1
|
Serra S, Marzorati S, Szczepańska E, Strzała T, Boratyński F. Basidiomycota strains as whole-cell biocatalysts for the synthesis of high-value natural benzaldehydes. Appl Microbiol Biotechnol 2024; 108:113. [PMID: 38212964 PMCID: PMC10784365 DOI: 10.1007/s00253-023-12872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 01/13/2024]
Abstract
Substituted benzaldehydes are the most commonly used natural-occurring flavours in the world. The consumer's preference for 'natural or organic' aromas has increased the request for flavours possessing the 'natural' status. The resulting shortage of aromatic aldehydes of extractive origin, such as vanillin, veratraldehyde and piperonal, can be offset by developing a new biotechnological synthesis method. Here, we report a study on the microbiological reduction of five natural benzoic acid derivatives, namely p-anisic, vanillic, veratric, piperonylic and eudesmic acids, to produce the corresponding fragrant aldehydes. We found that different Basidiomycota strains can efficiently perform this transformation, with good chemical selectivity and tolerance to the toxicity of substrates and products. Besides confirming the carboxylic acid reductase activity of the already studied fungi Pycnoporus cinnabarinus, we discovered that other species such as Pleurotus eryngii, Pleurotus sapidus and Laetiporus sulphureus as well as the non-ligninolytic fungi Lepista nuda are valuable microorganisms for the synthesis of anisaldehyde, vanillin, veratraldehyde, piperonal and 3,4,5-trimethoxybenzaldehyde from the corresponding acids. According to our findings, we propose a reliable process for the preparation of the above-mentioned aldehydes, in natural form. KEY POINTS: • Fragrant benzaldehydes were obtained by biotransformation. • Basidiomycota strains reduced substituted benzoic acid to the corresponding aldehydes. • Anisaldehyde, vanillin, veratraldehyde, piperonal and 3,4,5-trimethoxybenzaldehyde were prepared in natural form.
Collapse
Affiliation(s)
- Stefano Serra
- Consiglio Nazionale delle Ricerche (C.N.R.), Istituto di Scienze e Tecnologie Chimiche, Via Mancinelli 7, 20131, Milan, Italy.
| | - Stefano Marzorati
- Consiglio Nazionale delle Ricerche (C.N.R.), Istituto di Scienze e Tecnologie Chimiche, Via Mancinelli 7, 20131, Milan, Italy
| | - Ewa Szczepańska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Tomasz Strzała
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Ul. Kożuchowska 7, 51-631, Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
2
|
Hong T, Pan R, Ke J, Luo Y, Hao Y, Chen L, Tu D, Dai Y, Chen T, Chen S. Expression, purification, and enzymatic characterization of an extracellular protease from Halococcus salifodinae. Braz J Microbiol 2023; 54:2689-2703. [PMID: 37661213 PMCID: PMC10689711 DOI: 10.1007/s42770-023-01114-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Extracellular proteases from halophilic archaea displays increased enzymatic activities in hypersaline environment. In this study, an extracellular protease-coding gene, hly34, from the haloarchaeal strain Halococcus salifodinae PRR34, was obtained through homologous search. The protease activity produced by this strain at 20% NaCl, 42 °C, and pH 7.0 was 32.5 ± 0.5 (U·mL-1). The codon-optimized hly34 which is specific for Escherichia coli can be expressed in E. coli instead of native hly34. It exhibits proteolytic activity under a wide range of low- or high-salt concentrations, slightly acidic or alkaline conditions, and slightly higher temperatures. The Hly34 presented the highest proteolytic activity at 50 °C, pH 9.0, and 0-1 M NaCl. It was found that the Hly34 showed a higher enzyme activity under low-salt conditions. Hly34 has good stability at different NaCl concentrations (1-4 M) and pH (6.0-10.0), as well as good tolerance to some metal ions. However, at 60 °C, the stability is reduced. It has a good tolerance to some metal ions. The proteolytic activity was completely inhibited by phenylmethanesulfonyl fluoride, suggesting that the Hly34 is a serine protease. This study further deepens our understanding of haloarchaeal extracellular protease, most of which found in halophilic archaea are classified as serine proteases. These proteases exhibit a certain level of alkaline resistance and moderate heat resistance, and they may emerge with higher activity under low-salt conditions than high-salt conditions. The protease Hly34 is capable of degrading a number of proteins, including substrate proteins, such as azocasein, whey protein and casein. It has promising applications in industrial production.
Collapse
Affiliation(s)
- Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Ruru Pan
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Juntao Ke
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yuqing Luo
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yuling Hao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Liangzhong Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Demei Tu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yongpei Dai
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Tingting Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 10010, China.
| |
Collapse
|
3
|
Géry A, Séguin V, Eldin de Pécoulas P, Bonhomme J, Garon D. Aspergilli series Versicolores: importance of species identification in the clinical setting. Crit Rev Microbiol 2022:1-14. [PMID: 35758008 DOI: 10.1080/1040841x.2022.2082267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The moulds of the genus Aspergillus section Nidulantes series Versicolores are ubiquitous and particularly recurrent in indoor air. They are considered present in 70% of the bioaerosols to which we are exposed most of our time spent indoors. With the taxonomic revision proposed in 2012 and the discovery of four new species, the series Versicolores currently includes 18 species. These moulds, although considered as cryptic (except Aspergillus sydowii), are opportunistic pathogens that can exhibit increased minimal inhibitory concentrations to conventional antifungal agents. In this review, we discuss the ecology and clinical implications of each species belonging to the series Versicolores. This survey also highlights the lack of consideration for taxonomic revisions in clinical practice and in scientific studies which greatly limits the acquisition of specific knowledge on species belonging to the series Versicolores.
Collapse
Affiliation(s)
- Antoine Géry
- Unicaen and Unirouen, ToxEMAC-ABTE, Centre F. Baclesse, Normandie Univ, Caen, France
| | - Virginie Séguin
- Unicaen and Unirouen, ToxEMAC-ABTE, Centre F. Baclesse, Normandie Univ, Caen, France
| | | | - Julie Bonhomme
- Unicaen and Unirouen, ToxEMAC-ABTE, Centre F. Baclesse, Normandie Univ, Caen, France.,Department of Microbiology, Caen University Hospital, Caen, France
| | - David Garon
- Unicaen and Unirouen, ToxEMAC-ABTE, Centre F. Baclesse, Normandie Univ, Caen, France
| |
Collapse
|