1
|
Safety, Efficacy and Distribution of Doxorubicin Loaded Radiopaque Beads in Chemoembolization in Intermediate Stage Hepatocellular Carcinoma (HCC) with Correlation with Local Response. Cardiovasc Intervent Radiol 2023; 46:337-349. [PMID: 36653660 DOI: 10.1007/s00270-022-03346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023]
Abstract
PURPOSE The primary objectives of this study were to evaluate safety, and efficacy of Transarterial Chemoembolization (TACE) using doxorubicin-loaded radiopaque microspheres (DC Bead LUMI™) for the treatment of early and intermediate stage Hepatocellular Carcinoma (HCC) not amenable for curative treatments. Distribution of the microspheres was correlated with results post embolization. MATERIALS AND METHODS This was a prospective, single arm, open label study. The primary outcome measures were distribution of the radiopaque microspheres as showed by computerized tomography (CT) and local response measured by modified Response Evaluation Criteria (mRECIST) after Magnetic Resonance Imaging (MRI). Secondary measures were Time to Progression (TTP) and Overall Survival (OS). RESULTS Fifty patients were enrolled over 36 months. Median age was 69.0 years; mean sum of target lesions diameters was 78.6 ± 36.8 mm. There were no Grade 4 or 5 adverse events (AEs). At 6 months Complete Response (CR) (18%), Partial Response (PR) (62%), Objective Response OR (80%) and Stable Disease (SD) (20%) were recorded. Before embolization, Diffusion Weighted Imaging (DWI) showed high signal (restricted diffusion). Post procedure, patients with dense deposition (< 5 mm distance of microsphere aggregations) showed 100% absence of enhancement and no restriction in 30.6%. Median TTP was 8.3 months. TTP for patients with CR was 13.3 months and 7.2 and 5.6 for PR and SD, respectively. At 6 and 36 months, survival was 94% and 34%, respectively. CONCLUSION DC Bead LUMI™ is well tolerated and effective in early and intermediate stage HCC with maximal necrosis obtained in dense deposition in the target.
Collapse
|
2
|
Pan F, Do TD, Vollherbst DF, Pereira PL, Richter GM, Faerber M, Weiss KH, Mehrabi A, Kauczor HU, Sommer CM. Percutaneous Irreversible Electroporation for Treatment of Small Hepatocellular Carcinoma Invisible on Unenhanced CT: A Novel Combined Strategy with Prior Transarterial Tumor Marking. Cancers (Basel) 2021; 13:2021. [PMID: 33922067 PMCID: PMC8122342 DOI: 10.3390/cancers13092021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION To explore the feasibility, safety, and efficiency of ethiodized oil tumor marking combined with irreversible electroporation (IRE) for small hepatocellular carcinomas (HCCs) that were invisible on unenhanced computed tomography (CT). METHODS A retrospective analysis of the institutional database was performed from January 2018 to September 2018. Patients undergoing ethiodized oil tumor marking to improve target-HCC visualization in subsequent CT-guided IRE were retrieved. Target-HCC visualization after marking was assessed, and the signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNR) were compared between pre-marking and post-marking CT images using the paired t-test. Standard IRE reports, adverse events, therapeutic endpoints, and survival were summarized and assessed. RESULTS Nine patients with 11 target-HCCs (11.1-18.8 mm) were included. After marking, all target-HCCs demonstrated complete visualization in post-marking CT, which were invisible in pre-marking CT. Quantitatively, the SNR of the target-HCCs significantly increased after marking (11.07 ± 4.23 vs. 3.36 ± 1.79, p = 0.006), as did the CNR (4.32 ± 3.31 vs. 0.43 ± 0.28, p = 0.023). In sequential IRE procedures, the average current was 30.1 ± 5.3 A, and both the delta ampere and percentage were positive with the mean values of 5.8 ± 2.1 A and 23.8 ± 6.3%, respectively. All procedures were technically successful without any adverse events. In the follow-up, no residual unablated tumor (endpoint-1) was observed. The half-year, one-year, and two-year local tumor progression (endpoint-2) rate was 0%, 9.1%, and 27.3%. The two-year overall survival rate was 100%. CONCLUSIONS Ethiodized oil tumor marking enables to demarcate small HCCs that were invisible on unenhanced CT. It potentially allows a safe and complete ablation in subsequent CT-guided IRE.
Collapse
Affiliation(s)
- Feng Pan
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.P.); (T.D.D.); (D.F.V.); (M.F.); (H.U.K.)
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Thuy D. Do
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.P.); (T.D.D.); (D.F.V.); (M.F.); (H.U.K.)
| | - Dominik F. Vollherbst
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.P.); (T.D.D.); (D.F.V.); (M.F.); (H.U.K.)
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Philippe L. Pereira
- Clinic for Radiology, Minimally-Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, 74078 Heilbronn, Germany;
| | - Götz M. Richter
- Clinic for Diagnostic and Interventional Radiology, Stuttgart Clinics, Katharinenhospital, 70174 Stuttgart, Germany;
| | - Michael Faerber
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.P.); (T.D.D.); (D.F.V.); (M.F.); (H.U.K.)
| | - Karl H. Weiss
- Department of Gastroenterology, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Hans U. Kauczor
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.P.); (T.D.D.); (D.F.V.); (M.F.); (H.U.K.)
| | - Christof M. Sommer
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.P.); (T.D.D.); (D.F.V.); (M.F.); (H.U.K.)
- Clinic for Diagnostic and Interventional Radiology, Stuttgart Clinics, Katharinenhospital, 70174 Stuttgart, Germany;
| |
Collapse
|
3
|
Pan F, Schneider D, Ryschich E, Qian B, Vollherbst DF, Möhlenbruch MA, Jugold M, Eichwald V, Stenzel P, Pereira PL, Richter GM, Kauczor HU, Sommer CM, Do TD. In Vitro Characterization of a Novel Type of Radiopaque Doxorubicin-Loaded Microsphere. Cardiovasc Intervent Radiol 2020; 43:636-647. [PMID: 31965224 DOI: 10.1007/s00270-020-02407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/05/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE To evaluate and compare the material characteristics of a novel type of radiopaque doxorubicin-loaded microsphere (V-100) with radiopaque and non-radiopaque doxorubicin-loaded microspheres. MATERIALS AND METHODS The prototype V-100 featuring inherent radiopacity and three available commercial controls (DC-Bead-LUMI™-70-150, Embozene-Tandem™-100 and DC-Bead™-M1) were analyzed before and after doxorubicin loading (37.5 mg doxorubicin/1 ml microspheres) in suspension with aqua and/or aqua/iodixanol-320. Study goals included inherent radiopacity [e.g., using conventional computed tomography (CT)], doxorubicin loading efficacy, morphology using light and fluorescence microscopy, size distribution using laser diffraction/light scattering, time-in-suspension, rheological properties using rheometer analysis, and microsphere stability observed over a period of 5 days after doxorubicin loading. RESULTS V-100 showed good inherent radiopacity without adverse imaging artifacts. Under conventional CT, the quantitative radiopacity was as follows: 480.4 ± 2.9HU for V-100, 2432.7 ± 3.2HU for DC-Bead-LUMI™-70-150, 118.1 ± 3.0HU for Embozene-Tandem™-100, and 19.8 ± 1.5HU for DC-Bead™-M1. All of the types of microspheres showed a similar loading efficiency (> 98%) after 24 h; however, there were slower doxorubicin loading velocities for the radiopaque microspheres. The doxorubicin-loaded V-100 and Embozene-Tandem™-100 showed typical narrow-sized distributions. In aqua/iodixanol-320 suspension, doxorubicin-loaded V-100 showed the best suspension features and ideal deformability and elasticity characteristics. Similar to other microspheres, doxorubicin-loaded V-100 was very stable and storable for at least 5 days. CONCLUSION V-100 is a promising novel type of radiopaque doxorubicin-loaded microsphere. Compared with the controls, V-100 shows good inherent radiopacity without adverse imaging artifacts and with comparable doxorubicin loading efficacy. Further advantages of V-100 include narrow-sized distribution and excellent suspension, rheology, and stability features.
Collapse
Affiliation(s)
- Feng Pan
- Clinic of Diagnostic and Interventional Radiology, Heidelberg University Hospital, INF 110, 69120, Heidelberg, Germany.,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daniel Schneider
- Clinic of Diagnostic and Interventional Radiology, Heidelberg University Hospital, INF 110, 69120, Heidelberg, Germany
| | - Eduard Ryschich
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Baifeng Qian
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominik F Vollherbst
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A Möhlenbruch
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Manfred Jugold
- Core Facility Small Animal Imaging, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Viktoria Eichwald
- Core Facility Small Animal Imaging, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Philipp Stenzel
- Institute of Pathology, Mainz University Hospital, Mainz, Germany
| | - Philippe L Pereira
- Clinic for Radiology, Minimally-Invasive Therapies and Nuclearmedicine, SLK-Kliniken GmbH, Heilbronn, Germany
| | - Götz M Richter
- Clinic of Diagnostic and Interventional Radiology, Klinikum Stuttgart, Kriegsbergstrasse 60, 70174, Stuttgart, Germany
| | - Hans U Kauczor
- Clinic of Diagnostic and Interventional Radiology, Heidelberg University Hospital, INF 110, 69120, Heidelberg, Germany
| | - Christof M Sommer
- Clinic of Diagnostic and Interventional Radiology, Heidelberg University Hospital, INF 110, 69120, Heidelberg, Germany. .,Clinic of Diagnostic and Interventional Radiology, Klinikum Stuttgart, Kriegsbergstrasse 60, 70174, Stuttgart, Germany.
| | - Thuy D Do
- Clinic of Diagnostic and Interventional Radiology, Heidelberg University Hospital, INF 110, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Tanitame K, Tanitame N, Takahashi Y, Tamai E, Kurose T. The opacity of mineral ion-loaded bead (DC beads ®) on low-keV monochromatic images from dual energy CT and T1-weighted gradient-echo MRI. Jpn J Radiol 2019; 37:660-665. [PMID: 31338722 DOI: 10.1007/s11604-019-00856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE To evaluate the opacity of DC beads® (DCB) loaded with mineral ions on low-keV monochromatic images from dual energy computed tomography (DECT) and T1-weighted gradient-echo (T1-GRE) MRI. MATERIALS AND METHODS Fe2+ or Ca2+-loaded DCBs were prepared by mixing DCBs in 100 mM FeSO4 or CaSO4 solution and scanned by DECT from 10 min to 27 h after mixing. The Hounsfield units (HUs) of sedimented DCBs on 40-keV monochromatic images were measured. Next, we mixed DCBs in 100, 10, 5 and 1 mM FeSO4 solutions, and scanned these solutions from 15 to 120 min after mixing using a 3 T MR scanner. The signal-noise ratios (SNRs) of sedimented DCBs on T1-GRE were measured. Venous blood was scanned to compare with DCBs. RESULTS The CT values of DCBs in FeSO4 and CaCl2 solutions gradually increased, and were 113.3 and 43.1 HU at 27 h, respectively; that of blood was 17.8 HU. The SNR of DCB in 1 mM FeSO4 solution increased and achieved equilibrium at 120 min, and was 120.5 and higher than in the other FeSO4 solutions. The SNR of blood was 49.7. CONCLUSION Optimally Fe2+-loaded DCBs can be discriminated from venous blood on 40-keV monochromatic images from DECT and T1-GRE.
Collapse
Affiliation(s)
- Keizo Tanitame
- Department of Diagnostic Radiology, Hiroshima Prefectural Hospital, Minami-ku, Ujinakanda, 1-5-54, Hiroshima, 734-8530, Japan.
| | - Nobuko Tanitame
- Department of Radiology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Yuji Takahashi
- Department of Clinical Radiology, Hiroshima University Hospital, Hiroshima, Japan
| | - Erika Tamai
- Department of Radiology, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Taichi Kurose
- Department of Diagnostic Radiology, Hiroshima Prefectural Hospital, Minami-ku, Ujinakanda, 1-5-54, Hiroshima, 734-8530, Japan
| |
Collapse
|