1
|
Burton AT, Zeinert R, Storz G. Large Roles of Small Proteins. Annu Rev Microbiol 2024; 78:1-22. [PMID: 38772630 PMCID: PMC12005717 DOI: 10.1146/annurev-micro-112723-083001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Bacterial proteins of ≤50 amino acids, denoted small proteins or microproteins, have been traditionally understudied and overlooked, as standard computational, biochemical, and genetic approaches often do not detect proteins of this size. However, with the realization that small proteins are stably expressed and have important cellular roles, there has been increased identification of small proteins in bacteria and eukaryotes. Gradually, the functions of a few of these small proteins are being elucidated. Many interact with larger protein products to modulate their subcellular localization, stabilities, or activities. Here, we provide an overview of these diverse functions in bacteria, highlighting generalities among bacterial small proteins and similarly sized proteins in eukaryotic organisms and discussing questions for future research.
Collapse
Affiliation(s)
- Aisha T Burton
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Rilee Zeinert
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| |
Collapse
|
2
|
Abstract
Escherichia coli was one of the first species to have its genome sequenced and remains one of the best-characterized model organisms. Thus, it is perhaps surprising that recent studies have shown that a substantial number of genes have been overlooked. Genes encoding more than 140 small proteins, defined as those containing 50 or fewer amino acids, have been identified in E. coli in the past 10 years, and there is substantial evidence indicating that many more remain to be discovered. This review covers the methods that have been successful in identifying small proteins and the short open reading frames that encode them. The small proteins that have been functionally characterized to date in this model organism are also discussed. It is hoped that the review, along with the associated databases of known as well as predicted but undetected small proteins, will aid in and provide a roadmap for the continued identification and characterization of these proteins in E. coli as well as other bacteria.
Collapse
|
3
|
Borisov VB. Effect of Membrane Environment on the Ligand-Binding Properties of the Terminal Oxidase Cytochrome bd-I from Escherichia coli. BIOCHEMISTRY (MOSCOW) 2021; 85:1603-1612. [PMID: 33705298 DOI: 10.1134/s0006297920120123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome bd-I is a terminal oxidase of the Escherichia coli respiratory chain. This integral membrane protein contains three redox-active prosthetic groups (hemes b558, b595, and d) and couples the electron transfer from quinol to molecular oxygen to the generation of proton motive force, as one of its important physiological functions. The study was aimed at examining the effect of the membrane environment on the ligand-binding properties of cytochrome bd-I by absorption spectroscopy. The membrane environment was found to modulate the ligand-binding characteristics of the hemoprotein in both oxidized and reduced states. Absorption changes upon the addition of exogenous ligands, such as cyanide or carbon monoxide (CO), to the detergent-solubilized enzyme were much more significant and heterogeneous than those observed with the membrane-bound enzyme. In the native membranes, both cyanide and CO interacted mainly with heme d. An additional ligand-binding site (heme b558) appeared in the isolated enzyme, as was evidenced by more pronounced changes in the absorption in the Soret band. This additional reactivity could also be detected after treatment of E. coli membranes with a detergent. The observed effect did not result from the enzyme denaturation, since reconstitution of the isolated enzyme into azolectin liposomes restored the ligand-binding pattern close to that observed for the intact membranes.
Collapse
Affiliation(s)
- V B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Borisov VB, Forte E. Terminal Oxidase Cytochrome bd Protects Bacteria Against Hydrogen Sulfide Toxicity. BIOCHEMISTRY (MOSCOW) 2021; 86:22-32. [PMID: 33705279 DOI: 10.1134/s000629792101003x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogen sulfide (H2S) is often called the third gasotransmitter (after nitric oxide and carbon monoxide), or endogenous gaseous signaling molecule. This compound plays important roles in organisms from different taxonomic groups, from bacteria to animals and humans. In mammalian cells, H2S has a cytoprotective effect at nanomolar concentrations, but becomes cytotoxic at higher concentrations. The primary target of H2S is mitochondria. At submicromolar concentrations, H2S inhibits mitochondrial heme-copper cytochrome c oxidase, thereby blocking aerobic respiration and oxidative phosphorylation and eventually leading to cell death. Since the concentration of H2S in the gut is extremely high, the question arises - how can gut bacteria maintain the functioning of their oxygen-dependent respiratory electron transport chains under such conditions? This review provides an answer to this question and discusses the key role of non-canonical bd-type terminal oxidases of the enterobacterium Escherichia coli, a component of the gut microbiota, in maintaining aerobic respiration and growth in the presence of toxic concentrations of H2S in the light of recent experimental data.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, I-00185 Rome, Italy
| |
Collapse
|
6
|
Du D, Neuberger A, Orr MW, Newman CE, Hsu PC, Samsudin F, Szewczak-Harris A, Ramos LM, Debela M, Khalid S, Storz G, Luisi BF. Interactions of a Bacterial RND Transporter with a Transmembrane Small Protein in a Lipid Environment. Structure 2020; 28:625-634.e6. [PMID: 32348749 PMCID: PMC7267776 DOI: 10.1016/j.str.2020.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/14/2020] [Accepted: 03/27/2020] [Indexed: 12/01/2022]
Abstract
The small protein AcrZ in Escherichia coli interacts with the transmembrane portion of the multidrug efflux pump AcrB and increases resistance of the bacterium to a subset of the antibiotic substrates of that transporter. It is not clear how the physical association of the two proteins selectively changes activity of the pump for defined substrates. Here, we report cryo-EM structures of AcrB and the AcrBZ complex in lipid environments, and comparisons suggest that conformational changes occur in the drug-binding pocket as a result of AcrZ binding. Simulations indicate that cardiolipin preferentially interacts with the AcrBZ complex, due to increased contact surface, and we observe that chloramphenicol sensitivity of bacteria lacking AcrZ is exacerbated when combined with cardiolipin deficiency. Taken together, the data suggest that AcrZ and lipid cooperate to allosterically modulate AcrB activity. This mode of regulation by a small protein and lipid may occur for other membrane proteins.
Collapse
Affiliation(s)
- Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Arthur Neuberger
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Mona Wu Orr
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| | - Catherine E Newman
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Pin-Chia Hsu
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Firdaus Samsudin
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Andrzej Szewczak-Harris
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Leana M Ramos
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| | - Mekdes Debela
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA.
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
7
|
Orr MW, Mao Y, Storz G, Qian SB. Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Res 2020; 48:1029-1042. [PMID: 31504789 DOI: 10.1093/nar/gkz734] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/03/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Traditional annotation of protein-encoding genes relied on assumptions, such as one open reading frame (ORF) encodes one protein and minimal lengths for translated proteins. With the serendipitous discoveries of translated ORFs encoded upstream and downstream of annotated ORFs, from alternative start sites nested within annotated ORFs and from RNAs previously considered noncoding, it is becoming clear that these initial assumptions are incorrect. The findings have led to the realization that genetic information is more densely coded and that the proteome is more complex than previously anticipated. As such, interest in the identification and characterization of the previously ignored 'dark proteome' is increasing, though we note that research in eukaryotes and bacteria has largely progressed in isolation. To bridge this gap and illustrate exciting findings emerging from studies of the dark proteome, we highlight recent advances in both eukaryotic and bacterial cells. We discuss progress in the detection of alternative ORFs as well as in the understanding of functions and the regulation of their expression and posit questions for future work.
Collapse
Affiliation(s)
- Mona Wu Orr
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|