to growth conditions.
Collapse
Affiliation(s)
- Christopher Dalldorf
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Arjun Patel
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
7
|
The Hypersaline Archaeal Histones HpyA and HstA Are DNA Binding Proteins That Defy Categorization According to Commonly Used Functional Criteria. mBio 2023; 14:e0344922. [PMID: 36779711 PMCID: PMC10128011 DOI: 10.1128/mbio.03449-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Histone proteins are found across diverse lineages of Archaea, many of which package DNA and form chromatin. However, previous research has led to the hypothesis that the histone-like proteins of high-salt-adapted archaea, or halophiles, function differently. The sole histone protein encoded by the model halophilic species Halobacterium salinarum, HpyA, is nonessential and expressed at levels too low to enable genome-wide DNA packaging. Instead, HpyA mediates the transcriptional response to salt stress. Here we compare the features of genome-wide binding of HpyA to those of HstA, the sole histone of another model halophile, Haloferax volcanii. hstA, like hpyA, is a nonessential gene. To better understand HpyA and HstA functions, protein-DNA binding data (chromatin immunoprecipitation sequencing [ChIP-seq]) of these halophilic histones are compared to publicly available ChIP-seq data from DNA binding proteins across all domains of life, including transcription factors (TFs), nucleoid-associated proteins (NAPs), and histones. These analyses demonstrate that HpyA and HstA bind the genome infrequently in discrete regions, which is similar to TFs but unlike NAPs, which bind a much larger genomic fraction. However, unlike TFs that typically bind in intergenic regions, HpyA and HstA binding sites are located in both coding and intergenic regions. The genome-wide dinucleotide periodicity known to facilitate histone binding was undetectable in the genomes of both species. Instead, TF-like and histone-like binding sequence preferences were detected for HstA and HpyA, respectively. Taken together, these data suggest that halophilic archaeal histones are unlikely to facilitate genome-wide chromatin formation and that their function defies categorization as a TF, NAP, or histone. IMPORTANCE Most cells in eukaryotic species-from yeast to humans-possess histone proteins that pack and unpack DNA in response to environmental cues. These essential proteins regulate genes necessary for important cellular processes, including development and stress protection. Although the histone fold domain originated in the domain of life Archaea, the function of archaeal histone-like proteins is not well understood relative to those of eukaryotes. We recently discovered that, unlike histones of eukaryotes, histones in hypersaline-adapted archaeal species do not package DNA and can act as transcription factors (TFs) to regulate stress response gene expression. However, the function of histones across species of hypersaline-adapted archaea still remains unclear. Here, we compare hypersaline histone function to a variety of DNA binding proteins across the tree of life, revealing histone-like behavior in some respects and specific transcriptional regulatory function in others.
Collapse
|
8
|
Amin MR, Korchinski L, Yoneda JK, Thakkar R, Sanson CLA, Fitzgerald SF, Kelln RA, Cameron ADS. A mutation in the putative CRP binding site of the dctA promoter of Salmonella enterica serovar Typhimurium enables growth with low orotate concentrations. Can J Microbiol 2022; 68:615-621. [PMID: 35921682 DOI: 10.1139/cjm-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Salmonella enterica and Escherichia coli use the inner membrane transporter DctA to import the pyrimidine biosynthetic pathway intermediate orotate from the environment. To study the regulation of dctA expression, we used a S. enterica serovar Typhimurium pyrimidine auxotroph to select a mutant that could grow in an otherwise non-permissive culture medium containing glucose and a low concentration of orotate. Whole genome sequencing revealed a point mutation upstream of dctA in the putative cyclic AMP receptor protein (CRP) binding site. The C->T transition converted the least-favourable base to the most-favourable base for CRP-DNA affinity. A dctA::lux transcriptional fusion confirmed that the mutant dctA promoter gained responsiveness to CRP even in the presence of glucose. Moreover, dctA expression was higher in the mutant than the wild type in the presence of alternative carbon sources that activate CRP.
Collapse
Affiliation(s)
- Mohammad R Amin
- University of Regina, 6846, Department of Biology, Regina, Saskatchewan, Canada.,University of Regina, 6846, Institute for Microbial Systems and Society, Regina, Saskatchewan, Canada;
| | - Lisa Korchinski
- University of Regina, 6846, Department of Chemistry and Biochemistry, Regina, Saskatchewan, Canada;
| | - Joshua K Yoneda
- University of Regina, 6846, Department of Biology, Regina, Saskatchewan, Canada.,University of Regina, 6846, Institute for Microbial Systems and Society, Regina, Saskatchewan, Canada;
| | - Rishi Thakkar
- University of Regina, 6846, Department of Biology, Regina, Saskatchewan, Canada.,University of Regina, 6846, Institute for Microbial Systems and Society, Regina, Saskatchewan, Canada;
| | - Carla L A Sanson
- University of Regina, 6846, Department of Chemistry and Biochemistry, Regina, Saskatchewan, Canada.,Government of Saskatchewan Ministry of Labour Relations and Workplace Safety, 359189, Occupational Health and Safety Branch, Regina, Saskatchewan, Canada;
| | - Stephen F Fitzgerald
- University of Regina, 6846, Department of Biology, Regina, Saskatchewan, Canada.,Moredun Research Institute, 6485, Penicuik, United Kingdom of Great Britain and Northern Ireland;
| | - Rod A Kelln
- University of Regina, 6846, Department of Chemistry and Biochemistry, Regina, Saskatchewan, Canada;
| | - Andrew D S Cameron
- University of Regina, 6846, Department of Biology, Regina, Saskatchewan, Canada.,University of Regina, 6846, Institute for Microbial Systems and Society, Regina, Saskatchewan, Canada;
| |
Collapse
|
9
|
Pal A, Iyer MS, Srinivasan S, Narain Seshasayee AS, Venkatesh KV. Global pleiotropic effects in adaptively evolved Escherichia coli lacking CRP reveal molecular mechanisms that define the growth physiology. Open Biol 2022; 12:210206. [PMID: 35167766 PMCID: PMC8846999 DOI: 10.1098/rsob.210206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Evolution facilitates emergence of fitter phenotypes by efficient allocation of cellular resources in conjunction with beneficial mutations. However, system-wide pleiotropic effects that redress the perturbations to the apex node of the transcriptional regulatory networks remain unclear. Here, we elucidate that absence of global transcriptional regulator CRP in Escherichia coli results in alterations in key metabolic pathways under glucose respiratory conditions, favouring stress- or hedging-related functions over growth-enhancing functions. Further, we disentangle the growth-mediated effects from the CRP regulation-specific effects on these metabolic pathways. We quantitatively illustrate that the loss of CRP perturbs proteome efficiency, as evident from metabolic as well as ribosomal proteome fractions, that corroborated with intracellular metabolite profiles. To address how E. coli copes with such systemic defect, we evolved Δcrp mutant in the presence of glucose. Besides acquiring mutations in the promoter of glucose transporter ptsG, the evolved populations recovered the metabolic pathways to their pre-perturbed state coupled with metabolite re-adjustments, which altogether enabled increased growth. By contrast to Δcrp mutant, the evolved strains remodelled their proteome efficiency towards biomass synthesis, albeit at the expense of carbon efficiency. Overall, we comprehensively illustrate the genetic and metabolic basis of pleiotropic effects, fundamental for understanding the growth physiology.
Collapse
Affiliation(s)
- Ankita Pal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mahesh S. Iyer
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sumana Srinivasan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - K. V. Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
10
|
Seok JY, Han YH, Yang JS, Yang J, Lim HG, Kim SG, Seo SW, Jung GY. Synthetic biosensor accelerates evolution by rewiring carbon metabolism toward a specific metabolite. Cell Rep 2021; 36:109589. [PMID: 34433019 DOI: 10.1016/j.celrep.2021.109589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/01/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022] Open
Abstract
Proper carbon flux distribution between cell growth and production of a target compound is important for biochemical production because improper flux reallocation inhibits cell growth, thus adversely affecting production yield. Here, using a synthetic biosensor to couple production of a specific metabolite with cell growth, we spontaneously evolve cells under the selective condition toward the acquisition of genotypes that optimally reallocate cellular resources. Using 3-hydroxypropionic acid (3-HP) production from glycerol in Escherichia coli as a model system, we determine that mutations in the conserved regions of proteins involved in global transcriptional regulation alter the expression of several genes associated with central carbon metabolism. These changes rewire central carbon flux toward the 3-HP production pathway, increasing 3-HP yield and reducing acetate accumulation by alleviating overflow metabolism. Our study provides a perspective on adaptive laboratory evolution (ALE) using synthetic biosensors, thereby supporting future efforts in metabolic pathway optimization.
Collapse
Affiliation(s)
- Joo Yeon Seok
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jae-Seong Yang
- Centre de Recerca en Agrigenòmica, Consortium CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jina Yang
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Hyun Gyu Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Seong Gyeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| |
Collapse
|
11
|
Durand R, Huguet KT, Rivard N, Carraro N, Rodrigue S, Burrus V. Crucial role of Salmonella genomic island 1 master activator in the parasitism of IncC plasmids. Nucleic Acids Res 2021; 49:7807-7824. [PMID: 33834206 PMCID: PMC8373056 DOI: 10.1093/nar/gkab204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
IncC conjugative plasmids and the multiple variants of Salmonella Genomic Island 1 (SGI1) are two functionally interacting families of mobile genetic elements commonly associated with multidrug resistance in the Gammaproteobacteria. SGI1 and its siblings are specifically mobilised in trans by IncC conjugative plasmids. Conjugative transfer of IncC plasmids is activated by the plasmid-encoded master activator AcaCD. SGI1 carries five AcaCD-responsive promoters that drive the expression of genes involved in its excision, replication, and mobilisation. SGI1 encodes an AcaCD homologue, the transcriptional activator complex SgaCD (also known as FlhDCSGI1) that seems to recognise and activate the same SGI1 promoters. Here, we investigated the relevance of SgaCD in SGI1's lifecycle. Mating assays revealed the requirement for SgaCD and its IncC-encoded counterpart AcaCD in the mobilisation of SGI1. An integrative approach combining ChIP-exo, Cappable-seq, and RNA-seq confirmed that SgaCD activates each of the 18 AcaCD-responsive promoters driving the expression of the plasmid transfer functions. A comprehensive analysis of the activity of the complete set of AcaCD-responsive promoters of SGI1 and the helper IncC plasmid was performed through reporter assays. qPCR and flow cytometry assays revealed that SgaCD is essential to elicit the excision and replication of SGI1 and destabilise the helper IncC plasmid.
Collapse
Affiliation(s)
- Romain Durand
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Kévin T Huguet
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Nicolas Rivard
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Nicolas Carraro
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Sébastien Rodrigue
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Vincent Burrus
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
12
|
Identification of a transcription factor, PunR, that regulates the purine and purine nucleoside transporter punC in E. coli. Commun Biol 2021; 4:991. [PMID: 34413462 PMCID: PMC8376909 DOI: 10.1038/s42003-021-02516-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/21/2021] [Indexed: 01/26/2023] Open
Abstract
Many genes in bacterial genomes are of unknown function, often referred to as y-genes. Recently, the analytic methods have divided bacterial transcriptomes into independently modulated sets of genes (iModulons). Functionally annotated iModulons that contain y-genes lead to testable hypotheses to elucidate y-gene function. The inversely correlated expression of a putative transporter gene, ydhC, relative to purine biosynthetic genes, has led to the hypothesis that it encodes a purine-related transporter and revealed a LysR-family regulator, YdhB, with a predicted 23-bp palindromic binding motif. RNA-Seq analysis of a ydhB knockout mutant confirmed the YdhB-dependent activation of ydhC in the presence of adenosine. The deletion of either the ydhC or the ydhB gene led to a substantially decreased growth rate for E. coli in minimal medium with adenosine, inosine, or guanosine as the nitrogen source. Taken together, we provide clear evidence that YdhB activates the expression of the ydhC gene that encodes a purine transporter in E. coli. We propose that the genes ydhB and ydhC be re-named as punR and punC, respectively. Rodionova et al. find that the putative transporter gene, ydhC and its regulator ydhB are involved in purine transportation and that the expression of the ydhC gene is activated by the YdhB in E. coli. The authors suggest renaming the regulator PunR and the transporter PunC, respectively.
Collapse
|
13
|
XACT-Seq Comprehensively Defines the Promoter-Position and Promoter-Sequence Determinants for Initial-Transcription Pausing. Mol Cell 2020; 79:797-811.e8. [PMID: 32750314 DOI: 10.1016/j.molcel.2020.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
Pausing by RNA polymerase (RNAP) during transcription elongation, in which a translocating RNAP uses a "stepping" mechanism, has been studied extensively, but pausing by RNAP during initial transcription, in which a promoter-anchored RNAP uses a "scrunching" mechanism, has not. We report a method that directly defines the RNAP-active-center position relative to DNA with single-nucleotide resolution (XACT-seq; "crosslink-between-active-center-and-template sequencing"). We apply this method to detect and quantify pausing in initial transcription at 411 (∼4,000,000) promoter sequences in vivo in Escherichia coli. The results show initial-transcription pausing can occur in each nucleotide addition during initial transcription, particularly the first 4 to 5 nucleotide additions. The results further show initial-transcription pausing occurs at sequences that resemble the consensus sequence element for transcription-elongation pausing. Our findings define the positional and sequence determinants for initial-transcription pausing and establish initial-transcription pausing is hard coded by sequence elements similar to those for transcription-elongation pausing.
Collapse
|
14
|
Guzmán GI, Olson CA, Hefner Y, Phaneuf PV, Catoiu E, Crepaldi LB, Micas LG, Palsson BO, Feist AM. Reframing gene essentiality in terms of adaptive flexibility. BMC SYSTEMS BIOLOGY 2018; 12:143. [PMID: 30558585 PMCID: PMC6296033 DOI: 10.1186/s12918-018-0653-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 11/13/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Essentiality assays are important tools commonly utilized for the discovery of gene functions. Growth/no growth screens of single gene knockout strain collections are also often utilized to test the predictive power of genome-scale models. False positive predictions occur when computational analysis predicts a gene to be non-essential, however experimental screens deem the gene to be essential. One explanation for this inconsistency is that the model contains the wrong information, possibly an incorrectly annotated alternative pathway or isozyme reaction. Inconsistencies could also be attributed to experimental limitations, such as growth tests with arbitrary time cut-offs. The focus of this study was to resolve such inconsistencies to better understand isozyme activities and gene essentiality. RESULTS In this study, we explored the definition of conditional essentiality from a phenotypic and genomic perspective. Gene-deletion strains associated with false positive predictions of gene essentiality on defined minimal medium for Escherichia coli were targeted for extended growth tests followed by population sequencing and transcriptome analysis. Of the twenty false positive strains available and confirmed from the Keio single gene knock-out collection, 11 strains were shown to grow with longer incubation periods making these actual true positives. These strains grew reproducibly with a diverse range of growth phenotypes. The lag phase observed for these strains ranged from less than one day to more than 7 days. It was found that 9 out of 11 of the false positive strains that grew acquired mutations in at least one replicate experiment and the types of mutations ranged from SNPs and small indels associated with regulatory or metabolic elements to large regions of genome duplication. Comparison of the detected adaptive mutations, modeling predictions of alternate pathways and isozymes, and transcriptome analysis of KO strains suggested agreement for the observed growth phenotype for 6 out of the 9 cases where mutations were observed. CONCLUSIONS Longer-term growth experiments followed by whole genome sequencing and transcriptome analysis can provide a better understanding of conditional gene essentiality and mechanisms of adaptation to such perturbations. Compensatory mutations are largely reproducible mechanisms and are in agreement with genome-scale modeling predictions to loss of function gene deletion events.
Collapse
Affiliation(s)
- Gabriela I Guzmán
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Connor A Olson
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Patrick V Phaneuf
- Department of Bioinformatics and Systems Biology, University of California, San Diego, 92093, La Jolla, CA, USA
| | - Edward Catoiu
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Lais B Crepaldi
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA.,Department of Chemical Engineering, University of Ribeirão Preto, São Paulo, Brazil
| | - Lucas Goldschmidt Micas
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA.,Department of Chemical and Petroleum Engineering, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Department of Pediatrics, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|