1
|
Wathra RA, Men X, Elsheikh SSM, Marshe VS, Rajji TK, Lissemore JI, Mulsant BH, Karp JF, Reynolds CF, Lenze EJ, Daskalakis ZJ, Müller DJ, Blumberger DM. Exploratory genome-wide analyses of cortical inhibition, facilitation, and plasticity in late-life depression. Transl Psychiatry 2023; 13:234. [PMID: 37391420 PMCID: PMC10313655 DOI: 10.1038/s41398-023-02532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Late-life depression (LLD) is a heterogenous mood disorder influenced by genetic factors. Cortical physiological processes such as cortical inhibition, facilitation, and plasticity may be markers of illness that are more strongly associated with genetic factors than the clinical phenotype. Thus, exploring the relationship between genetic factors and these physiological processes may help to characterize the biological mechanisms underlying LLD and improve diagnosis and treatment selection. Transcranial magnetic stimulation (TMS) combined with electromyography was used to measure short interval intracortical inhibition (SICI), cortical silent period (CSP), intracortical facilitation (ICF), and paired associative stimulation (PAS) in 79 participants with LLD. We used exploratory genome-wide association and gene-based analyses to assess for genetic correlations of these TMS measures. MARK4 (which encodes microtubule affinity-regulating kinase 4) and PPP1R37 (which encodes protein phosphatase 1 regulatory subunit 37) showed genome-wide significant association with SICI. EGFLAM (which encodes EGF-like fibronectin type III and laminin G domain) showed genome-wide significant association with CSP. No genes met genome-wide significant association with ICF or PAS. We observed genetic influences on cortical inhibition in older adults with LLD. Replication with larger sample sizes, exploration of clinical phenotype subgroups, and functional analysis of relevant genotypes is warranted to better characterize genetic influences on cortical physiology in LLD. This work is needed to determine whether cortical inhibition may serve as a biomarker to improve diagnostic precision and guide treatment selection in LLD.
Collapse
Affiliation(s)
- Rafae A Wathra
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| | - Xiaoyu Men
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Samar S M Elsheikh
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Victoria S Marshe
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer I Lissemore
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, CA, USA
| | - Benoit H Mulsant
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, Ontario, Canada
| | - Jordan F Karp
- Department of Psychiatry, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Charles F Reynolds
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Daniel J Müller
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, M6J 1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada.
| |
Collapse
|
2
|
Dubbioso R, Pellegrino G, Ranieri F, Di Pino G, Capone F, Dileone M, Iodice R, Ruggiero L, Tozza S, Uncini A, Manganelli F, Di Lazzaro V. BDNF polymorphism and inter hemispheric balance of motor cortex excitability: a preliminary study. J Neurophysiol 2021; 127:204-212. [PMID: 34936818 DOI: 10.1152/jn.00268.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preclinical studies have demonstrated that Brain-Derived Neurotrophic Factor (BDNF) plays a crucial role in the homeostatic regulation of cortical excitability and excitation/inhibition balance. Using transcranial magnetic stimulation (TMS) techniques we investigated whether BDNF polymorphism could influence cortical excitability of the left and right primary motor cortex in healthy humans. Twenty-nine participants were recruited and genotyped for the presence of the BDNF Val66Met polymorphism, namely homozygous for the valine allele (Val/Val), heterozygotes (Val/Met), and homozygous for the methionine allele (Met/Met). Blinded to the latter, we evaluated inhibitory and facilitatory circuits of the left (LH) and right motor cortex (RH) by measuring resting (RMT) and active motor threshold (AMT), short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). For each neurophysiological metric we also considered the inter-hemispheric balance expressed by the Laterality Index (LI). Val/Val participants (n= 21) exhibited an overall higher excitability of the LH compared to the RH, as probed by lower motor thresholds, lower SICI and higher ICF. Val/Val participants displayed positive LI, especially for AMT and ICF (all p< 0.05), indicating higher LH excitability and more pronounced inter-hemispheric excitability imbalance as compared to Met carriers. Our preliminary results suggest that BDNF Val66Met polymorphism might influence interhemispheric balance of motor cortex excitability.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Giovanni Pellegrino
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Federico Ranieri
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Michele Dileone
- Faculty of Health Sciences, University of Castilla La Mancha, Talavera de la Reina, Spain
| | - Rosa Iodice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Stefano Tozza
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Antonino Uncini
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
3
|
Sasaki R, Miyaguchi S, Onishi H. Effect of brain-derived neurotrophic factor gene polymorphisms on motor performance and motor learning: A systematic review and meta-analysis. Behav Brain Res 2021; 420:113712. [PMID: 34915075 DOI: 10.1016/j.bbr.2021.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) gene polymorphisms may modulate neurotransmitter efficiency, thereby influencing motor performance and motor learning. However, studies to date have provided no consensus regarding the genetic influence of BDNF genotypes (i.e., Val/Val, Val/Met, or Met/Met type). This study aimed to investigate the effect of BDNF genotype on motor performance and motor learning in healthy human adults via a systematic review and meta-analysis. A total of 19 relevant studies were identified using PubMed and Web of Science search for articles published between 2000 and 2021 with motor performance or motor learning as the primary outcome measures. The results of our systematic review suggest that the BDNF genotype is unlikely to contribute to motor performance and motor learning abilities because only 2/32 datasets (6.3%) from 16 studies on motor performance and 3/19 datasets (17.6%) from 13 studies on motor learning indicated a significant genetic effect. Moreover, a meta-analysis of motor learning publications involving 17 datasets from 11 studies revealed that there was no significant difference in the learning score normalized using baseline data between Val/Val and Met carriers (Val/Met + Met/Met or Val/Met; standardized mean differences = 0.08, P = 0.37) with zero heterogeneity (I2 = 0) and a relatively low risk of publication bias. Taken together, the BDNF genotype may have only a minor impact on individual motor performance and motor learning abilities.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia.
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| |
Collapse
|
4
|
Kishore A, James P, Popa T, Thejaus A, Rajeswari P, Sarma G, Krishnan S, Meunier S. Plastic responsiveness of motor cortex to paired associative stimulation depends on cerebellar input. Clin Neurophysiol 2021; 132:2493-2502. [PMID: 34454278 DOI: 10.1016/j.clinph.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The extent of plastic responses of motor cortex (M1) to paired associative stimulation (PAS) varies among healthy subjects. Continuous theta-burst stimulation (cTBS) of cerebellum enhances the mean PAS-induced plasticity in groups of healthy subjects. We tested whether the initial status of Responder or Non -Responder to PAS, influenced the effect of cerebellar stimulation on PAS-induced plasticity. METHODS We assessed in 19 young healthy volunteers (8 Responders, 11 Non-Responders to PAS), how cTBS and iTBS (intermittent TBS) applied to the cerebellum before a PAS protocol influenced the plastic responsiveness of M1 to PAS. We tested whether the PAS-induced plastic effects could be depotentiated by a short cTBS protocol applied to M1 shortly after PAS and whether cerebellar stimulation influenced GABA-ergic intracortical inhibition and M1 plasticity in parallel. RESULTS Cerebellar cTBS restored the M1 response to PAS in Non-Responders while cerebellar iTBS turned the potentiating response to PAS to a depressive response in both groups. The depotentiation protocol abolished both responses. CONCLUSION Non-Responder status to PAS is a state of M1 amenable to bidirectional plastic modulation when primed by a change in cerebello-thalamic drive. SIGNIFICANCE The meaning of lack of responsiveness to certain protocols probing plasticity should be reconsidered.
Collapse
Affiliation(s)
- Asha Kishore
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India.
| | - Praveen James
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
| | - Arun Thejaus
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Parvathy Rajeswari
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Gangadhara Sarma
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Sabine Meunier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelleépinière, ICM, F-75013 Paris, France
| |
Collapse
|
5
|
Sanna A, Follesa P, Tacconi P, Serra M, Pisu MG, Cocco V, Figorilli M, Defazio G, Puligheddu M. Therapeutic Use of Cerebellar Intermittent Theta Burst Stimulation (iTBS) in a Sardinian Family Affected by Spinocerebellar Ataxia 38 (SCA 38). THE CEREBELLUM 2021; 21:623-631. [PMID: 34410614 PMCID: PMC9325795 DOI: 10.1007/s12311-021-01313-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 11/27/2022]
Abstract
Spinocerebellar ataxia 38 (SCA 38) is an autosomal dominant disorder caused by conventional mutations in the ELOVL5 gene which encodes an enzyme involved in the synthesis of very long fatty acids, with a specific expression in cerebellar Purkinje cells. Three Italian families carrying the mutation, one of which is of Sardinian descent, have been identified and characterized. One session of cerebellar intermittent theta burst stimulation (iTBS) was applied to 6 affected members of the Sardinian family to probe motor cortex excitability measured by motor-evoked potentials (MEPs). Afterwards, patients were exposed to ten sessions of cerebellar real and sham iTBS in a cross-over study and clinical symptoms were evaluated before and after treatment by Modified International Cooperative Ataxia Rating Scale (MICARS). Moreover, serum BDNF levels were evaluated before and after real and sham cerebellar iTBS and the role of BDNF Val66Met polymorphism in influencing iTBS effect was explored. Present data show that one session of cerebellar iTBS was able to increase MEPs in all tested patients, suggesting an enhancement of the cerebello-thalamo-cortical pathway in SCA 38. MICARS scores were reduced after ten sessions of real cerebellar iTBS showing an improvement in clinical symptoms. Finally, although serum BDNF levels were not affected by cerebellar iTBS when considering all samples, segregating for genotype a difference was found between Val66Val and Val66Met carriers. These preliminary data suggest a potential therapeutic use of cerebellar iTBS in improving motor symptoms of SCA38.
Collapse
Affiliation(s)
- Angela Sanna
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Paolo Follesa
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Paolo Tacconi
- Section of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environment Sciences, Section of Neuroscience and Anthropology and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | | | - Viola Cocco
- Department of Medical Science and Public Health, Section of Neurology, University of Cagliari, Cagliari, Italy
| | - Michela Figorilli
- Department of Medical Science and Public Health, Section of Neurology, University of Cagliari, Cagliari, Italy
| | - Giovanni Defazio
- Department of Medical Science and Public Health, Section of Neurology, University of Cagliari, Cagliari, Italy
| | - Monica Puligheddu
- Department of Medical Science and Public Health, Section of Neurology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
6
|
The prevalence of the Val66Met polymorphism in musicians: Possible evidence for compensatory neuroplasticity from a pilot study. PLoS One 2021; 16:e0245107. [PMID: 34106930 PMCID: PMC8189506 DOI: 10.1371/journal.pone.0245107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
The study compared the prevalence of the Val66Met Brain-derived Neurotrophic Factor single nucleotide polymorphism (rs6265) in a sample of musicians (N = 50) to an ethnically matched general population sample from the 1000 Human Genome Project (N = 424). Met-carriers of the polymorphism (Val/Met and Met/Met genotypes) are typically present in 25–30% of the general population and have associated deficits in motor learning and plasticity. Many studies have assessed the benefits of long-term music training for neuroplasticity and motor learning. This study takes a unique genetic approach investigating if the prevalence of the Val66Met BDNF polymorphism, which negatively affects motor learning, is significantly different in musicians from the general population. Our genotype and allele frequency analyses revealed that the distribution of the Val66Met polymorphism was not significantly different in musicians versus the general population (p = 0.6447 for genotype analysis and p = 0.8513 allele analysis). In the Musician sample (N = 50), the prevalence of the Val/Met genotype was 40% and the prevalence of the Met/Met genotype was 2%. In the 1000 Human Genome Project subset (N = 424), the prevalence of Val/Met was 33.25% and the Met/Met genotype prevalence was 4%. Therefore, musicians do exist with the Val66Met polymorphism and the characteristics of long-term music training may compensate for genetic predisposition to motor learning deficits. Since the polymorphism has significant implications for stroke rehabilitation, future studies may consider the implications of the polymorphism in music-based interventions such as Neurologic Music Therapy.
Collapse
|
7
|
Colucci-D’Amato L, Speranza L, Volpicelli F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int J Mol Sci 2020; 21:E7777. [PMID: 33096634 PMCID: PMC7589016 DOI: 10.3390/ijms21207777] [Citation(s) in RCA: 501] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most distributed and extensively studied neurotrophins in the mammalian brain. BDNF signals through the tropomycin receptor kinase B (TrkB) and the low affinity p75 neurotrophin receptor (p75NTR). BDNF plays an important role in proper growth, development, and plasticity of glutamatergic and GABAergic synapses and through modulation of neuronal differentiation, it influences serotonergic and dopaminergic neurotransmission. BDNF acts as paracrine and autocrine factor, on both pre-synaptic and post-synaptic target sites. It is crucial in the transformation of synaptic activity into long-term synaptic memories. BDNF is considered an instructive mediator of functional and structural plasticity in the central nervous system (CNS), influencing dendritic spines and, at least in the hippocampus, the adult neurogenesis. Changes in the rate of adult neurogenesis and in spine density can influence several forms of learning and memory and can contribute to depression-like behaviors. The possible roles of BDNF in neuronal plasticity highlighted in this review focus on the effect of antidepressant therapies on BDNF-mediated plasticity. Moreover, we will review data that illustrate the role of BDNF as a potent protective factor that is able to confer protection against neurodegeneration, in particular in Alzheimer's disease. Finally, we will give evidence of how the involvement of BDNF in the pathogenesis of brain glioblastoma has emerged, thus opening new avenues for the treatment of this deadly cancer.
Collapse
Affiliation(s)
- Luca Colucci-D’Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- InterUniversity Center for Research in Neurosciences (CIRN), University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Luisa Speranza
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
8
|
Shah-Basak P, Harvey DY, Parchure S, Faseyitan O, Sacchetti D, Ahmed A, Thiam A, Lohoff FW, Hamilton RH. Brain-Derived Neurotrophic Factor Polymorphism Influences Response to Single-Pulse Transcranial Magnetic Stimulation at Rest. Neuromodulation 2020; 24:S1094-7159(21)06197-3. [PMID: 33090650 PMCID: PMC8032803 DOI: 10.1111/ner.13287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The ability of noninvasive brain stimulation to modulate corticospinal excitability and plasticity is influenced by genetic predilections such as the coding for brain-derived neurotrophic factor (BDNF). Otherwise healthy individuals presenting with BDNF Val66Met (Val/Met) polymorphism are less susceptible to changes in excitability in response to repetitive transcranial magnetic stimulation (TMS) and paired associative stimulation paradigms, reflecting reduced neuroplasticity, compared to Val homozygotes (Val/Val). In the current study, we investigated whether BDNF polymorphism influences "baseline" excitability under TMS conditions that are not repetitive or plasticity-inducing. Cross-sectional BDNF levels could predict TMS response more generally because of the ongoing plasticity processes. MATERIALS AND METHODS Forty-five healthy individuals (23 females; age: 25.3 ± 7.0 years) participated in the study, comprising two groups. Motor evoked potentials (MEP) were collected using single-pulse TMS paradigms at fixed stimulation intensities at 110% of the resting motor threshold in one group, and individually-derived intensities based on MEP sizes of 1 mV in the second group. Functional variant Val66Met (rs6265) was genotyped from saliva samples by a technician blinded to the identity of DNA samples. RESULTS Twenty-seven participants (60.0%) were identified with Val/Val, sixteen (35.5%) with Val/Met genotype, and two with Met/Met genotype. MEP amplitudes were significantly diminished in the Val/Met than Val/Val individuals. These results held independent of the single-pulse TMS paradigm of choice (p = 0.017110% group; p = 0.035 1 mV group), age, and scalp-to-coil distances. CONCLUSIONS The findings should be further substantiated in larger-scale studies. If validated, intrinsic differences by BDNF polymorphism status could index response to TMS prior to implementing plasticity-inducing protocols.
Collapse
Affiliation(s)
- Priyanka Shah-Basak
- Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Denise Y. Harvey
- Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104
- Research Department, Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, PA 19027
| | - Shreya Parchure
- Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Olufunsho Faseyitan
- Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Daniela Sacchetti
- Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Ahmed Ahmed
- Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Abdou Thiam
- Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Falk W. Lohoff
- National Institute for Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), 10 Center Drive (10CRC/2-2352), Bethesda, MD 20892-1540
| | - Roy H. Hamilton
- Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|
9
|
Zheng Y, Mao YR, Yuan TF, Xu DS, Cheng LM. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation. Neural Regen Res 2020; 15:1437-1450. [PMID: 31997803 PMCID: PMC7059565 DOI: 10.4103/1673-5374.274332] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/28/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury is linked to the interruption of neural pathways, which results in irreversible neural dysfunction. Neural repair and neuroregeneration are critical goals and issues for rehabilitation in spinal cord injury, which require neural stem cell repair and multimodal neuromodulation techniques involving personalized rehabilitation strategies. Besides the involvement of endogenous stem cells in neurogenesis and neural repair, exogenous neural stem cell transplantation is an emerging effective method for repairing and replacing damaged tissues in central nervous system diseases. However, to ensure that endogenous or exogenous neural stem cells truly participate in neural repair following spinal cord injury, appropriate interventional measures (e.g., neuromodulation) should be adopted. Neuromodulation techniques, such as noninvasive magnetic stimulation and electrical stimulation, have been safely applied in many neuropsychiatric diseases. There is increasing evidence to suggest that neuromagnetic/electrical modulation promotes neuroregeneration and neural repair by affecting signaling in the nervous system; namely, by exciting, inhibiting, or regulating neuronal and neural network activities to improve motor function and motor learning following spinal cord injury. Several studies have indicated that fine motor skill rehabilitation training makes use of residual nerve fibers for collateral growth, encourages the formation of new synaptic connections to promote neural plasticity, and improves motor function recovery in patients with spinal cord injury. With the development of biomaterial technology and biomechanical engineering, several emerging treatments have been developed, such as robots, brain-computer interfaces, and nanomaterials. These treatments have the potential to help millions of patients suffering from motor dysfunction caused by spinal cord injury. However, large-scale clinical trials need to be conducted to validate their efficacy. This review evaluated the efficacy of neural stem cells and magnetic or electrical stimulation combined with rehabilitation training and intelligent therapies for spinal cord injury according to existing evidence, to build up a multimodal treatment strategy of spinal cord injury to enhance nerve repair and regeneration.
Collapse
Affiliation(s)
- Ya Zheng
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ye-Ran Mao
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Dong-Sheng Xu
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education of the People's Republic of China, Tongji University, Shanghai, China
| | - Li-Ming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education of the People's Republic of China, Tongji University, Shanghai, China
- Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Deveci SŞ, Matur Z, Kesim YY, Senturk Şentürk GG, Sargın-Kurt GG, Ugur Uğur SA, Oge Öge AE. Effect of the brain-derived neurotrophic factor gene Val66Met polymorphism on sensory-motor integration during a complex motor learning exercise. Brain Res 2020; 1732:146652. [PMID: 31926908 DOI: 10.1016/j.brainres.2020.146652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/15/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism may cause impairment in short-term motor learning by reducing activity-dependent BDNF expression, which causes alterations in synaptic plasticity by changing glutamatergic and GABAergic synaptic transmissions. Sensory-motor integration (SMI) plays an important role in motor learning. In this study, we investigated the role of this polymorphism on SMI during a complex motor learning practice. Forty-three healthy participants performed standardized 5-day basketball shooting exercises under supervision. Electrophysiologic SMI studies were performed before the first day exercise (T0) and after the first and fifth day exercises (T1 and T2, respectively). SMI was studied using electrical median nerve stimulation at the wrist, followed by transcranial magnetic stimulation (TMS) of the contralateral motor cortex with various inter-stimulus intervals (ISIs). Recordings were made from the thenar and forearm flexor muscles. Participants were divided into two groups according to their BDNF genotype. Group 1 consisted of 26 subjects with the Val66Val genotype and group 2 included 17 subjects with the BDNF Met allele. Group 2 had a lower increase in basketball scores at day 5. Moreover, they had higher afferent facilitation for the responses recorded from both thenar and forearm flexor muscles at T1, but these changes could not be maintained until T2. This non-persistent early hyper-responsivity of the sensory-motor cortex in subjects with the BDNF Met allele might be explained by a transient upsurge of cortical excitability to compensate the insufficient cortical plasticity during motor learning, which could be considered as a sign of lower performance in motor skill learning.
Collapse
Affiliation(s)
- Sule Şule Deveci
- Departments of Neurology and Clinical Neurophysiology, Istanbul University, Istanbul Faculty of Medicine, Topkapı Mahallesi, Turgut Özal Millet Cd., 34093 Fatih, Istanbul, Turkey.
| | - Zeliha Matur
- Departments of Neurology and Clinical Neurophysiology, Istanbul University, Istanbul Faculty of Medicine, Topkapı Mahallesi, Turgut Özal Millet Cd., 34093 Fatih, Istanbul, Turkey; Department of Neurology, Demiroglu (Demiroğlu) Bilim University, Medical Faculty, Esentepe Mahallesi, Büyükdere Cd. No:120, 34394 Şişli, Istanbul, Turkey.
| | - Yesim Yeşim Kesim
- Department of Genetics, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Topkapı Mahallesi, Vakıf Gureba Cd., 34093 Şehremini, Fatih, Istanbul, Turkey
| | - Gokce Gökçe Senturk Şentürk
- Departments of Neurology and Clinical Neurophysiology, Istanbul University, Istanbul Faculty of Medicine, Topkapı Mahallesi, Turgut Özal Millet Cd., 34093 Fatih, Istanbul, Turkey
| | - Gulcan Gülcan Sargın-Kurt
- Departments of Neurology and Clinical Neurophysiology, Istanbul University, Istanbul Faculty of Medicine, Topkapı Mahallesi, Turgut Özal Millet Cd., 34093 Fatih, Istanbul, Turkey
| | - Sibel Aylin Ugur Uğur
- Department of Genetics, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Topkapı Mahallesi, Vakıf Gureba Cd., 34093 Şehremini, Fatih, Istanbul, Turkey.
| | - Ali Emre Oge Öge
- Departments of Neurology and Clinical Neurophysiology, Istanbul University, Istanbul Faculty of Medicine, Topkapı Mahallesi, Turgut Özal Millet Cd., 34093 Fatih, Istanbul, Turkey.
| |
Collapse
|
11
|
Cattagni T, Geiger M, Supiot A, de Mazancourt P, Pradon D, Zory R, Roche N. A single session of anodal transcranial direct current stimulation applied over the affected primary motor cortex does not alter gait parameters in chronic stroke survivors. Neurophysiol Clin 2019; 49:283-293. [DOI: 10.1016/j.neucli.2019.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/20/2023] Open
|
12
|
Palmer JA, Halter A, Gray W, Wolf SL, Borich MR. Modulatory Effects of Motor State During Paired Associative Stimulation on Motor Cortex Excitability and Motor Skill Learning. Front Hum Neurosci 2019; 13:8. [PMID: 30760990 PMCID: PMC6361855 DOI: 10.3389/fnhum.2019.00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/08/2019] [Indexed: 01/06/2023] Open
Abstract
Repeated pairing of electrical stimulation of a peripheral nerve with transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) representation for a target muscle can induce neuroplastic adaptations in the human brain related to motor learning. The extent to which the motor state during this form of paired associative stimulation (PAS) influences the degree and mechanisms of neuroplasticity or motor learning is unclear. Here, we investigated the effect of volitional muscle contraction during PAS on: (1) measures of general corticomotor excitability and intracortical circuit excitability; and (2) motor performance and learning. We assessed measures of corticomotor excitability using TMS and motor skill performance during a serial reaction time task (SRTT) at baseline and at 0, 30, 60 min post-PAS. Participants completed a SRTT retention test 1 week following the first two PAS sessions. Following the PAS intervention where the hand muscle maintained an active muscle contraction (PASACTIVE), there was lower short interval intracortical inhibition compared to PAS during a resting motor state (PASREST) and a sham PAS condition (PASCONTROL). SRTT performance improved within the session regardless of PAS condition. SRTT retention was greater following both PASACTIVE and PASREST after 1 week compared to PASCONTROL. These findings suggest that PAS may enhance motor learning retention and that motor state may be used to target different neural mechanisms of intracortical excitation and inhibition during PAS. This observation may be important to consider for the use of therapeutic noninvasive brain stimulation in neurologic patient populations.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, United States
| | - Alice Halter
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, United States
| | - Whitney Gray
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, United States
| | - Steven L Wolf
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, United States.,Atlanta VA Health Care System Visual and Neurocognitive Center of Excellence, Decatur, GA, United States
| | - Michael R Borich
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, United States
| |
Collapse
|