1
|
Makharadze D, del Valle LJ, Katsarava R, Puiggalí J. The Art of PEGylation: From Simple Polymer to Sophisticated Drug Delivery System. Int J Mol Sci 2025; 26:3102. [PMID: 40243857 PMCID: PMC11988339 DOI: 10.3390/ijms26073102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The development of effective drug delivery systems (DDSs) is important for cancer and infectious disease treatment to overcome low bioavailability, rapid clearance and the toxicity of the therapeutic towards non-targeted healthy tissues. This review discusses how PEGylation, the attachment of poly(ethylene glycol) (PEG) molecules to nanoparticles (NPs), enhances drug pharmacokinetics by creating a "stealth effect". We provide the synthesis methods for several PEG derivatives, their conjugation with NPs, proteins and characterization using modern analytical tools. This paper focuses particularly on covalent conjugation and self-assembly strategies for successful PEGylation and discusses the influence of PEG chain length, density and conformation on drug delivery efficiency. Despite the PEGylation benefits, there are several challenges associated with it, including immunogenicity and reduced therapeutic efficacy due to accelerated blood clearance. Therefore, the balance between PEGylation benefits and its immunogenic risks remains a critical area of investigation.
Collapse
Affiliation(s)
- Davit Makharadze
- Departament de Enginyeria Química, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
| | - Luis J. del Valle
- Departament de Enginyeria Química, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi 0159, Georgia;
| | - Jordi Puiggalí
- Departament de Enginyeria Química, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
2
|
Yang M, Li Z, Ren H, Lu C, Gao X, Xu H. PEG modification increases thermostability and inhibitor resistance of Bst DNA polymerase. Biosci Biotechnol Biochem 2024; 88:768-775. [PMID: 38734885 DOI: 10.1093/bbb/zbae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/04/2024] [Indexed: 05/13/2024]
Abstract
Polyethylene glycol modification (PEGylation) is a widely used strategy to improve the physicochemical properties of various macromolecules, especially protein drugs. However, its application in enhancing the performance of enzymes for molecular biology remains underexplored. This study explored the PEGylation of Bst DNA polymerase, determining optimal modification reaction conditions. In comparison to the unmodified wild-type counterpart, the modified Bst DNA polymerase exhibited significantly improved activity, thermal stability, and inhibitor tolerance during loop-mediated isothermal amplification. When applied for the detection of Salmonella in crude samples, the modified enzyme demonstrated a notably accelerated reaction rate. Therefore, PEGylation emerges as a viable strategy for refining DNA polymerases, helping in the development of novel molecular diagnostic reagents.
Collapse
Affiliation(s)
- Mengxia Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Zhixing Li
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Hongjie Ren
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu BestEnzymes Biotech Co. Ltd, Lianyungang, China
| | - Chen Lu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Lianyungang, China
| | - Xinyu Gao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Henghao Xu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu BestEnzymes Biotech Co. Ltd, Lianyungang, China
| |
Collapse
|
3
|
Dobryakova NV, Dumina MV, Zhgun AA, Pokrovskaya MV, Aleksandrova SS, Zhdanov DD, Kudryashova EV. L-Asparaginase Conjugates from the Hyperthermophilic Archaea Thermococcus sibiricus with Improved Biocatalytic Properties. Int J Mol Sci 2024; 25:4174. [PMID: 38673759 PMCID: PMC11050321 DOI: 10.3390/ijms25084174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigated the effect of polycationic and uncharged polymers (and oligomers) on the catalytic parameters and thermostability of L-asparaginase from Thermococcus sibiricus (TsA). This enzyme has potential applications in the food industry to decrease the formation of carcinogenic acrylamide during the processing of carbohydrate-containing products. Conjugation with the polyamines polyethylenimine and spermine (PEI and Spm) or polyethylene glycol (PEG) did not significantly affect the secondary structure of the enzyme. PEG contributes to the stabilization of the dimeric form of TsA, as shown by HPLC. Furthermore, neither polyamines nor PEG significantly affected the binding of the L-Asn substrate to TsA. The conjugates showed greater maximum activity at pH 7.5 and 85 °C, 10-50% more than for native TsA. The pH optima for both TsA-PEI and TsA-Spm conjugates were shifted to lower pH ranges from pH 10 (for the native enzyme) to pH 8.0. Additionally, the TsA-Spm conjugate exhibited the highest activity at pH 6.5-9.0 among all the samples. Furthermore, the temperature optimum for activity at pH 7.5 shifted from 90-95 °C to 80-85 °C for the conjugates. The thermal inactivation mechanism of TsA-PEG appeared to change, and no aggregation was observed in contrast to that of the native enzyme. This was visually confirmed and supported by the analysis of the CD spectra, which remained almost unchanged after heating the conjugate solution. These results suggest that TsA-PEG may be a more stable form of TsA, making it a potentially more suitable option for industrial use.
Collapse
Affiliation(s)
- Natalia V. Dobryakova
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology of the Russian Academy of Sciences”, 117312 Moscow, Russia; (N.V.D.); (M.V.D.); (D.D.Z.)
- Chemical Faculty, Lomonosov Moscow State University, Leninskie Gory St. 1, 119991 Moscow, Russia
| | - Maria V. Dumina
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology of the Russian Academy of Sciences”, 117312 Moscow, Russia; (N.V.D.); (M.V.D.); (D.D.Z.)
| | - Alexander A. Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology of the Russian Academy of Sciences”, 117312 Moscow, Russia; (N.V.D.); (M.V.D.); (D.D.Z.)
| | - Marina V. Pokrovskaya
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | | | - Dmitry D. Zhdanov
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology of the Russian Academy of Sciences”, 117312 Moscow, Russia; (N.V.D.); (M.V.D.); (D.D.Z.)
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Elena V. Kudryashova
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology of the Russian Academy of Sciences”, 117312 Moscow, Russia; (N.V.D.); (M.V.D.); (D.D.Z.)
- Chemical Faculty, Lomonosov Moscow State University, Leninskie Gory St. 1, 119991 Moscow, Russia
| |
Collapse
|
4
|
Lailaja VP, Hari V, Sumithra TG, Anusree VN, Suresh G, Sanil NK, Sharma S R K, Gopalakrishnan A. In vitro and in silico analysis unravelled clinically desirable attributes of Bacillus altitudinis L-asparaginase. J Appl Microbiol 2024; 135:lxae062. [PMID: 38467390 DOI: 10.1093/jambio/lxae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
AIMS To identify a marine L-asparaginase with clinically desirable attributes and characterize the shortlisted candidate through in silico tools. METHODS AND RESULTS Marine bacterial strains (number = 105) isolated from marine crabs were evaluated through a stepwise strategy incorporating the crucial attributes for therapeutic safety. The results demonstrated the potential of eight bacterial species for extracellular L-asparaginase production. However, only one isolate (Bacillus altitudinis CMFRI/Bal-2) showed clinically desirable attributes, viz. extracellular production, type-II nature, lack of concurrent L-glutaminase and urease activities, and presence of ansZ (functional gene for clinical type). The enzyme production was 22.55 ± 0.5 µM/mg protein/min within 24 h without optimization. The enzyme also showed good activity and stability in pH 7-8 and temperature 37°C, predicting the functioning inside the human body. The Michealis-Menten constant (Km) was 14.75 µM. Detailed in silico analysis based on functional gene authenticating the results of in vitro characterization and predicted the nonallergenic characteristic of the candidate. Docking results proved the higher affinity of the shortlisted candidate to L-asparagine than L-glutamine and urea. CONCLUSION Comprehensively, the study highlighted B. altitudinis type II asparaginase as a competent candidate for further research on clinically safe asparaginases.
Collapse
Affiliation(s)
- V P Lailaja
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - Vishnu Hari
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - T G Sumithra
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - V N Anusree
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - Gayathri Suresh
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
- Cochin University of Science and Technology, Kochi 682022, Kerala, India
| | - N K Sanil
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - Krupesha Sharma S R
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - A Gopalakrishnan
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| |
Collapse
|
5
|
Talluri VP, Mutaliyeva B, Sharipova A, Ulaganathan V, Lanka SS, Aidarova S, Suigenbayeva A, Tleuova A. L-Asparaginase delivery systems targeted to minimize its side-effects. Adv Colloid Interface Sci 2023; 316:102915. [PMID: 37159987 DOI: 10.1016/j.cis.2023.102915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
L-asparaginase (L-ASP) is one of the key enzymes used in therapeutic applications, particularly to treat Acute Lymphocytic Leukemia (ALL). L-asparagine is a non-essential amino acid, which means that it can be synthesized by the body and is not required to be obtained through the diet. The synthesis of L-asparagine occurs primarily in the liver, but it also takes place in other tissues throughout the body. In contrast, leukemic cells cannot synthesize L-asparagine due the absence of L-asparagine synthetase and should obtain it from circulating sources for protein synthesis and cell division processes to ensure their vital functions. L-ASP catalyzes the deamination process of L-asparagine amino-acid into aspartic acid and ammonia, depriving leukemic cells of asparagine. This leads to decreased protein synthesis and cell division in tumor cells. However, using L-ASP has side effects, such as hypersensitivity or allergic reaction, antigenicity, short half-life, temporary blood clearance, and toxicity. L-ASP immobilization can minimize the side effects of L-ASP by stopping the immune system from attacking non-human enzymes and improving the enzyme's performance. The first strategy includes modification of enzyme structure, such as covalent binding (conjugation), adsorption to the support material and cross-linking of the enzyme. The chemical modification of residues, often nonspecific, changes the enzyme's hydrophobicity and surface charge, lowering the enzyme's activity. Also, the first strategy exposes the enzyme's surface to the environment. This eliminates its performance and does not allow targeted delivery of the enzyme. The second strategy is based on the entrapment of the enzyme inside the protecting structure or encapsulation. This strategy offers the same benefits as the first. Still, it also enables reducing toxicity, prolonging in vivo half-life, enhancing stability and activity, enables a targeted delivery and controlled release of the enzyme. Compared to the first strategy, encapsulation does not modify the chemical structure of the enzyme since L-ASP is only effective against leukemia in its native tetrameric form. This review aims to present state of the art in L-ASP formulations developed for reducing the side effects of L-ASP, focusing on describing improvements in their safety. The primary focus in the field remains to be improving the overall performance of the L-ASP formulations. Almost all encapsulation systems allow reducing immune response due to screening the enzyme from antibodies and prolonging its half-life. However, the enzyme's activity and stability depend on the encapsulation system type. Therefore, the selection of the right encapsulation system is crucial in therapy due to its effect on the performance parameters of the L-ASP. Biodegradable and biocompatible materials, such as chitosan, alginate and liposomes, mainly attract the researcher's interest in enzyme encapsulation. The research trends are also moving towards developing formulations with targeted delivery and increased selectivity.
Collapse
Affiliation(s)
| | | | | | | | - Sri Santhi Lanka
- Gandhi Institute of Technology and Management (GITAM) University, Visakhapatnam 530045, Andhra Pradesh, India
| | - Saule Aidarova
- Kazakh-British Technical University, Almaty 050005, Kazakhstan
| | | | - Aiym Tleuova
- M. Auezov South Kazakhstan University, Shymkent 160012, Kazakhstan.
| |
Collapse
|
6
|
Ebrahimi SB, Samanta D. Engineering protein-based therapeutics through structural and chemical design. Nat Commun 2023; 14:2411. [PMID: 37105998 PMCID: PMC10132957 DOI: 10.1038/s41467-023-38039-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Protein-based therapeutics have led to new paradigms in disease treatment. Projected to be half of the top ten selling drugs in 2023, proteins have emerged as rivaling and, in some cases, superior alternatives to historically used small molecule-based medicines. This review chronicles both well-established and emerging design strategies that have enabled this paradigm shift by transforming protein-based structures that are often prone to denaturation, degradation, and aggregation in vitro and in vivo into highly effective therapeutics. In particular, we discuss strategies for creating structures with increased affinity and targetability, enhanced in vivo stability and pharmacokinetics, improved cell permeability, and reduced amounts of undesired immunogenicity.
Collapse
Affiliation(s)
- Sasha B Ebrahimi
- Drug Product Development-Steriles, GlaxoSmithKline, Collegeville, PA, 19426, USA.
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
7
|
Kjeldsen T, Hogendorf WFJ, Tornøe CW, Anderson J, Hubalek F, Stidsen CE, Sorensen JL, Hoeg-Jensen T. Dually Reactive Long Recombinant Linkers for Bioconjugations as an Alternative to PEG. ACS OMEGA 2020; 5:19827-19833. [PMID: 32803078 PMCID: PMC7424725 DOI: 10.1021/acsomega.0c02712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Covalent cross-linking of biomolecules can be useful in pursuit of tissue targeting or dual targeting of two receptors on cell surfaces for avidity effects. Long linkers (>10 kDa) can be advantageous for such purposes, and poly(ethylene glycol) (PEG) linkers are most commonly used due to the high aqueous solubility of PEG and its relative inertness toward biological targets. However, PEG is non-biodegradable, and available PEG linkers longer than 5 kDa are heterogeneous (polydisperse), which means that conjugates based on such materials will be mixtures. We describe here recombinant linkers of distinct lengths, which can be expressed in yeast, which are polar, and which carry orthogonal reactivity at each end of the linker, thus allowing chemoselective cross-linking of proteins. A conjugate between insulin and either of the two trypsin inhibitor peptides/proteins exemplifies the technology, using a GQAP-based linker of molecular weight of 17 848, having one amine at the N-terminal, and one Cys, at the C-terminal. Notably, yeast-based expression systems typically give products with mixed disulfides when expressing proteins that are equipped with one unpaired Cys, namely, mixed disulfides with glutathione, free Cys amino acid, and/or a protein homodimer. To obtain a homogeneous linker, we worked out conditions for transforming the linker with mixed disulfides into a linker with a homogeneous disulfide, using excess 4-mercaptophenylacetic acid. Subsequently, the N-terminal amine of the linker was transformed into an azide, and the C-terminal Cys disulfide was reduced to a free thiol and reacted with halo-acetyl insulin. The N-terminal azide was finally conjugated to either of the two types of alkyne-containing trypsin inhibitor peptides/proteins. This reaction sequence allowed the cross-linked proteins to carry internal disulfides, as no reduction step was needed after protein conjugations. The insulin-trypsin inhibitor conjugates were shown to be stabilized toward enzymatic digestions and to have partially retained binding to the insulin receptor.
Collapse
|
8
|
Gupta MN, Perwez M, Sardar M. Protein crosslinking: Uses in chemistry, biology and biotechnology. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1733990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Mohammad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
9
|
Tarhan T, Ulu A, Sariçam M, Çulha M, Ates B. Maltose functionalized magnetic core/shell Fe3O4@Au nanoparticles for an efficient l-asparaginase immobilization. Int J Biol Macromol 2020; 142:443-451. [DOI: 10.1016/j.ijbiomac.2019.09.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 11/24/2022]
|
10
|
Site-Specific characterization of peptide-polymer conjugates in various stoichiometries by MALDI-Tandem mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Brumano LP, da Silva FVS, Costa-Silva TA, Apolinário AC, Santos JHPM, Kleingesinds EK, Monteiro G, Rangel-Yagui CDO, Benyahia B, Junior AP. Development of L-Asparaginase Biobetters: Current Research Status and Review of the Desirable Quality Profiles. Front Bioeng Biotechnol 2019; 6:212. [PMID: 30687702 PMCID: PMC6335324 DOI: 10.3389/fbioe.2018.00212] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/21/2018] [Indexed: 01/23/2023] Open
Abstract
L-Asparaginase (ASNase) is a vital component of the first line treatment of acute lymphoblastic leukemia (ALL), an aggressive type of blood cancer expected to afflict over 53,000 people worldwide by 2020. More recently, ASNase has also been shown to have potential for preventing metastasis from solid tumors. The ASNase treatment is, however, characterized by a plethora of potential side effects, ranging from immune reactions to severe toxicity. Consequently, in accordance with Quality-by-Design (QbD) principles, ingenious new products tailored to minimize adverse reactions while increasing patient survival have been devised. In the following pages, the reader is invited for a brief discussion on the most recent developments in this field. Firstly, the review presents an outline of the recent improvements on the manufacturing and formulation processes, which can severely influence important aspects of the product quality profile, such as contamination, aggregation and enzymatic activity. Following, the most recent advances in protein engineering applied to the development of biobetter ASNases (i.e., with reduced glutaminase activity, proteolysis resistant and less immunogenic) using techniques such as site-directed mutagenesis, molecular dynamics, PEGylation, PASylation and bioconjugation are discussed. Afterwards, the attention is shifted toward nanomedicine including technologies such as encapsulation and immobilization, which aim at improving ASNase pharmacokinetics. Besides discussing the results of the most innovative and representative academic research, the review provides an overview of the products already available on the market or in the latest stages of development. With this, the review is intended to provide a solid background for the current product development and underpin the discussions on the target quality profile of future ASNase-based pharmaceuticals.
Collapse
Affiliation(s)
- Larissa Pereira Brumano
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Francisco Vitor Santos da Silva
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tales Alexandre Costa-Silva
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexsandra Conceição Apolinário
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - João Henrique Picado Madalena Santos
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Eduardo Krebs Kleingesinds
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gisele Monteiro
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Brahim Benyahia
- Department of Chemical Engineering, Loughborough University, Loughborough, United Kingdom
| | - Adalberto Pessoa Junior
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Production and Purification of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:1-24. [DOI: 10.1007/978-981-13-7709-9_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|