1
|
Fernandes GFS, Kim SH, Castagnolo D. Harnessing biocatalysis as a green tool in antibiotic synthesis and discovery. RSC Adv 2024; 14:30396-30410. [PMID: 39318457 PMCID: PMC11420778 DOI: 10.1039/d4ra04824e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
Biocatalysis offers a sustainable approach to drug synthesis, leveraging the high selectivity and efficiency of enzymes. This review explores the application of biocatalysis in the early-stage synthesis of antimicrobial compounds, emphasizing its advantages over traditional chemical methods. We discuss various biocatalysts, including enzymes and whole-cell systems, and their role in the selective functionalization and preparation of antimicrobials and antibacterial building blocks. The review underscores the potential of biocatalysis to advance the development of new antibiotics and suggests directions and potential applications of enzymes in drug development.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
- School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| | - Seong-Heun Kim
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London 150 Stamford Street London SE1 9NH UK
| | - Daniele Castagnolo
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
2
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aguilera‐Gómez M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Peláez C, Poulsen M, Prieto Maradona M, Schlatter JR, Siskos A, van Loveren H, Colombo P, Noriega Fernández E, Knutsen HK. Safety of 3'-sialyllactose (3'-SL) sodium salt produced by a derivative strain ( Escherichia coli NEO3) of E. coli W (ATCC 9637) as a Novel Food pursuant to Regulation (EU) 2015/2283. EFSA J 2023; 21:e08224. [PMID: 37746669 PMCID: PMC10512151 DOI: 10.2903/j.efsa.2023.8224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 3'-sialyllactose (3'-SL) sodium salt as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human-identical milk oligosaccharide (HiMO) 3'-SL (sodium salt), but it also contains sialic acid, d-glucose, d-lactose, 3'-sialyllactulose and 6'-sialyllactose sodium salts and a small fraction of other related saccharides. The NF is produced by fermentation by a genetically modified strain (Escherichia coli NEO3) of E. coli W (ATCC 9637). The information provided on the identity, manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF to a variety of foods, including infant formula and follow-on formula, food for special medical purposes and food supplements (FS). The target population is the general population. The applicant applies for the same uses and use levels as already assessed for 3'-SL sodium salt produced by a genetically modified strain of E. coli K-12 DH1, with the exception for the use in FS, which is proposed to be higher (from 0.5 to 1.0 g/day) in individuals from 3 years of age. Since the NF as a food ingredient would be consumed at the same extent as the already assessed 3'-SL sodium salt, no new estimates of the intakes have been carried out. The Panel notes that the maximum daily intake of 3'-SL from the proposed use of the NF in FS for individuals from 3 years of age (1.0 g/day) is lower than the estimated highest mean daily intake of 3'-SL in breastfed infants. FS are not intended to be used if other sources of 3'-SL are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
3
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aguilera‐Gómez M, Cubadda F, Frenzel T, Heinonen M, Prieto Maradona M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Schlatter JR, Siskos A, van Loveren H, Colombo P, Noriega Fernández E, Knutsen HK. Safety of 6'-sialyllactose (6'-SL) sodium salt produced by a derivative strain ( Escherichia coli NEO6) of E. coli W (ATCC 9637) as a Novel Food pursuant to Regulation (EU) 2015/2283. EFSA J 2023; 21:e08025. [PMID: 37313319 PMCID: PMC10258722 DOI: 10.2903/j.efsa.2023.8025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 6'-sialyllactose (6'-SL) sodium salt as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human-identical milk oligosaccharide (HiMO) 6'-SL (sodium salt), but it also contains sialic acid, d-glucose, d-lactose, 6'-sialyllactulose sodium salt, 3'-sialyllactose (3'-SL) sodium salt and a small fraction of other related saccharides. The NF is produced by fermentation by a genetically modified strain (Escherichia coli NEO6) of E. coli W (ATCC 9637). The information provided on the identity, manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF to a variety of foods, including infant formula and follow-on formula, food for special medical purposes and food supplements (FS). The target population is the general population. The applicant applies for the same uses and use levels already assessed for 6'-SL sodium salt produced by fermentation by a genetically modified strain of E. coli K-12 DH1. Therefore, since the NF would be consumed at the same extent as the already assessed 6'-SL sodium salt, no new estimates of the intake have been carried out. Similarly, FS are not intended to be used if other foods with added 6'-SL or human milk are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
4
|
de Moura e Dias M, da Silva Duarte V, Mota LFM, de Cássia Ávila Alpino G, dos Reis Louzano SA, da Conceição LL, Mantovanie HC, Pereira SS, Oliveira LL, de Oliveira Mendes TA, Porcellato D, do Carmo Gouveia Peluzio M. Lactobacillus gasseri LG-G12 Restores Gut Microbiota and Intestinal Health in Obesity Mice on Ceftriaxone Therapy. Foods 2023; 12:foods12051092. [PMID: 36900609 PMCID: PMC10001121 DOI: 10.3390/foods12051092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Gut microbiota imbalance is associated with the occurrence of metabolic diseases such as obesity. Thus, its modulation is a promising strategy to restore gut microbiota and improve intestinal health in the obese. This paper examines the role of probiotics, antimicrobials, and diet in modulating gut microbiota and improving intestinal health. Accordingly, obesity was induced in C57BL/6J mice, after which they were redistributed and fed with an obesogenic diet (intervention A) or standard AIN-93 diet (intervention B). Concomitantly, all the groups underwent a treatment phase with Lactobacillus gasseri LG-G12, ceftriaxone, or ceftriaxone followed by L. gasseri LG-G12. At the end of the experimental period, the following analysis was conducted: metataxonomic analysis, functional profiling of gut microbiota, intestinal permeability, and caecal concentration of short-chain fatty acids. High-fat diet impaired bacterial diversity/richness, which was counteracted in association with L. gasseri LG-G12 and the AIN-93 diet. Additionally, SCFA-producing bacteria were negatively correlated with high intestinal permeability parameters, which was further confirmed via functional profile prediction of the gut microbiota. A novel perspective on anti-obesity probiotics is presented by these findings based on the improvement of intestinal health irrespective of undergoing antimicrobial therapy or not.
Collapse
Affiliation(s)
- Mariana de Moura e Dias
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
- Correspondence:
| | - Lúcio Flávio Macedo Mota
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Padua, Italy
| | - Gabriela de Cássia Ávila Alpino
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Sandra Aparecida dos Reis Louzano
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Lisiane Lopes da Conceição
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Hilário Cuquetto Mantovanie
- Department of Microbiology, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Solange Silveira Pereira
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Leandro Licursi Oliveira
- Department of General Biology, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Maria do Carmo Gouveia Peluzio
- Department of Nutrition and Health, Universidade Federal de Vicosa, Avenida P. H. Rolfs, Campus Universitário S/N, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
5
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Colombo P, Noriega Fernández E, Knutsen HK. Safety of 6'-sialyllactose (6'-SL) sodium salt produced by derivative strains of Escherichia coli BL21 (DE3) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2022; 20:e07645. [PMID: 36507098 PMCID: PMC9728050 DOI: 10.2903/j.efsa.2022.7645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 6'-sialyllactose (6'-SL) sodium salt as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human-identical milk oligosaccharide (HiMO) 6'-SL, but it also contains d-lactose, 6'-sialyllactulose, sialic acid, N-acetyl-d-glucosamine and a small fraction of other related oligosaccharides. The NF is produced by fermentation with two genetically modified strains of Escherichia coli BL21 (DE3), the production strain and the optional degradation strain. The information provided on the identity, manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF to a variety of foods, including infant formula and follow-on formula, food for special medical purposes and food supplements. The target population is the general population. In some scenarios at the maximum use levels, the estimated intakes per kg body weight were higher than the high average natural intake of 6'-SL from human milk. However, given the intrinsic nature of human milk oligosaccharides (HMOs), the wide range of intakes from human milk, and considering that infants are naturally exposed to similar amounts of these substances, the Panel considers that the consumption of the NF at the proposed conditions of use does not raise safety concerns. The intake of 6'-SL in breastfed infants on a body weight basis is also expected to be safe for other population groups. The intake of other carbohydrate-type compounds structurally related to 6'-SL is also considered of no safety concern. Food supplements are not intended to be used if other foods with added 6'-SL or human milk are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
6
|
Liu Z, Shen Z, Xiang S, Sun Y, Cui J, Jia J. Evaluation of 1,4-naphthoquinone derivatives as antibacterial agents: activity and mechanistic studies. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2022; 17:31. [PMID: 36313056 PMCID: PMC9589524 DOI: 10.1007/s11783-023-1631-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/17/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED The diverse and large-scale application of disinfectants posed potential health risks and caused ecological damage during the 2019-nCoV pandemic, thereby increasing the demands for the development of disinfectants based on natural products, with low health risks and low aquatic toxicity. In the present study, a few natural naphthoquinones and their derivatives bearing the 1,4-naphthoquinone skeleton were synthesized, and their antibacterial activity against selected bacterial strains was evaluated. In vitro antibacterial activities of the compounds were investigated against Escherichia coli and Staphylococcus aureus. Under the minimum inhibitory concentration (MIC) of ⩽ 0.125 µmol/L for juglone (1a), 5,8-dimethoxy-1,4-naphthoquinone (1f), and 7-methyl-5-acetoxy-1,4-naphthoquinone (3c), a strong antibacterial activity against S. aureus was observed. All 1,4-naphthoquinone derivatives exhibited a strong antibacterial activity, with MIC values ranging between 15.625 and 500 µmol/L and EC50 values ranging between 10.56 and 248.42 µmol/L. Most of the synthesized compounds exhibited strong antibacterial activities against S. aureus. Among these compounds, juglone (1a) showed the strongest antibacterial activity. The results from mechanistic investigations indicated that juglone, a natural naphthoquinone, caused cell death by inducing reactive oxygen species production in bacterial cells, leading to DNA damage. In addition, juglone could reduce the self-repair ability of bacterial DNA by inhibiting RecA expression. In addition to having a potent antibacterial activity, juglone exhibited low cytotoxicity in cell-based investigations. In conclusion, juglone is a strong antibacterial agent with low toxicity, indicating that its application as a bactericidal agent may be associated with low health risks and aquatic toxicity. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available in the online version of this article at 10.1007/s11783-023-1631-2 and is accessible for authorized users.
Collapse
Affiliation(s)
- Zhizhuo Liu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Zhemin Shen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shouyan Xiang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yang Sun
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jinping Jia
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
7
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Colombo P, Noriega Fernández E, Knutsen HK. Safety of 3'-sialyllactose (3'-SL) sodium salt produced by derivative strains of Escherichia coli BL21 (DE3) as a Novel Food pursuant to Regulation (EU) 2015/2283. EFSA J 2022; 20:e07331. [PMID: 35646166 PMCID: PMC9131611 DOI: 10.2903/j.efsa.2022.7331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 3'-sialyllactose (3'-SL) sodium salt as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human-identical milk oligosaccharide (HiMO) 3'-SL, but it also contains d-lactose, 3'-sialyllactulose, sialic acid, N-acetyl-d-glucosamine and a small fraction of other related oligosaccharides. The NF is produced by fermentation with two genetically modified strains of Escherichia coli BL21 (DE3), the production strain and the optional degradation strain. The information provided on the manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF to a variety of foods, including infant formula and follow-on formula, food for infants and young children, food for special medical purposes and food supplements. The target population is the general population. The anticipated daily intake of 3'-SL from both proposed and combined (authorised and proposed) uses at their respective maximum use levels in all population categories does not exceed the highest intake level of 3'-SL from human milk in infants on a body weight basis. The intake of 3'-SL in breastfed infants on a body weight basis is expected to be safe also for other population groups. The intake of other carbohydrate-type compounds structurally related to 3'-SL is also considered of no safety concern. Food supplements are not intended to be used if other foods with added 3'-SL or human milk are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
8
|
Comparative Transcriptomic Analysis of Staphylococcus aureus Reveals the Genes Involved in Survival at Low Temperature. Foods 2022; 11:foods11070996. [PMID: 35407083 PMCID: PMC8997709 DOI: 10.3390/foods11070996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/05/2023] Open
Abstract
In food processing, the temperature is usually reduced to limit bacterial reproduction and maintain food safety. However, Staphylococcus aureus can adapt to low temperatures by controlling gene expression and protein activity, although its survival strategies normally vary between different strains. The present study investigated the molecular mechanisms of S. aureus with different survival strategies in response to low temperatures (4 °C). The survival curve showed that strain BA-26 was inactivated by 6.0 logCFU/mL after 4 weeks of low-temperature treatment, while strain BB-11 only decreased by 1.8 logCFU/mL. Intracellular nucleic acid leakage, transmission electron microscopy, and confocal laser scanning microscopy analyses revealed better cell membrane integrity of strain BB-11 than that of strain BA-26 after low-temperature treatment. Regarding oxidative stress, the superoxide dismutase activity and the reduced glutathione content in BB-11 were higher than those in BA-26; thus, BB-11 contained less malondialdehyde than BA-26. RNA-seq showed a significantly upregulated expression of the fatty acid biosynthesis in membrane gene (fabG) in BB-11 compared with BA-26 because of the damaged cell membrane. Then, catalase (katA), reduced glutathione (grxC), and peroxidase (ahpC) were found to be significantly upregulated in BB-11, leading to an increase in the oxidative stress response, but BA-26-related genes were downregulated. NADH dehydrogenase (nadE) and α-glucosidase (malA) were upregulated in the cold-tolerant strain BB-11 but were downregulated in the cold-sensitive strain BA-26, suggesting that energy metabolism might play a role in S. aureus under low-temperature stress. Furthermore, defense mechanisms, such as those involving asp23, greA, and yafY, played a pivotal role in the response of BB-11 to stress. The study provided a new perspective for understanding the survival mechanism of S. aureus at low temperatures.
Collapse
|
9
|
Thum C, Wall CR, Weiss GA, Wang W, Szeto IMY, Day L. Changes in HMO Concentrations throughout Lactation: Influencing Factors, Health Effects and Opportunities. Nutrients 2021; 13:2272. [PMID: 34209241 PMCID: PMC8308359 DOI: 10.3390/nu13072272] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are important functional biomolecules in human breast milk. Understanding the factors influencing differences in HMO composition and changes in their concentration over lactation can help to design feeding strategies that are well-adapted to infant's needs. This review summarises the total and individual concentration of HMOs from data published from 1999 to 2019. Studies show that the HMO concentrations are highest in colostrum (average 9-22 g/L), followed by slightly lower concentrations in transitional milk (average 8-19 g/L), with a gradual decline in mature milk as lactation progresses, from 6-15 g/L in breast milk collected within one month of birth, to 4-6 g/L after 6 months. Significant differences in HMO composition have been described between countries. Different HMOs were shown to be predominant over the course of lactation, e.g., 3-fucosyllactose increased over lactation, whereas 2'-fucosyllactose decreased. Recent clinical studies on infant formula supplemented with 2'-fucosyllactose in combination with other oligosaccharides showed its limited beneficial effect on infant health.
Collapse
Affiliation(s)
- Caroline Thum
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand;
| | - Clare Rosemary Wall
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand;
| | | | - Wendan Wang
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group, Co., Ltd., Fengtai District, Beijing 100071, China; (W.W.); (I.M.-Y.S.)
| | - Ignatius Man-Yau Szeto
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group, Co., Ltd., Fengtai District, Beijing 100071, China; (W.W.); (I.M.-Y.S.)
| | - Li Day
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand;
| |
Collapse
|
10
|
Gao H, Qin Y, Zeng J, Yang Q, Jia T. Dietary intervention with sialylated lactulose affects the immunomodulatory activities of mice. J Dairy Sci 2021; 104:9494-9504. [PMID: 34176623 DOI: 10.3168/jds.2021-20327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/12/2021] [Indexed: 11/19/2022]
Abstract
Four sialylated lactuloses [N-acetylneuraminic acid-α2,3-lactulose (Neu5Acα2,3lactulose), N-acetylneuraminic acid-α2,6-lactulose (Neu5Acα2,6lactulose), deaminoneuraminc acid-α2,3-lactulose (Kdnα2,3lactulose), and deaminoneuraminc acid-α-2,6-lactulose (Kdnα2,6lactulose)] were reported to modulate the immunity of mice. The influences of cytokine expression, cell immunity, humoral immunity, and nonspecific immunity were investigated in our study using several techniques. Analysis via ELISA showed that cytokine expression was induced by sialylated lactulose treatment consistently in the serum and spleen. Among the 4 tested sialylated lactuloses, Neu5Acα2,6lactulose performed the best, simultaneously and appropriately promoting the expression of proinflammatory and anti-inflammatory factors in the serum and spleen. Kdnα2,3lactulose showed the best antioxidant activity according to detection of the activity of superoxide dismutase, myeloperoxidase, peroxidase, and alkaline phosphatase. Flow cytometry revealed that only Kdnα2,3lactulose significantly boosted the CD3+ T lymphocyte ratio similarly to that of lactulose. Analysis of the hemolysin content to characterize humoral immunity revealed that Kdnα2,3lactulose notably increased hemolysin content compared with that in the control group. To evaluate the nonspecific immune effects of the 4 sialylated lactuloses, a fluorescence microsphere phagocytosis assay was used to analyze the phagocytosis of macrophages. Kdnα2,3lactulose still performed the best in enhancing the phagocytosis of macrophages, showing markedly increased phagocytic percentage and phagocytic index values compared with those in the control and lactulose groups. Comparing the differences of these 4 sialylated lactuloses in affecting immunity in mice revealed that Kdnα2,3lactulose had the best overall performance in influencing cytokine expression, cell immunity, humoral immunity, and nonspecific immunity. This study provides critical support for use of sialylated lactuloses as potential immunomodulators in foods.
Collapse
Affiliation(s)
- Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Yueqi Qin
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qing Yang
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Tian Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
11
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Engel KH, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Schlatter JR, van Loveren H, Colombo P, Knutsen HK. Safety of 3'-Sialyllactose (3'-SL) sodium salt as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2020; 18:e06098. [PMID: 37649513 PMCID: PMC10464685 DOI: 10.2903/j.efsa.2020.6098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 3'-Sialyllactose (3'-SL) sodium salt as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human identical milk oligosaccharide (HiMO) 3'-SL but also containing D-lactose, sialic acid and a small fraction of other related oligosaccharides resulting in a fully characterised mixture of carbohydrates. The NF is produced by fermentation with a genetically modified strain of Escherichia coli K-12 DH1. The information provided on the manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF in a variety of foods, including infant and follow-on formula, foods for infants and toddlers, foods for special medical purposes and food supplements. The target population is the general population. The anticipated daily intake of 3'-SL from the NF at the maximum proposed use levels is unlikely to exceed the intake level of naturally occurring 3'-SL in breastfed infants on a body weight basis. The intake of 3'-SL in breastfed infants on a body weight basis is expected to be safe also for other population groups. The intake of other carbohydrate-type compounds structurally related to 3'-SL is also considered of no safety concern. Food supplements are not intended to be used if other foods with added NF (as well as breast milk, milk, fermented milk-based products and selected cheeses retaining milk sugar (e.g. curd cheese) for infants and young children) are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use for the proposed target populations.
Collapse
|
12
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Engel KH, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Schlatter JR, van Loveren H, Colombo P, Knutsen HK. Safety of 6'-Sialyllactose (6'-SL) sodium salt as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2020; 18:e06097. [PMID: 37649501 PMCID: PMC10464711 DOI: 10.2903/j.efsa.2020.6097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on 6'-Sialyllactose (6'-SL) sodium salt as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is mainly composed of the human-identical milk oligosaccharide (HiMO) 6'-SL but also contains D-lactose, sialic acid and a small fraction of other related oligosaccharides. The NF is produced by fermentation with a genetically modified strain of Escherichia coli K-12 DH1. The information provided on the manufacturing process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF in a variety of foods, including infant and follow-on formula, foods for infants and toddlers, foods for special medical purposes and food supplements. The target population is the general population. The anticipated daily intake of 6'-SL from the NF at the maximum proposed use levels is unlikely to exceed the intake level of naturally occurring 6'-SL in breastfed infants on a body weight basis. The intake of 6'-SL in breastfed infants on a body weight basis is expected to be safe also for other population groups. The intake of other carbohydrate-type compounds structurally related to 6'-SL is also considered of no safety concern. Food supplements are not intended to be used if other foods with the added NF or breast milk are consumed on the same day. The Panel concludes that the NF is safe under the proposed conditions of use.
Collapse
|
13
|
Meroni G, Zamarian V, Prussiani C, Bronzo V, Lecchi C, Martino PA, Ceciliani F. The bovine acute phase protein α 1-acid glycoprotein (AGP) can disrupt Staphylococcus aureus biofilm. Vet Microbiol 2019; 235:93-100. [PMID: 31282384 DOI: 10.1016/j.vetmic.2019.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 11/25/2022]
Abstract
Staphylococcus aureus biofilm-related infections are of clinical concern due to the capability of bacterial colonies to adapt to a hostile environment. The present study investigated the capability of the acute phase protein alpha 1-acid glycoprotein (AGP) to a) disrupt already established S. aureus biofilm and b) interfere with the biofilm de novo production by using Microtiter Plate assay (MtP) on field strains isolated from infected quarters by assessing. The present study also investigated whether AGP could interfere with the expression of bacterial genes related to biofilm formation (icaA, icaD, icaB, and icaC) and adhesive virulence determinants (fnbA, fnbB, clfA, clfB, fib, ebps, eno) by quantitative real-time PCR (qPCR). The results provided the evidence that AGP could disrupt the biofilm structure only when it was already developed, but could not prevent the de novo biofilm formation. Moreover, AGP could interfere with the expression levels of genes involved in biofilm formation in a dose- and strain-dependent way, by upregulating, or downregulating, icaABC genes and fnbB, respectively. The results presented in this study provide new insights about the direct antibacterial activity of AGP in bovine milk. It remains to be demonstrated the molecular bases of AGP mechanism of action, in particular for what concerns the scarce capability to interact with the de novo formation of biofilm.
Collapse
Affiliation(s)
- Gabriele Meroni
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Valentina Zamarian
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Cristina Prussiani
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Valerio Bronzo
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Cristina Lecchi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Piera Anna Martino
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
14
|
Zeng J, Song M, Jia T, Gao H, Zhang R, Jiang J. Immunomodulatory influences of sialylated lactuloses in mice. Biochem Biophys Res Commun 2019; 514:351-357. [PMID: 31040021 DOI: 10.1016/j.bbrc.2019.04.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 04/23/2019] [Indexed: 12/01/2022]
Abstract
The aim of this study was to investigate the immune modulatory influences of sialylated lactuloses in mice. The effects of the four sialylated lactuloses by gavage methods on the weight gain rate, organ, serum and spleen immunoglobulin of mice were investigated. Neu5Ac-α2,3-lactulose group and Kdn-α2,3-lactulose group had significantly higher weight gain rate than control group. The weight gain rate, thymus index and spleen index of Kdn-α2,3-lactulose group were significantly higher than control group and lactulose group. Liver and small intestine of Neu5Ac-α2,3-lactulose group, Neu5Ac-α2,6-lactulose group and Kdn-α2,6-lactulose group showed different degree of damage. IgG levels of serum and spleen in Neu5Ac-α2,6-lactulose group and Kdn-α2,6-lactulose group were significantly higher than control group and lactulose group. The contents of IgG in serum and spleen of Kdn-α2,3-lactulose group were significantly lower than that of control group, while the contents of IgA and IgM in serum were significantly higher than those of control group. The IgA level increased by 12.23% and 58.77% comparing with lactulose group and control group, respectively. The IgM level in serum of Kdn-α2,3-lactulose group mice increased by 43.88% and 8.05% comparing with control group and lactulose group, respectively. The IgA level and IgM level in spleen of Kdn-α2,3-lactulose group mice increased by 49.05% and 47.25% comparing with control group. In short, Kdn-α2,3-lactulose is relatively safe and superior to use as a food supplement or potential drug candidate. Our results also indicate that some other sialylated oligosaccharides are potentially harmful to organisms, they may cause some side effects.
Collapse
Affiliation(s)
- Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Mengdi Song
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Tian Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ruiyao Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jikai Jiang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| |
Collapse
|
15
|
Correction: Chemoenzymatic synthesis of sialylated lactuloses and their inhibitory effects on Staphylococcus aureus. PLoS One 2018; 13:e0204466. [PMID: 30222783 PMCID: PMC6141085 DOI: 10.1371/journal.pone.0204466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|