1
|
Assumpção MEOD, Hamilton TRDS. New approaches in bovine spermatozoa evaluation and their relationship with male fertility. Anim Reprod Sci 2025; 272:107656. [PMID: 39616724 DOI: 10.1016/j.anireprosci.2024.107656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/16/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024]
Abstract
Male fertility potential depends on physical, endocrine, and genetic factors responsible for producing functional male gametes. Although the main function of the male gamete, the spermatozoon, is to deliver its genetic material to the oocyte, this premise has been modified over the past few years. It is believed that the spermatozoon provides essential factors for fertilization and pre-implantation embryo development. A viable/healthy spermatozoon has functional subcellular compartments (nucleus, acrosome, midpiece, and flagellum) due to the actions of proteins, transcripts, and epigenetic marks in the organelles present in them that have important roles in reproductive biology. Male fertility potential reflects viable spermatozoa with proper function. Therefore, new approaches to functional sperm analysis are essential. Additionally, intrinsic factors and sperm molecules constitute potential biomarkers of viable spermatozoa and male fertility. Among these factors are proteins, the genome, and coding and non-coding RNAs, such as microRNAs, that act during fertilization and early embryo development. Research has been seeking increasingly efficient tools to predict fertility and functional studies of these molecules through gene and protein expression. Thus, analytical tools are essential to identify and classify viable and functional spermatozoa, to evaluate assisted reproductive male potential.
Collapse
Affiliation(s)
| | - Thais Rose Dos Santos Hamilton
- Department of Animal Morphology and Physiology, School of Agriculture and Veterinary Sciences, Sao Paulo State University (UNESP), SP, Brazil
| |
Collapse
|
2
|
Bodu M, Hitit M, Memili E. Harnessing the value of fertility biomarkers in bull sperm for buck sperm. Anim Reprod Sci 2025; 272:107643. [PMID: 39577268 DOI: 10.1016/j.anireprosci.2024.107643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Efficient and sustainable reproduction and production of cattle and goats are vitally important for ensuring global food security. There is a need for potent biomarkers to accurately evaluate semen quality and predict male fertility. Although there is a reasonable set of biomarkers identified in bull sperm, there is a significant lack of such information in buck sperm along with a lack of transfer of proven technologies in goat reproductive biotechnology. These gaps are important problems because they are preventing advances in fundamental andrology and applied science of goat production. Both cattle and goats are ruminants, and they share significant similarities in their genetics and physiology although subtle differences do exist. This review harnesses the power of utilizing the knowledge developed in bull sperm to generate information on buck sperm fertility markers. These include genomic, functional genomic, epigenomic fertility markers. Revealing molecular underpinnings of such similarity and diversity using systems biology is expected to advance both fundamental and applied andrology of livestock and endangered species.
Collapse
Affiliation(s)
- Mustafa Bodu
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States; Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye.
| | - Mustafa Hitit
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States.
| | - Erdogan Memili
- College of Agriculture, Food and Natural Resources, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States.
| |
Collapse
|
3
|
Parvin A, Erabi G, Saboohi Tasooji MR, Sadeghpour S, Mellatyar H, Rezaei Arablouydareh S, Navapour L, Taheri-Anganeh M, Ghasemnejad-Berenji H. The effects of photobiomodulation on the improvement of sperm parameters: A review study. Photochem Photobiol 2024; 100:1713-1739. [PMID: 38623963 DOI: 10.1111/php.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
The prevalence of male infertility has become a significant clinical concern worldwide, with a noticeable upward trend in recent times. The rates of fertilization and subsequent development of embryos are dependent on many parameters associated with the quality and viability of sperm. Photobiomodulation (PBM) is a promising approach with a great potential for translational applications in the treatment of spermatozoa exhibiting low quality and motility. In this study, a comprehensive analysis of the existing literature, specifically examining the mechanisms of action of PBM has been presented. Our objective was to enhance knowledge in the field of laser light therapy in order to promote the usage of irradiation in clinical settings in a more effective way. Within the realm of reproductive science, the utilization of PBM has been employed to enhance the metabolic processes, motility, and viability of spermatozoa. This is attributed to its advantageous effects on mitochondria, resulting in the activation of the mitochondrial respiratory chain and subsequent synthesis of ATP. This therapeutic approach can be highly advantageous in circumventing the reliance on chemical substances within the culture medium for spermatozoa while also facilitating the viability and motility of spermatozoa, particularly in circumstances involving thawing or samples with significant immotility.
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Sahar Rezaei Arablouydareh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Navapour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Binelli M, Rocha CC, Bennett A, Waheed A, Sultana H, Maldonado MBC, Mesquita FS. Solutions to the fertility equation in beef embryo recipients. Anim Reprod 2024; 21:e20240041. [PMID: 39175998 PMCID: PMC11340797 DOI: 10.1590/1984-3143-ar2024-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 08/24/2024] Open
Abstract
In beef cattle operations that conduct embryo transfer, the overall success depends on the pregnancy outcome that results from every pregnancy opportunity. In this review, we dissected the main components that determine if a recipient will sustain the pregnancy after embryo transfer up to calving. Specifically, we describe the effect of the uterus on its ability to provide a receptive environment for embryo development. We then discuss the capacity of the embryo to thrive after transfer, and especially the contribution of the sire to embryo fitness. Finally, we review the interaction between the uterus and the embryo as an integrated unit that defines the pregnancy.
Collapse
Affiliation(s)
- Mario Binelli
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | | | - Alexandra Bennett
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Abdul Waheed
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
- Institute of Continuing Education & Extension, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Punjab, Pakistan
| | - Halima Sultana
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | | | - Fernando Silveira Mesquita
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
- Universidade Federal do Pampa, Uruguaiana, RS, Brasil
| |
Collapse
|
5
|
Burch FC, Leung PY, McDonald E, Jensen J, Mishler E, Piekarski N, Mendes CM, Sylwester A, Hanna CB. Establishing the normal range of sperm DNA fragmentation index (% DFI) for rhesus macaques. Sci Rep 2023; 13:20016. [PMID: 37974016 PMCID: PMC10654681 DOI: 10.1038/s41598-023-46928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
The Sperm Chromatin Structure Assay (SCSA) is a robust test with high repeatability and precision. It is a clinically accepted assay that defines risk for infertility in men by measuring the degree of DNA fragmentation (% DFI) in sperm. The objective of this study was to adapt and validate the SCSA for rhesus macaques (Macaca mulatta) and establish a range for % DFI in fertile males. Sperm samples from two different males were used to produce a % DFI validation curve before establishing a range using additional samples from n = 11 males. Sperm labeled with acridine orange were analyzed by flow cytometry to measure green fluorescence (native or intact DNA) and red fluorescence (fragmented DNA). Data were exported to FlowJo software to determine the % DFI for each sample. DNA fragmentation ranged from 0.1 to 2.4% DFI, with a mean ± SD = 1.1 ± 0.7% DFI (validation curve optimized to R2 > 0.95). In conclusion, we were able to successfully validate the SCSA in our institution and establish the first normal range for sperm DNA fragmentation in rhesus macaques. Our study provides a quantitative baseline for future evaluations to assess macaque fertility through the SCSA test.
Collapse
Affiliation(s)
- Fernanda C Burch
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| | - Philberta Y Leung
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Eric McDonald
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Jared Jensen
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Emily Mishler
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Nadine Piekarski
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Camilla M Mendes
- College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Andrew Sylwester
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Carol B Hanna
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
6
|
Moura AR, Santos AR, Losano JDA, Siqueira AFP, Hamilton TRS, Zanella R, Caires KC, Simões R. Evaluation of sperm and hormonal assessments in Wagyu, Nellore, and Angus bulls. ZYGOTE 2023; 31:507-516. [PMID: 37492001 DOI: 10.1017/s0967199423000278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Wagyu bulls are known to have a highly exacerbated libido, as shown by the intense sexual interest of young calves. Therefore we believe that Wagyu male animals have specialized Sertoli and Leydig cells that are directly involved with the sexual precocity in this breed as mature bulls have a small scrotal circumference. This study aimed to evaluate whether there were differences in the hormone and sperm characteristics of Wagyu bulls compared with the same characteristics of subspecies Bos indicus and Bos taurus sires. Frozen-thawed semen from Wagyu, Nellore, and Angus sires were analyzed for sperm kinetics (computer-assisted sperm analysis), plasma membrane integrity, chromatin integrity, acrosome status, mitochondrial activity, lipid peroxidation and hormone [luteinizing hormone (LH) and testosterone] serum concentration. The results showed that Wagyu had lower total motility and an increased number of sperm with no motility when compared with Nellore and Angus bulls. Wagyu breed did not differ from those breeds when considering plasma and acrosome membranes integrity, mitochondrial potential, chromatin resistance, sperm lipid peroxidation or hormone (LH and testosterone) concentrations. We concluded that Wagyu sires had lower total motility when compared with Nellore and Angus bulls. Wagyu breed did not differ from these breeds when considering plasma and acrosome membranes integrity, mitochondrial potential, chromatin resistance, sperm lipid peroxidation, or hormone (LH and testosterone) concentrations.
Collapse
Affiliation(s)
- A R Moura
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Sao Paulo, Brazil
| | - A R Santos
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Sao Paulo, Brazil
| | - J D A Losano
- Department of Animal Sciences, University of Florida, USA
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - A F P Siqueira
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - T R S Hamilton
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - R Zanella
- Escola de Ciências Agrárias Inovação e Negócios, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
- Programa de Pós Graduação em BioExperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - K C Caires
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, Manoa, Hawaii, USA
| | - R Simões
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Sao Paulo, Brazil
| |
Collapse
|
7
|
Campanholi SP, Garcia Neto S, Pinheiro GM, Nogueira MFG, Rocha JC, Losano JDDA, Siqueira AFP, Nichi M, Assumpção MEOD, Basso AC, Monteiro FM, Gimenes LU. Can in vitro embryo production be estimated from semen variables in Senepol breed by using artificial intelligence? Front Vet Sci 2023; 10:1254940. [PMID: 37808114 PMCID: PMC10551135 DOI: 10.3389/fvets.2023.1254940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Thoroughly analyzing the sperm and exploring the information obtained using artificial intelligence (AI) could be the key to improving fertility estimation. Artificial neural networks have already been applied to calculate zootechnical indices in animals and predict fertility in humans. This method of estimating the results of reproductive biotechnologies, such as in vitro embryo production (IVEP) in cattle, could be valuable for livestock production. This study was developed to model IVEP estimates in Senepol animals based on various sperm attributes, through retrospective data from 290 IVEP routines performed using 38 commercial doses of semen from Senepol bulls. All sperm samples that had undergone the same procedure during sperm selection for in vitro fertilization were evaluated using a computer-assisted sperm analysis (CASA) system to define sperm subpopulations. Sperm morphology was also analyzed in a wet preparation, and the integrity of the plasma and acrosomal membranes, mitochondrial potential, oxidative status, and chromatin resistance were evaluated using flow cytometry. A previous study identified three sperm subpopulations in such samples and the information used in tandem with other sperm quality variables to perform an AI analysis. AI analysis generated models that estimated IVEP based on the season, donor, percentage of viable oocytes, and 18 other sperm predictor variables. The accuracy of the results obtained for the three best AI models for predicting the IVEP was 90.7, 75.3, and 79.6%, respectively. Therefore, applying this AI technique would enable the estimation of high or low embryo production for individual bulls based on the sperm analysis information.
Collapse
Affiliation(s)
- Suzane Peres Campanholi
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista, Jaboticabal, Brazil
| | | | - Gabriel Martins Pinheiro
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras (FCLA), Universidade Estadual Paulista (UNESP), Assis, Brazil
| | - Marcelo Fábio Gouveia Nogueira
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras (FCLA), Universidade Estadual Paulista (UNESP), Assis, Brazil
| | - José Celso Rocha
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras (FCLA), Universidade Estadual Paulista (UNESP), Assis, Brazil
| | - João Diego de Agostini Losano
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Adriano Felipe Perez Siqueira
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Marcílio Nichi
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, Brazil
| | | | | | - Fabio Morato Monteiro
- Centro Avançado de Pesquisa de Bovinos de Corte, Agência Paulista de Tecnologia dos Agronegócios/Instituto de Zootecnia (APTA/IZ), Sertãozinho, Brazil
| | - Lindsay Unno Gimenes
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista, Jaboticabal, Brazil
| |
Collapse
|
8
|
Lipid peroxidation in bull semen influences sperm traits and oxidative potential of Percoll®-selected sperm. ZYGOTE 2021; 29:476-483. [PMID: 33818357 DOI: 10.1017/s0967199421000228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although bovine embryo in vitro production (IVP) is a common assisted reproductive technology, critical points warrant further study, including sperm traits and oxidative status of sperm for in vitro fertilization (IVF). Our aim was to evaluate whether the lipid peroxidation index of commercial bull semen is influenced by sperm traits and oxidative status of sperm populations selected using Percoll® gradient. Semen straws from 48 batches from 14 Nelore bulls were thawed individually, analyzed for motility and subjected to Percoll selection. After Percoll, the lipid peroxidation index of the extender was evaluated, whereas selected sperm were analyzed for motility, acrosome and membrane integrity, mitochondrial membrane potential, chromatin resistance and oxidative potential under IVF conditions. Batches were divided retrospectively in four groups according to lipid peroxidation index. Sperm from Group 4 with the lowest index of lipid peroxidation had, after Percoll selection, greater plasma membrane integrity (81.3%; P = 0.004), higher mitochondrial potential (81.1%; P = 0.009) and lower oxidative potential (135.3 ng thiobarbituric acid reactive substances (TBARS)/ml; P = 0.026) compared with Group 1 with highest lipid peroxidation index (74.3%, 73% and 213.1 ng TBARS/ml, respectively). Furthermore, we observed negative correlations for the lipid peroxidation index with motility, membrane integrity and mitochondrial potential, and positive correlations with oxidative potential. In conclusion, oxidative stress in semen straws, as determined using lipid peroxidation in the extender, is associated with sperm traits and their oxidative potential under IVF conditions. These results provided further insights regarding the importance of preventing oxidative stress during semen handling and cryopreservation, as this could affect sperm selected for IVF. Finally, Percoll selection did not completely remove sperm with oxidative markers.
Collapse
|
9
|
Zoca GB, Celeghini ECC, Pugliesi G, de Carvalho CPT, Assumpção MEOD, Siqueira AFP, Oliveira LZ, Lançoni R, de Arruda RP. Influence of seminal plasma during different stages of bovine sperm cryopreservation. Reprod Domest Anim 2021; 56:872-883. [PMID: 33724558 DOI: 10.1111/rda.13928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to evaluate the effect of seminal plasma on bovine sperm cryopreservation and to assess the integrity of plasma and acrosomal membranes, mitochondrial potential, remodelling of F-actin cytoskeleton and sperm chromatin fragmentation during the cooling, equilibrium and freezing/thawing stages. Six ejaculates collected from seven Nelore bulls (n = 42) were used in this study. Each ejaculate was divided into two aliquots (with seminal plasma = SP group; without seminal plasma = NSP group) and packed to a final concentration of 50 × 106 sperm per straw. Statistical analyses were performed using SAS software (version 9.3), and p ≤ .05 was considered significant. A time effect was observed for all sperm characteristics (p < .05), except for chromatin fragmentation (p > .05). The presence of seminal plasma better preserved the acrosomal integrity (SP = 75.2% and NSP = 71.7%; p < .05) and also provided lower F-actin remodelling during cryopreservation process (SP = 29.9% and NSP = 32.4%; p < .05). Regarding to the cryopreservation stages, it was observed that cooling step induced higher remodelling of F-actin than the equilibrium and freezing/thawing stages (56.3%, 32.2% and 23.9%, respectively; p < .05). The equilibrium step had minor influence on overall sperm characteristics while the freezing/thawing stage was responsible for the highest percentage of damage in plasma membrane (-65.2%), acrosomal membrane (-34.0%) and mitochondrial potential (-48.1%). On the other hand, none of the cryopreservation stages affected chromatin integrity. It was concluded that the presence of seminal plasma provides increased acrosomal integrity and reduced remodelling of F-actin cytoskeleton. Higher F-actin remodelling is observed after the cooling step while the freezing/thawing step is most damaging to sperm membranes and mitochondrial potential during bovine sperm cryopreservation.
Collapse
Affiliation(s)
- Gabriela Bertaiolli Zoca
- Laboratory of Semen Biotechnology and Andrology - Center of Biotechnology in Animal Reproduction, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Eneiva Carla Carvalho Celeghini
- Laboratory of Teaching and Research in Pathology of Reproduction - Center of Biotechnology in Animal Reproduction, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Guilherme Pugliesi
- Laboratory of Physiology and Molecular Endocrinology, Center of Biotechnology in Animal Reproduction - Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Carla Patricia Teodoro de Carvalho
- Laboratory of Semen Biotechnology and Andrology - Center of Biotechnology in Animal Reproduction, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mayra Elena Ortiz D'Avila Assumpção
- Laboratory of Sperm Biology, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Adriano Felipe Perez Siqueira
- Laboratory of Sperm Biology, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Leticia Zoccolaro Oliveira
- Laboratory of Animal Reproduction, Department of Veterinary Clinics and Surgery, Veterinary School, University Federal of Minas Gerais, Belo Horizonte, Brazil
| | - Renata Lançoni
- Laboratory of Semen Biotechnology and Andrology - Center of Biotechnology in Animal Reproduction, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Rubens Paes de Arruda
- Laboratory of Semen Biotechnology and Andrology - Center of Biotechnology in Animal Reproduction, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Physical parameters of bovine activated oocytes and zygotes as predictors of development success. ZYGOTE 2021; 29:358-364. [PMID: 33736736 DOI: 10.1017/s0967199421000058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The worldwide production of in vitro-produced embryos in livestock species continues to grow. The current gold standard for selecting quality oocytes and embryos is morphologic assessment, yet this method is subjective and varies based on experience. There is a need for a non-invasive, objective method of selecting viable oocytes and embryos. The aim of this study was to determine if ooplasm area, diameter including zona pellucida (ZP), and ZP thickness of artificially activated oocytes and in vitro fertilized (IVF) zygotes are indicative of development success in vitro and correlated with embryo quality, as assessed by total blastomere number. Diameter affected the probability of development to the blastocyst stage in activated oocytes on day 7 (P < 0.01) and day 8 (P < 0.001), and had a tendency to affect IVF zygotes on day 8 (P = 0.08). Zona pellucida thickness affected the probability of development on day 7 (P < 0.01) and day 8 (P < 0.001) in activated oocytes, and day 8 for IVF zygotes (P < 0.05). An interaction between ZP thickness and diameter was observed on days 7 and 8 (P < 0.05) in IVF zygotes. Area did not significantly affect the probability of development, but was positively correlated with blastomere number on day 8 for IVF zygotes (P = 0.01, conditional R2 = 0.09). Physical parameters of bovine zygotes have the potential for use as a non-invasive, objective selection method. Upon further development, methods used in this study could be integrated into embryo production systems to improve IVF success.
Collapse
|
11
|
Peres Campanholi S, Garcia Neto S, Basso AC, de Agostini Losano JD, Perez Siqueira AF, Nichi M, Ortiz D'Avila Assumpção ME, Afonso de Freitas L, Paro de Paz CC, Ferraudo AS, Morato Monteiro F, Unno Gimenes L. Estimate of in vitro embryo production based on sperm subpopulations in Senepol bulls. Theriogenology 2020; 161:98-107. [PMID: 33302167 DOI: 10.1016/j.theriogenology.2020.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 11/28/2022]
Abstract
In cattle, in vitro embryo production (IVEP) is an important reproductive biotechnology responsible for the rapid expansion of the Senepol breed in our country. This breed has shown important results when used in crossbreeding and estimate IVEP in Senepol based on seminal analysis would be valuable for the semen cryopreservation industry, research institutes and breeders. Combining the evaluation of sperm subpopulations with analysis of other sperm attributes may help to improve fertility predictions in cattle. Therefore, the objectives of the present study were to: 1) identify and characterize motile sperm subpopulations in cryopreserved Senepol semen following the washing process carried out before in vitro fertilization, and 2) to determine an model for estimate IVEP based on sperm subpopulations in conjunction with other sperm quality analyzes. Samples of 38 cryopreserved semen from 28 Senepol bulls, chosen based on retrospective data from 386 IVEP routines, underwent the semen washing and were evaluated by the computer-assisted sperm analysis system. Sperm morphology was evaluated by wet preparation technique, and plasma and acrosomal membranes integrity, mitochondrial potential, oxidative status and chromatin resistance were analyzed by flow cytometry. After multivariate analysis of principal components and grouping, three sperm subpopulations were identified: SBP1 (fast and progressive motility), SBP2 (hyperactivated motility) and SBP3 (slow non-progressive motility). After categorization of IVEP in high, medium and low embryo yield, logistic regression analysis was applied to associate the results of subpopulations and other sperm quality variables with IVEP. The SBP1 and SBP2 variables affected embryo production, and an IVEP estimation model was generated for Senepol bulls based on these two subpopulations: embryo yield = 0.1563 + 0.0328 (SBP1) + 0.0173 (SBP2). SBP1 and SBP2 represents the absolute value of the percentage of subpopulations in semen. If the calculated value (by this equation) is close to 1, the embryo yield will be low; if is close to 2, will be medium; if is close to 3, will be high. In conclusion, three subpopulations were found for Senepol semen and, despite all analyzed variables, only SBP1 and SBP2 were included in the model to estimate IVEP in this breed.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcílio Nichi
- Universidade de São Paulo, FMVZ/USP, São Paulo, São Paulo, Brazil
| | | | | | | | | | - Fabio Morato Monteiro
- Centro Avançado de Pesquisa de Bovinos de Corte, APTA/IZ, Sertãozinho, São Paulo, Brazil
| | | |
Collapse
|
12
|
Reproductive outcomes predicted by phase imaging with computational specificity of spermatozoon ultrastructure. Proc Natl Acad Sci U S A 2020; 117:18302-18309. [PMID: 32690677 PMCID: PMC7414137 DOI: 10.1073/pnas.2001754117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ability to evaluate sperm at the microscopic level, at high-throughput, would be useful for assisted reproductive technologies (ARTs), as it can allow specific selection of sperm cells for in vitro fertilization (IVF). The tradeoff between intrinsic imaging and external contrast agents is particularly acute in reproductive medicine. The use of fluorescence labels has enabled new cell-sorting strategies and given new insights into developmental biology. Nevertheless, using extrinsic contrast agents is often too invasive for routine clinical operation. Raising questions about cell viability, especially for single-cell selection, clinicians prefer intrinsic contrast in the form of phase-contrast, differential-interference contrast, or Hoffman modulation contrast. While such instruments are nondestructive, the resulting image suffers from a lack of specificity. In this work, we provide a template to circumvent the tradeoff between cell viability and specificity by combining high-sensitivity phase imaging with deep learning. In order to introduce specificity to label-free images, we trained a deep-convolutional neural network to perform semantic segmentation on quantitative phase maps. This approach, a form of phase imaging with computational specificity (PICS), allowed us to efficiently analyze thousands of sperm cells and identify correlations between dry-mass content and artificial-reproduction outcomes. Specifically, we found that the dry-mass content ratios between the head, midpiece, and tail of the cells can predict the percentages of success for zygote cleavage and embryo blastocyst formation.
Collapse
|
13
|
da Fonseca Junior AM, Gaita V, Argumedo DR, de Castro LS, Losano JDDA, Ferreira Leite R, Nichi M, Assumpção MEOD, de Araújo DR, Neves AAR, Milazzotto MP. Changes in fertilization medium viscosity using hyaluronic acid impact bull sperm motility and acrosome status. Reprod Domest Anim 2020; 55:974-983. [PMID: 32506705 DOI: 10.1111/rda.13739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/28/2020] [Indexed: 11/26/2022]
Abstract
The female reproductive tract, in particular the composition of the uterine and oviduct fluids, is responsible, at least in part, for triggering sperm cell modifications, essential for the acquisition of fertilization ability. Hyaluronic acid (HA) is a glycosaminoglycan present in these fluids, and its role in the fertilization process and sperm functionality is still barely understood. This work was designed to (a) determine the rheological characteristics of the fertilization medium by the addition of HA and (b) determine the HA influence on sperm motility and functional status. To that end, the in vitro fertilization medium was supplemented with 4 doses of HA (6, 60, 600 and 6,000 µg/ml) and analysed for viscosity and adhesion strength characteristics. Then, thawed semen from 6 bulls were incubated in these media and assessed at 4 different moments for morphological and functional parameters (plasma and acrosomal membrane integrities, mitochondrial membrane potential, capacitation, acrosomal reaction, and motility). The rheological evaluation showed that the addition of HA was able to increase both the viscosity and the adhesion strength of the fertilization medium, especially in the 6,000 µg/ml group in which the effect was more pronounced. No influence of HA could be observed on mitochondrial potential, and acrosomal and plasma membrane integrities. However, HA supplementation, at lower doses, led to an increase in the number of reacted sperm, as well as changes in motility parameters, with increase in the number of motile, rapid and progressive spermatozoa. In conclusion, the addition of HA alters the rheological properties of the fertilization medium and leads to the improvement of the properties related to sperm motility and capacitation, without compromising other functional aspects of the cell.
Collapse
Affiliation(s)
| | - Vincenzo Gaita
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Italy
| | | | | | | | - Roberta Ferreira Leite
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marcilio Nichi
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
14
|
Blank MH, Silva VC, Rui BR, Novaes GA, Castiglione VC, Garcia Pereira RJ. Beneficial influence of fetal bovine serum on in vitro cryosurvival of chicken spermatozoa. Cryobiology 2020; 95:103-109. [PMID: 32470459 DOI: 10.1016/j.cryobiol.2020.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 11/24/2022]
Abstract
Chicken spermatozoa are highly susceptible to cryopreservation often requiring extenders containing additives to enhance their post-thaw quality. Although protective properties of fetal bovine serum (FBS) during freezing of tissue cultured cells are widely known, its potential as a cryoprotectant for sperm cells has not been largely explored. Thus, the aims of our study were to (i) investigate the protective effect of FBS at different concentrations (0, 5, 10, 15 and 20%) against cryodamages in chicken spermatozoa, and (ii) test the FBS concentration that yielded the best preservation versus 1 mg/mL of cholesterol-loaded cyclodextrins (CLCs). Samples were assessed before and after freezing for sperm motility parameters, plasma membrane and acrosomal integrities, mitochondrial membrane potential, oxidative stress and plasma membrane peroxidation. Our findings showed that, despite their beneficial effects on fresh spermatozoa, higher FBS concentrations (15 and 20%) obtained the worst results for most motility and functional parameters after thawing. In contrast, lower FBS concentrations (5 and 10%) improved all post-thaw variables when compared to control. Afterwards, based on regression analysis, the concentration of 7% FBS was chosen to be assessed against CLCs in an experiment composed by four groups: control, FBS, CLCs, and FBS + CLCs. FBS and FBS + CLCs groups exhibited higher progressive motility in fresh samples, whereas only FBS maintained higher post-thaw progressive motility. Additionally, the incorporation FBS into extenders increased the percentage of rapid cells and reduced free radicals production and plasma membrane peroxidation. Together, these outcomes indicated that FBS minimize some harmful effects of cryopreservation, providing an alternative for chicken semen extenders that in many aspects appears to be superior to CLCs at 1 mg/mL.
Collapse
Affiliation(s)
- Marcel Henrique Blank
- Group of Study for Avian Multiplication, Department of Animal Reproduction, School of Veterinary Science, University of São Paulo, São Paulo, Brazil
| | - Victor Carvalho Silva
- Group of Study for Avian Multiplication, Department of Animal Reproduction, School of Veterinary Science, University of São Paulo, São Paulo, Brazil
| | - Bruno Rogério Rui
- Group of Study for Avian Multiplication, Department of Animal Reproduction, School of Veterinary Science, University of São Paulo, São Paulo, Brazil
| | - Gabriel Augusto Novaes
- Group of Study for Avian Multiplication, Department of Animal Reproduction, School of Veterinary Science, University of São Paulo, São Paulo, Brazil
| | - Vivian Cardoso Castiglione
- Laboratory of Spermatozoa Biology, Department of Animal Reproduction, School of Veterinary Science, University of São Paulo, São Paulo, Brazil
| | - Ricardo José Garcia Pereira
- Group of Study for Avian Multiplication, Department of Animal Reproduction, School of Veterinary Science, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|