1
|
Byrou S, Brouwer RWW, Tomazou M, Tamana S, Kountouris P, Lederer CW, Petrou M, Ozgur Z, den Dekker X, Azmani Z, Christou S, Makariou C, Kleanthous M, van IJcken WFJ, Papasavva T. Non-Invasive Determination of the Paternal Inheritance in Pregnancies at Risk for β-Thalassaemia by Analyzing Cell-Free Fetal DNA Using Targeted Next-Generation Sequencing. Int J Mol Sci 2025; 26:570. [PMID: 39859286 PMCID: PMC11765003 DOI: 10.3390/ijms26020570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Non-invasive prenatal testing (NIPT) has been widely adopted for the screening of chromosomal abnormalities; however, its adoption for monogenic disorders, such as β-thalassaemia, has proven challenging. Haemoglobinopathies are the most common monogenic disorders globally, with β-thalassaemia being particularly prevalent in Cyprus. This study introduces a non-invasive prenatal haplotyping (NIPH) assay for β-thalassaemia, utilizing cell-free DNA (cfDNA) from maternal plasma. The assay determines paternal inheritance by analyzing highly heterozygous single-nucleotide variants (SNVs) in the β-globin gene cluster. To identify highly heterozygous SNVs in the population, 96 randomly selected samples were processed using Illumina DNA-prep NGS chemistry. A custom, high-density NGS genotyping panel, named HAPLONID, was designed with 169 SNVs, including 15 common pathogenic ones. The AmpliSeq for Illumina assay was then applied to cfDNA to evaluate the panel's efficiency in performing NIPT for β-thalassaemia. Analysis revealed 219 highly polymorphic SNVs, and the sequencing of 17 families confirmed successful paternal allele determination. The NIPH assay demonstrated 100% success in diagnostic interpretation. This study achieved the advancement of an integrated NGS-NIPT assay for β-thalassaemia, bringing it one step closer to being a diagnostic assay and thereby enabling a reduction in the number of risky invasive prenatal sampling procedures in Cyprus and elsewhere.
Collapse
Affiliation(s)
- Stefania Byrou
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.B.); (S.T.); (P.K.); (C.W.L.); (M.P.); (M.K.)
| | - Rutger W. W. Brouwer
- Department of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (R.W.W.B.); (Z.O.); (X.d.D.); (Z.A.)
- Center for Biomics, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Marios Tomazou
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.B.); (S.T.); (P.K.); (C.W.L.); (M.P.); (M.K.)
| | - Stella Tamana
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.B.); (S.T.); (P.K.); (C.W.L.); (M.P.); (M.K.)
| | - Petros Kountouris
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.B.); (S.T.); (P.K.); (C.W.L.); (M.P.); (M.K.)
| | - Carsten W. Lederer
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.B.); (S.T.); (P.K.); (C.W.L.); (M.P.); (M.K.)
| | - Miranda Petrou
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.B.); (S.T.); (P.K.); (C.W.L.); (M.P.); (M.K.)
| | - Zeliha Ozgur
- Department of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (R.W.W.B.); (Z.O.); (X.d.D.); (Z.A.)
- Center for Biomics, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Xander den Dekker
- Department of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (R.W.W.B.); (Z.O.); (X.d.D.); (Z.A.)
- Center for Biomics, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Zakia Azmani
- Department of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (R.W.W.B.); (Z.O.); (X.d.D.); (Z.A.)
- Center for Biomics, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Soteroula Christou
- Nicosia Thalassaemia Clinic, Archbishop Makarios III Hospital, Nicosia 2371, Cyprus;
| | - Christiana Makariou
- Thalassaemia Screening Laboratory, Thalassaemia Center, Archbishop Makarios III Hospital, Nicosia 2371, Cyprus;
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.B.); (S.T.); (P.K.); (C.W.L.); (M.P.); (M.K.)
| | - Wilfred F. J. van IJcken
- Department of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (R.W.W.B.); (Z.O.); (X.d.D.); (Z.A.)
- Center for Biomics, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Thessalia Papasavva
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.B.); (S.T.); (P.K.); (C.W.L.); (M.P.); (M.K.)
| |
Collapse
|
2
|
Gao B, Jiang Y, Han M, Ji X, Zhang D, Wu L, Gao X, Huang S, Zhao C, Su Y, Yang S, Zhang X, Liu N, Han L, Wang L, Ren L, Yang J, Wu J, Yuan Y, Dai P. Targeted Linked-Read Sequencing for Direct Haplotype Phasing of Parental GJB2/SLC26A4 Alleles: A Universal and Dependable Noninvasive Prenatal Diagnosis Method Applied to Autosomal Recessive Nonsyndromic Hearing Loss in At-Risk Families. J Mol Diagn 2024; 26:638-651. [PMID: 38663495 DOI: 10.1016/j.jmoldx.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024] Open
Abstract
Noninvasive prenatal diagnosis (NIPD) for autosomal recessive nonsyndromic hearing loss (ARNSHL) has been rarely reported until recent years. Additionally, the existing method can not be used for challenging genome loci (eg, copy number variations, deletions, inversions, or gene recombinants) or on families without proband genotype. This study assessed the performance of relative haplotype dosage analysis (RHDO)-based NIPD for identifying fetal genotyping in pregnancies at risk of ARNSHL. Fifty couples carrying pathogenic variants associated with ARNSHL in either GJB2 or SLC26A4 were recruited. The RHDO-based targeted linked-read sequencing combined with whole gene coverage probes was used to genotype the fetal cell-free DNA of 49 families who met the quality control standard. Fetal amniocyte samples were genotyped using invasive prenatal diagnosis (IPD) to assess the performance of NIPD. The NIPD results showed 100% (49/49) concordance with those obtained through IPD. Two families with copy number variation and recombination were also successfully identified. Sufficient specific informative single-nucleotide polymorphisms for haplotyping, as well as the fetal cell-free DNA concentration and sequencing depth, are prerequisites for RHDO-based NIPD. This method has the merits of covering the entire genes of GJB2 and SLC26A4, qualifying for copy number variation and recombination analysis with remarkable sensitivity and specificity. Therefore, it has clinical potential as an alternative to traditional IPD for ARNSHL.
Collapse
Affiliation(s)
- Bo Gao
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Yi Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Mingyu Han
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | | | - Dejun Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Lihua Wu
- Department of Otolaryngology, Fujian Medical University ShengLi Clinical College, Fujian Provincial Hospital, Fuzhou, China
| | - Xue Gao
- Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Shasha Huang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Chaoyue Zhao
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Yu Su
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Suyan Yang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xin Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Na Liu
- MyGenostics Inc., Beijing, China
| | - Lu Han
- MyGenostics Inc., Beijing, China
| | | | - Lina Ren
- MyGenostics Inc., Beijing, China
| | - Jinyuan Yang
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Jian Wu
- MyGenostics Inc., Beijing, China
| | - Yongyi Yuan
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China.
| | - Pu Dai
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China.
| |
Collapse
|
3
|
Hanson B, Paternoster B, Povarnitsyn N, Scotchman E, Chitty L, Chandler N. Non-invasive prenatal diagnosis (NIPD): current and emerging technologies. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:3-26. [PMID: 39698301 PMCID: PMC11648410 DOI: 10.20517/evcna.2022.44] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 12/20/2024]
Abstract
Prenatal testing is important for the early detection and diagnosis of rare genetic conditions with life-changing implications for the patient and their family. Gaining access to the fetal genotype can be achieved using gold-standard invasive sampling methods, such as amniocentesis and chorionic villus sampling, but these carry a small risk of miscarriage. Non-invasive prenatal diagnosis (NIPD) for select rare monogenic conditions has been in clinical service in England since 2012 and has revolutionised the field of prenatal diagnostics by reducing the number of women undergoing invasive sampling procedures. Fetal-derived genomic material is present in a highly fragmented form amongst the maternal cell-free DNA (cfDNA) in circulation, with sequence coverage across the entire fetal genome. Cell-free fetal DNA (cffDNA) is the foundation for NIPD, and several technologies have been clinically implemented for the detection of paternally inherited and de novo pathogenic variants. Conversely, a low abundance of cffDNA within a high background of maternal cfDNA makes assigning maternally inherited variants to the fetal fraction a significantly more challenging task. Research is ongoing to expand available tests for maternal inheritance to include a broader range of monogenic conditions, as well as to uncover novel diagnostic avenues. This review covers the scope of technologies currently clinically available for NIPD of monogenic conditions and those still in the research pipeline towards implementation in the future.
Collapse
Affiliation(s)
- Britt Hanson
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Ben Paternoster
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Nikita Povarnitsyn
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Lyn Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
- Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Natalie Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| |
Collapse
|
4
|
Nandar YM, Duangmano S, Lucksiri A, Sirikul C, Palacajornsuk P, Anukul N. Introduction of new alternative pipeline using multiplexed fast COLD‑PCR together with sequencing approach highlighting pharmacoeconomics by detection of CYP variants. Biomed Rep 2022; 17:99. [PMID: 36606140 PMCID: PMC9808490 DOI: 10.3892/br.2022.1582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/11/2022] [Indexed: 01/07/2023] Open
Abstract
In precision medicine, multiple factors are involved in clinical decision-making because of ethnic and racial genetic diversity, family history and other health factors. Although advanced techniques have evolved, there is still an economic obstacle to pharmacogenetic (PGx) implementation in developing countries. The aim of the present study was to provide an alternative pipeline that roughly estimate patient carrier type and prescreen out wild-type samples before sequencing or genotyping to determine genetic status. Fast co-amplification at lower denaturation temperature (COLD)-PCR was used to differentiate genetic variant non-carriers from carriers. The majority of drugs are hepatically cleared by cytochrome P450 (CYP) enzymes and genes encoding CYP enzymes are highly variable. Of all the CYPs, CYP2 family of CYP2C9, CYP2C19, and CYP2D6 isoforms have clinically significant impact on drugs of PGx testing. Therefore, five variants associated with these CYPs were selected for preliminary testing with this novel pipeline. For fast COLD-PCR, the optimal annealing temperature and critical denaturation temperature were determined and evaluated via Sanger sequencing of 27 randomly collected samples. According to precise Tc, to perform in a single-reaction is difficult. However, in this study, this issue was resolved by combination of precise Tc using 10+10+20 cycles. The results showed 100% sensitivity and specificity, with perfect agreement (κ=1.0) compared with Sanger sequencing. The present study provides a prescreening platform by introducing multiplex fast COLD-PCR as a pharmacoeconomic implementation. Our study just present in five variants which are not enough to describe patient metabolic status. Therefore, other actional genetic variants are still needed to cover the actual patient's genotypes. Nevertheless, the proposed method can well-present its efficiency and reliability for serving as a PGx budget platform in the future.
Collapse
Affiliation(s)
- Yu Myat Nandar
- Master's Degree Program in Medical Technology (International Program), Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, CMU Presidential Scholarship, Chiang Mai 50200, Thailand
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aroonrut Lucksiri
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chonticha Sirikul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Poonsub Palacajornsuk
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nampeung Anukul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand,Correspondence to: Dr Nampeung Anukul, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Intawaroroj Road, Sripoom, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
|
6
|
Zednikova I, Pazourkova E, Lassakova S, Vesela B, Korabecna M. Detection of cell-free foetal DNA fraction in female-foetus bearing pregnancies using X-chromosomal insertion/deletion polymorphisms examined by digital droplet PCR. Sci Rep 2020; 10:20036. [PMID: 33208834 PMCID: PMC7676229 DOI: 10.1038/s41598-020-77084-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 10/23/2020] [Indexed: 12/03/2022] Open
Abstract
In families with X-linked recessive diseases, foetal sex is determined prenatally by detection of Y-chromosomal sequences in cell-free foetal DNA (cffDNA) in maternal plasma. The same procedure is used to confirm the cffDNA presence during non-invasive prenatal RhD incompatibility testing but there are no generally accepted markers for the detection of cffDNA fraction in female-foetus bearing pregnancies. We present a methodology allowing the detection of paternal X-chromosomal alleles on maternal background and the confirmation of female sex of the foetus by positive amplification signals. Using digital droplet PCR (ddPCR) we examined X-chromosomal INDEL (insertion/deletion) polymorphisms: rs2307932, rs16397, rs16637, rs3048996, rs16680 in buccal swabs of 50 females to obtain the population data. For all INDELs, we determined the limits of detection for each ddPCR assay. We examined the cffDNA from 63 pregnant women bearing Y-chromosome negative foetuses. The analysis with this set of INDELs led to informative results in 66.67% of examined female-foetus bearing pregnancies. Although the population data predicted higher informativity (74%) we provided the proof of principle of this methodology. We successfully applied this methodology in prenatal diagnostics in a family with Wiscott-Aldrich syndrome and in pregnancies tested for the risk of RhD incompatibility.
Collapse
Affiliation(s)
- Iveta Zednikova
- Department of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
- Department of Biology and Medical Genetics, General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Eva Pazourkova
- Department of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
- Department of Biology and Medical Genetics, General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U nemocnice 2, 128 08, Prague, Czech Republic
| | - Sona Lassakova
- Department of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Barbora Vesela
- Department of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Marie Korabecna
- Department of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic.
- Department of Biology and Medical Genetics, General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic.
| |
Collapse
|
7
|
Validation of Extensive Next-Generation Sequencing Method for Monogenic Disorder Analysis on Cell-Free Fetal DNA: Noninvasive Prenatal Diagnosis. J Mol Diagn 2019; 21:572-579. [PMID: 31028936 DOI: 10.1016/j.jmoldx.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 12/29/2022] Open
Abstract
During pregnancy, a percentage of the cell-free DNA circulating in the maternal blood is represented by the cell-free fetal DNA (cffDNA), constituting an accessible source for noninvasive prenatal genetic screening. The coexistence of the maternal DNA, the dominant fraction of cell-free DNA, together with the cffDNA component and the scarcity of the cffDNA itself make applying traditional methods of genetics and molecular biology impossible. Next-generation sequencing methods are widely used to study fetal aneuploidies. However, in monogenic disorders, there have been relatively few studies that analyzed single mutations. We present a method for the analysis of an extended group of gene variants associated with recessive and dominant autosomal disorders using next-generation sequencing. The proposed test should allow a complete analysis of common genetic disorders and pathogen-associated variants for diagnostic use. The analysis of cffDNA for single gene disorders may replace invasive prenatal diagnosis methods, associated with the risk of spontaneous abortion and psychological stress for patients. The proposed test should assess reproductive risk for both genetic family disorders and de novo occurrences of the disease. The application of this method to a case of beta-thalassemia is also discussed.
Collapse
|
8
|
Chen N, Ouyang X, Lin M, Liu N, Wu T, Xiao X. Branch migration based selective PCR for DNA mutation enrichment and detection. Chem Commun (Camb) 2019; 55:8466-8469. [DOI: 10.1039/c9cc04161c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A selective PCR for the enrichment of low-abundance mutations by introducing a branch migration blocker into the PCR process.
Collapse
Affiliation(s)
- Na Chen
- Institute of Reproductive Health/Center of Reproductive Medicine
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Xiaofei Ouyang
- Institute of Reproductive Health/Center of Reproductive Medicine
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Meng Lin
- Institute of Reproductive Health/Center of Reproductive Medicine
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Na Liu
- Institute of Reproductive Health/Center of Reproductive Medicine
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Tongbo Wu
- School of Pharmacy
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Xianjin Xiao
- Institute of Reproductive Health/Center of Reproductive Medicine
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| |
Collapse
|