1
|
Noel K, Wolf IR, Hughes D, Valente GT, Qi A, Huang YJ, Fitt BDL, Stotz HU. Transcriptomics of temperature-sensitive R gene-mediated resistance identifies a WAKL10 protein interaction network. Sci Rep 2024; 14:5023. [PMID: 38424101 PMCID: PMC10904819 DOI: 10.1038/s41598-024-53643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
Understanding temperature-sensitivity of R gene-mediated resistance against apoplastic pathogens is important for sustainable food production in the face of global warming. Here, we show that resistance of Brassica napus cotyledons against Leptosphaeria maculans was temperature-sensitive in introgression line Topas-Rlm7 but temperature-resilient in Topas-Rlm4. A set of 1,646 host genes was differentially expressed in Topas-Rlm4 and Topas-Rlm7 in response to temperature. Amongst these were three WAKL10 genes, including BnaA07g20220D, representing the temperature-sensitive Rlm7-1 allele and Rlm4. Network analysis identified a WAKL10 protein interaction cluster specifically for Topas-Rlm7 at 25 °C. Diffusion analysis of the Topas-Rlm4 network identified WRKY22 as a putative regulatory target of the ESCRT-III complex-associated protein VPS60.1, which belongs to the WAKL10 protein interaction community. Combined enrichment analysis of gene ontology terms considering gene expression and network data linked vesicle-mediated transport to defence. Thus, dysregulation of effector-triggered defence in Topas-Rlm7 disrupts vesicle-associated resistance against the apoplastic pathogen L. maculans.
Collapse
Affiliation(s)
- Katherine Noel
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, AL10 9AB, UK.
- LS Plant Breeding, North Barn, Manor Farm, Milton Road, Cambridge, CB24 9NG, UK.
| | - Ivan R Wolf
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, 28223, USA
| | - David Hughes
- Intelligent Data Ecosystems, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Guilherme T Valente
- School of Medicine, São Paulo State University - UNESP, Botocatu, SP, 18618687, Brazil
| | - Aiming Qi
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Yong-Ju Huang
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Bruce D L Fitt
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Henrik U Stotz
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| |
Collapse
|
2
|
Schoonbeek H, Yalcin HA, Burns R, Taylor RE, Casey A, Holt S, Van den Ackerveken G, Wells R, Ridout CJ. Necrosis and ethylene-inducing-like peptide patterns from crop pathogens induce differential responses within seven brassicaceous species. PLANT PATHOLOGY 2022; 71:2004-2016. [PMID: 36605780 PMCID: PMC9804309 DOI: 10.1111/ppa.13615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/12/2022] [Indexed: 06/17/2023]
Abstract
Translational research is required to advance fundamental knowledge on plant immunity towards application in crop improvement. Recognition of microbe/pathogen-associated molecular patterns (MAMPs/PAMPs) triggers a first layer of immunity in plants. The broadly occurring family of necrosis- and ethylene-inducing peptide 1 (NEP1)-like proteins (NLPs) contains immunogenic peptide patterns that are recognized by a number of plant species. Arabidopsis can recognize NLPs by the pattern recognition receptor AtRLP23 and its co-receptors SOBIR1, BAK1, and BKK1, leading to induction of defence responses including the production of reactive oxygen species (ROS) and elevation of intracellular [Ca2+]. However, little is known about NLP perception in Brassica crop species. Within 12 diverse accessions for each of six Brassica crop species, we demonstrate variation in response to Botrytis cinerea NLP BcNEP2, with Brassica oleracea (CC genome) being nonresponsive and only two Brassica napus cultivars responding to BcNEP2. Peptides derived from four fungal pathogens of these crop species elicited responses similar to BcNEP2 in B. napus and Arabidopsis. Induction of ROS by NLP peptides was strongly reduced in Atrlp23, Atsobir1 and Atbak1-5 Atbkk1-1 mutants, confirming that recognition of Brassica pathogen NLPs occurs in a similar manner to that of HaNLP3 from Hyaloperonospora arabidopsidis in Arabidopsis. In silico analysis of the genomes of two B. napus accessions showed similar presence of homologues for AtBAK1, AtBKK1 and AtSOBIR1 but variation in the organization of AtRLP23 homologues. We could not detect a strong correlation between the ability to respond to NLP peptides and resistance to B. cinerea.
Collapse
Affiliation(s)
- Henk‐jan Schoonbeek
- Department of Crop GeneticsJohn Innes CentreNorwichUK
- Present address:
Department of Metabolic BiologyJohn Innes CentreNR4 7UHNorwichUK
| | - Hicret Asli Yalcin
- Department of Crop GeneticsJohn Innes CentreNorwichUK
- Present address:
The Scientific and Technical Research Council of Turkey (TÜBITAK), Marmara Research CentreGenetic Engineering and Biotechnology InstituteKocaeliTurkey
| | - Rachel Burns
- Department of Crop GeneticsJohn Innes CentreNorwichUK
| | - Rachel Emma Taylor
- Department of Crop GeneticsJohn Innes CentreNorwichUK
- Present address:
Centre of Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLS2 9JTLeedsUK
| | - Adam Casey
- Department of Crop GeneticsJohn Innes CentreNorwichUK
| | - Sam Holt
- Department of Crop GeneticsJohn Innes CentreNorwichUK
- Pacific Biosciences Ltd. Rolling Stock Yard188 York WayLondonN7 9ASUK
| | | | - Rachel Wells
- Department of Crop GeneticsJohn Innes CentreNorwichUK
| | | |
Collapse
|
3
|
Cantila AY, Thomas WJW, Bayer PE, Edwards D, Batley J. Predicting Cloned Disease Resistance Gene Homologs (CDRHs) in Radish, Underutilised Oilseeds, and Wild Brassicaceae Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:3010. [PMID: 36432742 PMCID: PMC9693284 DOI: 10.3390/plants11223010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Brassicaceae crops, including Brassica, Camelina and Raphanus species, are among the most economically important crops globally; however, their production is affected by several diseases. To predict cloned disease resistance (R) gene homologs (CDRHs), we used the protein sequences of 49 cloned R genes against fungal and bacterial diseases in Brassicaceae species. In this study, using 20 Brassicaceae genomes (17 wild and 3 domesticated species), 3172 resistance gene analogs (RGAs) (2062 nucleotide binding-site leucine-rich repeats (NLRs), 497 receptor-like protein kinases (RLKs) and 613 receptor-like proteins (RLPs)) were identified. CDRH clusters were also observed in Arabis alpina, Camelina sativa and Cardamine hirsuta with assigned chromosomes, consisting of 62 homogeneous (38 NLR, 17 RLK and 7 RLP clusters) and 10 heterogeneous RGA clusters. This study highlights the prevalence of CDRHs in the wild relatives of the Brassicaceae family, which may lay the foundation for rapid identification of functional genes and genomics-assisted breeding to develop improved disease-resistant Brassicaceae crop cultivars.
Collapse
|
4
|
Padmathilake KRE, Fernando WGD. Leptosphaeria maculans-Brassica napus Battle: A Comparison of Incompatible vs. Compatible Interactions Using Dual RNASeq. Int J Mol Sci 2022; 23:ijms23073964. [PMID: 35409323 PMCID: PMC8999614 DOI: 10.3390/ijms23073964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Leptosphaeria maculans causes blackleg disease, which is one of the most destructive diseases of canola (Brassica napus L.). Due to the erosion of the current resistance in B. napus, it is pivotal to introduce new resistant genotypes to the growers. This study evaluated the potential of Rlm7 gene as resistance to its corresponding avirulence AvrLm7 gene is abundant. The Rlm7 line was inoculated with L. maculans isolate with AvrLm7; UMAvr7; and the CRISPR/Cas9 knockout AvrLm7 mutant, umavr7, of the same isolate to cause incompatible and compatible interactions, respectively. Dual RNA-seq showed differential gene expressions in both interactions. High expressions of virulence-related pathogen genes-CAZymes, merops, and effector proteins after 7-dpi in compatible interactions but not in incompatible interaction—confirmed that the pathogen was actively virulent only in compatible interactions. Salicyclic and jasmonic acid biosynthesis and signaling-related genes, defense-related PR1 gene (GSBRNA2T00150001001), and GSBRNA2T00068522001 in the NLR gene family were upregulated starting as early as 1- and 3-dpi in the incompatible interaction and the high upregulation of those genes after 7-dpi in compatible interactions confirmed the early recognition of the pathogen by the host and control it by early activation of host defense mechanisms in the incompatible interaction.
Collapse
|
5
|
Cantila AY, Saad NSM, Amas JC, Edwards D, Batley J. Recent Findings Unravel Genes and Genetic Factors Underlying Leptosphaeria maculans Resistance in Brassica napus and Its Relatives. Int J Mol Sci 2020; 22:E313. [PMID: 33396785 PMCID: PMC7795555 DOI: 10.3390/ijms22010313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/20/2022] Open
Abstract
Among the Brassica oilseeds, canola (Brassica napus) is the most economically significant globally. However, its production can be limited by blackleg disease, caused by the fungal pathogen Lepstosphaeria maculans. The deployment of resistance genes has been implemented as one of the key strategies to manage the disease. Genetic resistance against blackleg comes in two forms: qualitative resistance, controlled by a single, major resistance gene (R gene), and quantitative resistance (QR), controlled by numerous, small effect loci. R-gene-mediated blackleg resistance has been extensively studied, wherein several genomic regions harbouring R genes against L. maculans have been identified and three of these genes were cloned. These studies advance our understanding of the mechanism of R gene and pathogen avirulence (Avr) gene interaction. Notably, these studies revealed a more complex interaction than originally thought. Advances in genomics help unravel these complexities, providing insights into the genes and genetic factors towards improving blackleg resistance. Here, we aim to discuss the existing R-gene-mediated resistance, make a summary of candidate R genes against the disease, and emphasise the role of players involved in the pathogenicity and resistance. The comprehensive result will allow breeders to improve resistance to L. maculans, thereby increasing yield.
Collapse
Affiliation(s)
| | | | | | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia; (A.Y.C.); (N.S.M.S.); (J.C.A.); (D.E.)
| |
Collapse
|
6
|
Botero-Ramírez A, Laperche A, Guichard S, Jubault M, Gravot A, Strelkov SE, Manzanares-Dauleux MJ. Clubroot Symptoms and Resting Spore Production in a Doubled Haploid Population of Oilseed Rape ( Brassica napus) Are Controlled by Four Main QTLs. FRONTIERS IN PLANT SCIENCE 2020; 11:604527. [PMID: 33391316 PMCID: PMC7773761 DOI: 10.3389/fpls.2020.604527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/20/2020] [Indexed: 06/02/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae Woronin, is one of the most important diseases of oilseed rape (Brassica napus L.). The rapid erosion of monogenic resistance in clubroot-resistant (CR) varieties underscores the need to diversify resistance sources controlling disease severity and traits related to pathogen fitness, such as resting spore production. The genetic control of disease index (DI) and resting spores per plant (RSP) was evaluated in a doubled haploid (DH) population consisting of 114 winter oilseed rape lines, obtained from the cross 'Aviso' × 'Montego,' inoculated with P. brassicae isolate "eH." Linkage analysis allowed the identification of three quantitative trait loci (QTLs) controlling DI (PbBn_di_A02, PbBn_di_A04, and PbBn_di_C03). A significant decrease in DI was observed when combining effects of the three resistance alleles at these QTLs. Only one QTL, PbBn_rsp_C03, was found to control RSP, reducing resting spore production by 40%. PbBn_rsp_C03 partially overlapped with PbBn_di_C03 in a nucleotide-binding leucine-rich repeat (NLR) gene-containing region. Consideration of both DI and RSP in breeding for clubroot resistance is recommended for the long-term management of this disease.
Collapse
Affiliation(s)
- Andrea Botero-Ramírez
- Department of Agricultural, Food and Nutritional Sciences, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Anne Laperche
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Solenn Guichard
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Mélanie Jubault
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Antoine Gravot
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Sciences, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Maria J. Manzanares-Dauleux
- Institut de Génétique, Environnement et Protection des Plantes, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| |
Collapse
|
7
|
Frontiers in Dissecting and Managing Brassica Diseases: From Reference-Based RGA Candidate Identification to Building Pan-RGAomes. Int J Mol Sci 2020; 21:ijms21238964. [PMID: 33255840 PMCID: PMC7728316 DOI: 10.3390/ijms21238964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
The Brassica genus contains abundant economically important vegetable and oilseed crops, which are under threat of diseases caused by fungal, bacterial and viral pathogens. Resistance gene analogues (RGAs) are associated with quantitative and qualitative disease resistance and the identification of candidate RGAs associated with disease resistance is crucial for understanding the mechanism and management of diseases through breeding. The availability of Brassica genome assemblies has greatly facilitated reference-based quantitative trait loci (QTL) mapping for disease resistance. In addition, pangenomes, which characterise both core and variable genes, have been constructed for B. rapa, B. oleracea and B. napus. Genome-wide characterisation of RGAs using conserved domains and motifs in reference genomes and pangenomes reveals their clustered arrangements and presence of structural variations. Here, we comprehensively review RGA identification in important Brassica genome and pangenome assemblies. Comparison of the RGAs in QTL between resistant and susceptible individuals allows for efficient identification of candidate disease resistance genes. However, the reference-based QTL mapping and RGA candidate identification approach is restricted by the under-represented RGA diversity characterised in the limited number of Brassica assemblies. The species-wide repertoire of RGAs make up the pan-resistance gene analogue genome (pan-RGAome). Building a pan-RGAome, through either whole genome resequencing or resistance gene enrichment sequencing, would effectively capture RGA diversity, greatly expanding breeding resources that can be utilised for crop improvement.
Collapse
|
8
|
Neik TX, Amas J, Barbetti M, Edwards D, Batley J. Understanding Host-Pathogen Interactions in Brassica napus in the Omics Era. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1336. [PMID: 33050509 PMCID: PMC7599536 DOI: 10.3390/plants9101336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Brassica napus (canola/oilseed rape/rapeseed) is an economically important crop, mostly found in temperate and sub-tropical regions, that is cultivated widely for its edible oil. Major diseases of Brassica crops such as Blackleg, Clubroot, Sclerotinia Stem Rot, Downy Mildew, Alternaria Leaf Spot and White Rust have caused significant yield and economic losses in rapeseed-producing countries worldwide, exacerbated by global climate change, and, if not remedied effectively, will threaten global food security. To gain further insights into the host-pathogen interactions in relation to Brassica diseases, it is critical that we review current knowledge in this area and discuss how omics technologies can offer promising results and help to push boundaries in our understanding of the resistance mechanisms. Omics technologies, such as genomics, proteomics, transcriptomics and metabolomics approaches, allow us to understand the host and pathogen, as well as the interaction between the two species at a deeper level. With these integrated data in multi-omics and systems biology, we are able to breed high-quality disease-resistant Brassica crops in a more holistic, targeted and accurate way.
Collapse
Affiliation(s)
- Ting Xiang Neik
- Sunway College Kuala Lumpur, Bandar Sunway 47500, Selangor, Malaysia;
| | - Junrey Amas
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| | - Martin Barbetti
- School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| |
Collapse
|
9
|
Lorang J. Necrotrophic Exploitation and Subversion of Plant Defense: A Lifestyle or Just a Phase, and Implications in Breeding Resistance. PHYTOPATHOLOGY 2019; 109:332-346. [PMID: 30451636 DOI: 10.1094/phyto-09-18-0334-ia] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Breeding disease-resistant plants is a critical, environmentally friendly component of any strategy to sustainably feed and clothe the 9.8 billion people expected to live on Earth by 2050. Here, I review current literature detailing plant defense responses as they relate to diverse biological outcomes; disease resistance, susceptibility, and establishment of mutualistic plant-microbial relationships. Of particular interest is the degree to which these outcomes are a function of plant-associated microorganisms' lifestyles; biotrophic, hemibiotrophic, necrotrophic, or mutualistic. For the sake of brevity, necrotrophic pathogens and the necrotrophic phase of pathogenicity are emphasized in this review, with special attention given to the host-specific pathogens that exploit defense. Defense responses related to generalist necrotrophs and mutualists are discussed in the context of excellent reviews by others. In addition, host evolutionary trade-offs of disease resistance with other desirable traits are considered in the context of breeding for durable disease resistance.
Collapse
Affiliation(s)
- Jennifer Lorang
- Department of Botany, 2082 Cordley Hall, Oregon State University, Corvallis 97331
| |
Collapse
|
10
|
Correction: Genomic evidence for genes encoding leucine-rich repeat receptors linked to resistance against the eukaryotic extra- and intracellular Brassica napus pathogens Leptosphaeria maculans and Plasmodiophora brassicae. PLoS One 2018; 13:e0202143. [PMID: 30086176 PMCID: PMC6080786 DOI: 10.1371/journal.pone.0202143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|