1
|
Chapman A, McAfee A, Wrightson KLC, Magaña AA, Tarpy DR, Fine JD, Rempel Z, Peters K, Currie RW, Hoover SER, Foster LJ. Honey bee egg composition changes seasonally and after acute maternal virus infection. Sci Rep 2025; 15:10418. [PMID: 40140730 PMCID: PMC11947112 DOI: 10.1038/s41598-025-94670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Honey bee (Apis mellifera) colonies depend on the reproductive output of their queens, which in turn is contingent on the care they receive from worker bees. Viral infections in queens can compromise their reproductive output, while viral infections in workers can inhibit the successful functioning of the colony and its ability to care for the queen. Transgenerational immune priming (TGIP) occurs when queens transfer immune-related compounds or immune elicitors to their offspring, enhancing the ability of subsequent generations to resist infections. These maternal effects on offspring could positively impact colony health and resilience to viral infections, but little is currently known about TGIP for viruses in honey bees. In this study, we investigate how viral infections affect the proteomic composition of eggs laid by queens injected with a mixture of black queen cell virus and deformed wing virus B, both in controlled experimental settings and natural field conditions. Our results showed that virus-challenged queens upregulated immune effectors in their eggs and ovaries. In contrast, naturally infected queens from field surveys did not; there were no significant differences in egg protein, lipid, or metabolite composition related to maternal viral load or ovary size. However, egg collection date strongly influenced the protein, lipid, and metabolite composition of eggs, potentially reflecting seasonal variations in pollen resources. These findings suggest that while viral infections can induce transgenerational effects on egg proteomes under short-term experimental conditions, such effects are less apparent in natural settings and can be overshadowed by seasonal and other ecological factors.
Collapse
Affiliation(s)
- Abigail Chapman
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Alison McAfee
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Kenzie L C Wrightson
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Armando Alcazar Magaña
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Julia D Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, Davis, CA, USA
| | - Zoe Rempel
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Kira Peters
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Rob W Currie
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Shelley E R Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Arad M, Ku K, Frey C, Hare R, McAfee A, Ghafourifar G, Foster LJ. What proteomics has taught us about honey bee (Apis mellifera) health and disease. Proteomics 2025; 25:e2400075. [PMID: 38896501 PMCID: PMC11735666 DOI: 10.1002/pmic.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The Western honey bee, Apis mellifera, is currently navigating a gauntlet of environmental pressures, including the persistent threat of parasites, pathogens, and climate change - all of which compromise the vitality of honey bee colonies. The repercussions of their declining health extend beyond the immediate concerns of apiarists, potentially imposing economic burdens on society through diminished agricultural productivity. Hence, there is an imperative to devise innovative monitoring techniques for assessing the health of honey bee populations. Proteomics, recognized for its proficiency in biomarker identification and protein-protein interactions, is poised to play a pivotal role in this regard. It offers a promising avenue for monitoring and enhancing the resilience of honey bee colonies, thereby contributing to the stability of global food supplies. This review delves into the recent proteomic studies of A. mellifera, highlighting specific proteins of interest and envisioning the potential of proteomics to improve sustainable beekeeping practices amidst the challenges of a changing planet.
Collapse
Affiliation(s)
- Maor Arad
- Department of ChemistryUniversity of the Fraser ValleyAbbotsfordBCCanada
- Department of Biochemistry and Molecular BiologyMichael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
| | - Kenneth Ku
- Department of ChemistryUniversity of the Fraser ValleyAbbotsfordBCCanada
| | - Connor Frey
- Department of ChemistryUniversity of the Fraser ValleyAbbotsfordBCCanada
- Department of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Rhien Hare
- Department of ChemistryUniversity of the Fraser ValleyAbbotsfordBCCanada
- Faculty of Health SciencesSimon Fraser UniversityBurnabyBCCanada
| | - Alison McAfee
- Department of Biochemistry and Molecular BiologyMichael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of Applied EcologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Golfam Ghafourifar
- Department of ChemistryUniversity of the Fraser ValleyAbbotsfordBCCanada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular BiologyMichael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
3
|
Phokasem P, Disayathanoowat T, Chantaphanwattana T, Sinpoo C, Chen YP, Evans JD, Lee JH, Krongdang S. Comparative toxicity of oral exposure to paraquat: Survival rates and gene expression in two honey bees species; Apis mellifera and Apis cerana. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125026. [PMID: 39326830 DOI: 10.1016/j.envpol.2024.125026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Honey bees provide vital pollination services to agricultural crops and wild plants worldwide. Unfortunately, the misuse and overuse of pesticides in agricultural production have led to an increase in incidents harming honey bees in recent years. Among the commonly utilized bee species in beekeeping are Apis cerana and Apis mellifera, with wild A. cerana populations widely dispersed in forests, contributing substantially to ecosystem balance. Yet, the impact of paraquat, a toxic herbicide, on A. cerana remains largely unexplored. This study aims to address this gap by examining acute exposure endpoints based on mortality represented by median lethal doses (LD50 values) of paraquat, survival rates, and gene expression patterns between the A. cerana and A. mellifera. The findings revealed that A. cerana exhibits greater sensitivity to paraquat compared to A. mellifera. The acute oral LD50 values for A. cerana were 5.85, 1.74, and 1.21 μg/bee at 24, 48, and 72 h, respectively, whereas the corresponding values for A. mellifera were 104.00, 11.00, and 6.41 μg/bee. Further, the study demonstrated significant upregulation of the detoxification (antioxidative) enzymes SOD1, CAT, and LLDH-X2 in both A. mellifera and A. cerana following exposure to the lethal dose of paraquat. However, SOD2 expression was notably downregulated in both species, indicating potential mitochondrial damage. These findings suggest that while honey bees initiate activate defense mechanisms against oxidative damage, paraquat exposure may still impair mitochondrial function. Paraquat was found to be moderately toxic to A. mellifera but highly toxic to A. cerana, indicating the importance of screening multiple bee species when assessing the risks of chemical exposure. This research provides a rare comparative analysis of chemical stress effects on morbidity and gene expression in two different honey bee species, establishing a foundational framework for risk assessment and the regulation of herbicide risks to pollinating insects.
Collapse
Affiliation(s)
- Patcharin Phokasem
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMARTBEE SDGs), Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMARTBEE SDGs), Chiang Mai University, Chiang Mai, 50200, Thailand.
| | | | - Chainarong Sinpoo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMARTBEE SDGs), Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Yan Ping Chen
- US Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, 20705, USA.
| | - Jay D Evans
- US Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, 20705, USA.
| | - Ji-Ho Lee
- School of Natural Resources and Environmental Science, Department of Biological Environment, Kangwon National University, Chuncheon, Gangwon State, 24341, Republic of Korea.
| | - Sasiprapa Krongdang
- US Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, 20705, USA; Faculty of Science and Social Sciences, Burapha University, Sa Kaeo Campus, Sa Kaeo, 27160, Thailand.
| |
Collapse
|
4
|
Yusuf AA, Pirk CWW, Buttstedt A. Expression of honey bee (Apis mellifera) sterol homeostasis genes in food jelly producing glands of workers. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:627-641. [PMID: 38567629 DOI: 10.1002/jez.2813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Adult workers of Western honey bees (Apis mellifera L.) acquire sterols from their pollen diet. These food sterols are transported by the hemolymph to peripheral tissues such as the mandibular and the hypopharyngeal glands in the worker bees' heads that secrete food jelly which is fed to developing larvae. As sterols are obligatory components of biological membranes and essential precursors for molting hormone synthesis in insects, they are indispensable to normal larval development. Thus, the study of sterol delivery to larvae is important for a full understanding of honey bee larval nutrition and development. Whereas hypopharyngeal glands only require sterols for their membrane integrity, mandibular glands add sterols, primarily 24-methylenecholesterol, to its secretion. For this, sterols must be transported through the glandular epithelial cells. We have analyzed for the first time in A. mellifera the expression of genes which are involved in intracellular movement of sterols. Mandibular and hypopharyngeal glands were dissected from newly emerged bees, 6-day-old nurse bees that feed larvae and 26-day-old forager bees. The expression of seven genes involved in intracellular sterol metabolism was measured with quantitative real-time PCR. Relative transcript abundance of sterol metabolism genes was significantly influenced by the age of workers and specific genes but not by gland type. Newly emerged bees had significantly more transcripts for six out of seven genes than older bees indicating that the bulk of the proteins needed for sterol metabolism are produced directly after emergence.
Collapse
Affiliation(s)
- Abdullahi A Yusuf
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Christian W W Pirk
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Anja Buttstedt
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Carlini DB, Winslow SK, Cloppenborg-Schmidt K, Baines JF. Quantitative microbiome profiling of honey bee (Apis mellifera) guts is predictive of winter colony loss in northern Virginia (USA). Sci Rep 2024; 14:11021. [PMID: 38744972 PMCID: PMC11094147 DOI: 10.1038/s41598-024-61199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
For the past 15 years, the proportion of honey bee hives that fail to survive winter has averaged ~ 30% in the United States. Winter hive loss has significant negative impacts on agriculture, the economy, and ecosystems. Compared to other factors, the role of honey bee gut microbial communities in driving winter hive loss has received little attention. We investigate the relationship between winter survival and honey bee gut microbiome composition of 168 honey bees from 23 hives, nine of which failed to survive through winter 2022. We found that there was a substantial difference in the abundance and community composition of honey bee gut microbiomes based on hive condition, i.e., winter survival or failure. The overall microbial abundance, as assessed using Quantitative Microbiome Profiling (QMP), was significantly greater in hives that survived winter 2022 than in those that failed, and the average overall abundance of each of ten bacterial genera was also greater in surviving hives. There were no significant differences in alpha diversity based on hive condition, but there was a highly significant difference in beta diversity. The bacterial genera Commensalibacter and Snodgrassella were positively associated with winter hive survival. Logistic regression and random forest machine learning models on pooled ASV counts for the genus data were highly predictive of winter outcome, although model performance decreased when samples from the location with no hive failures were excluded from analysis. As a whole, our results show that the abundance and community composition of honey bee gut microbiota is associated with winter hive loss, and can potentially be used as a diagnostic tool in evaluating hive health prior to the onset of winter. Future work on the functional characterization of the honey bee gut microbiome's role in winter survival is warranted.
Collapse
Affiliation(s)
- David B Carlini
- Department of Biology, American University, 4400 Massachusetts Ave. NW, Washington, DC, 20016, USA.
| | - Sundre K Winslow
- Department of Biology, American University, 4400 Massachusetts Ave. NW, Washington, DC, 20016, USA
| | - Katja Cloppenborg-Schmidt
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - John F Baines
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
| |
Collapse
|
6
|
Moural TW, Koirala B K S, Bhattarai G, He Z, Guo H, Phan NT, Rajotte EG, Biddinger DJ, Hoover K, Zhu F. Architecture and potential roles of a delta-class glutathione S-transferase in protecting honey bee from agrochemicals. CHEMOSPHERE 2024; 350:141089. [PMID: 38163465 DOI: 10.1016/j.chemosphere.2023.141089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
The European honey bee, Apis mellifera, serves as the principle managed pollinator species globally. In recent decades, honey bee populations have been facing serious health threats from combined biotic and abiotic stressors, including diseases, limited nutrition, and agrochemical exposure. Understanding the molecular mechanisms underlying xenobiotic adaptation of A. mellifera is critical, considering its extensive exposure to phytochemicals and agrochemicals present in the environment. In this study, we conducted a comprehensive structural and functional characterization of AmGSTD1, a delta class glutathione S-transferase (GST), to unravel its roles in agrochemical detoxification and antioxidative stress responses. We determined the 3-dimensional (3D) structure of a honey bee GST using protein crystallography for the first time, providing new insights into its molecular structure. Our investigations revealed that AmGSTD1 metabolizes model substrates, including 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrophenyl acetate (PNA), phenylethyl isothiocyanate (PEITC), propyl isothiocyanate (PITC), and the oxidation byproduct 4-hydroxynonenal (HNE). Moreover, we discovered that AmGSTD1 exhibits binding affinity with the fluorophore 8-Anilinonaphthalene-1-sulfonic acid (ANS), which can be inhibited with various herbicides, fungicides, insecticides, and their metabolites. These findings highlight the potential contribution of AmGSTD1 in safeguarding honey bee health against various agrochemicals, while also mitigating oxidative stress resulting from exposure to these substances.
Collapse
Affiliation(s)
- Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Sonu Koirala B K
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Gaurab Bhattarai
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA.
| | - Ziming He
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Haoyang Guo
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Ngoc T Phan
- Department of Entomology and Plant Pathology, University of Arkansas, AR 72701, USA; Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Gia Lam, Hanoi 100000, Viet Nam.
| | - Edwin G Rajotte
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - David J Biddinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Penn State Fruit Research and Extension Center, Biglerville, PA 17307, USA.
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
7
|
Validation of quantitative real-time PCR reference genes and spatial expression profiles of detoxication-related genes under pesticide induction in honey bee, Apis mellifera. PLoS One 2022; 17:e0277455. [DOI: 10.1371/journal.pone.0277455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
Recently, pesticides have been suggested to be one of the factors responsible for the large-scale decline in honey bee populations, including colony collapse disorder. The identification of the genes that respond to pesticide exposure based on their expression is essential for understanding the xenobiotic detoxification metabolism in honey bees. For the accurate determination of target gene expression by quantitative real-time PCR, the expression stability of reference genes should be validated in honey bees exposed to various pesticides. Therefore, in this study, to select the optimal reference genes, we analyzed the amplification efficiencies of five candidate reference genes (RPS5, RPS18, GAPDH, ARF1, and RAD1a) and their expression stability values using four programs (geNorm, NormFinder, BestKeeper, and RefFinder) across samples of five body parts (head, thorax, gut, fat body, and carcass) from honey bees exposed to seven pesticides (acetamiprid, imidacloprid, flupyradifurone, fenitrothion, carbaryl, amitraz, and bifenthrin). Among these five candidate genes, a combination of RAD1a and RPS18 was suggested for target gene normalization. Subsequently, expression levels of six genes (AChE1, CYP9Q1, CYP9Q2, CYP9Q3, CAT, and SOD1) were normalized with a combination of RAD1a and RPS18 in the different body parts from honey bees exposed to pesticides. Among the six genes in the five body parts, the expression of SOD1 in the head, fat body, and carcass was significantly induced by six pesticides. In addition, among seven pesticides, flupyradifurone statistically induced expression levels of five genes in the fat body.
Collapse
|
8
|
Liu Z, Xiao J, Xia Y, Wu Q, Zhao C, Li D. Selection and validation of reference genes for RT-qPCR-based analyses of Anastatus japonicus Ashmead (Hymenoptera: Helicopteridae). Front Physiol 2022; 13:1046204. [PMID: 36338494 PMCID: PMC9626802 DOI: 10.3389/fphys.2022.1046204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
RT-qPCR remains a vital approach for molecular biology studies aimed at quantifying gene expression in a range of physiological or pathological settings. However, the use of appropriate reference genes is essential to attain meaningful RT-qPCR results. Anastatus japonicus Ashmead (Hymenoptera: Helicopteridae) is an important egg parasitoid wasp and natural enemy of fruit bugs and forest caterpillars. While recent transcriptomic studies have analyzed gene expression profiles in A. japonicus specimens, offering a robust foundation for functional research focused on this parasitoid, no validated A. japonicus reference genes have yet been established, hampering further research efforts. Accordingly, this study sought to address this issue by screening for the most stable internal reference genes in A. japonicus samples to permit reliable RT-qPCR analyses. The utility of eight candidate reference genes (ACTIN, TATA, GAPDH, TUB, RPL13, RPS6, EF1α, RPS3a) was assessed under four different conditions by comparing developmental stages (larvae, pupae, adults), tissues (abdomen, chest, head), sex (male or female adults), or diapause states (diapause induction for 25, 35, 45, or 55 days, or diapause termination). RefFinder was used to calculate gene stability based on the integration of four algorithms (BestKeeper, Normfinder, geNorm, and ΔCt method) to determine the optimal RT-qPCR reference gene. Based on this approach, RPS6 and RPL13 were found to be the most reliable reference genes when assessing different stages of development, while ACTIN and EF1α were optimal when comparing adults of different sexes, RPL13 and EF1α were optimal when analyzing different tissues, and TATA and ACTIN were optimal for different diapause states. These results provide a valuable foundation for future RT-qPCR analyses of A. japonicus gene expression and function under a range of experimental conditions.
Collapse
Affiliation(s)
- Zixin Liu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Junjiang Xiao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yue Xia
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qifeng Wu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Can Zhao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Can Zhao, Dunsong Li,
| | - Dunsong Li
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Can Zhao, Dunsong Li,
| |
Collapse
|
9
|
Cartereau A, Pineau X, Lebreton J, Mathé-Allainmat M, Taillebois E, Thany SH. Impairments in learning and memory performances associated with nicotinic receptor expression in the honeybee Apis mellifera after exposure to a sublethal dose of sulfoxaflor. PLoS One 2022; 17:e0272514. [PMID: 35921304 PMCID: PMC9348702 DOI: 10.1371/journal.pone.0272514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Sulfoxaflor is a new insecticide which acts on the nicotinic acetylcholine receptor (nAChRs) in a similar way to neonicotinoids. However, sufloxaflor (SFX) is thought to act in a different manner and is thus proposed as an alternative in crop protection. The goal of this study is to evaluate the toxicity of SFX and its sublethal effect on the honeybee Apis mellifera after acute exposure. In toxicological assay studies, the LD50 value and sublethal dose (corresponding to the NOEL: no observed effect level) were 96 and 15 ng/bee, respectively. Using the proboscis extension response paradigm, we found that an SFX dose of 15 ng/bee significantly impairs learning and memory retrieval when applied 12 h before conditioning or 24 h after olfactory conditioning. SFX had no effect on honeybee olfactory performance when exposure happened after the conditioning. Relative quantitative PCR experiments performed on the six nicotinic acetylcholine receptor subunits demonstrated that they are differently expressed in the honeybee brain after SFX exposure, whether before or after conditioning. We found that intoxicated bees with learning defects showed a strong expression of the Amelβ1 subunit. They displayed overexpression of Amelα9 and Amelβ2, and down-regulation of Amelα1, Amelα3 and Amelα7 subunits. These results demonstrated for the first time that a sublethal dose of SFX could affect honeybee learning and memory performance and modulate the expression of specific nAChR subunits in the brain.
Collapse
Affiliation(s)
- Alison Cartereau
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) USC INRAE 1328, Université d’Orléans, Orléans, France
| | - Xavier Pineau
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) USC INRAE 1328, Université d’Orléans, Orléans, France
| | - Jacques Lebreton
- CEISAM UMR CNRS 6230, UFR des Sciences et des Techniques, Université de Nantes, Nantes, France
| | - Monique Mathé-Allainmat
- CEISAM UMR CNRS 6230, UFR des Sciences et des Techniques, Université de Nantes, Nantes, France
| | - Emiliane Taillebois
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) USC INRAE 1328, Université d’Orléans, Orléans, France
| | - Steeve H. Thany
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) USC INRAE 1328, Université d’Orléans, Orléans, France
| |
Collapse
|
10
|
Rahman S, Zhao Z, Umair Sial M, Zhang Y, Jiang H. Case Study Using Recommended Reference Genes Actin and 18S for Reverse-Transcription Quantitative Real-Time PCR Analysis in Myzus persicae. PLoS One 2021; 16:e0258201. [PMID: 34669698 PMCID: PMC8528319 DOI: 10.1371/journal.pone.0258201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022] Open
Abstract
Myzus persicae is a globally important pest with the ability to adjust to a wide range of environmental situations, and many molecular technologies have been developed and applied to understand the biology and/or control this pest insect directly. Reverse-transcription quantitative real-time PCR (RT-qPCR) is a primary molecular technology that is used to quantify gene expression. Choosing a stable reference gene is significantly important for precisely clarifying the expression level of the target gene. Actin and 18S have been recommended as stable compounds for real-time RT-qPCR in M. persicae under the tested biotic and abiotic conditions. In this study, we checked the stability of Actin and 18S by analyzing the relative expression levels of the cytochrome 450 monooxygenase family member genes CYP6CY3 and CYP6-1, carboxylesterase gene E4 and vacuolar protein sorting gene VPS11 via RT-qPCR under various conditions. The expression levels of these four target genes were normalized using both Actin and 18S individually and the combination of these two genes. Our results confirmed that Actin and 18S can be used as reference genes to normalize the expression of target genes under insecticide treatment and starvation in M. persicae. However, at the developmental stages of M. persicae, the expression of the four tested target genes was normalized stably by Actin but not 18S, with the latter presenting a problematic change with the developmental stages. Thus, the stability of reference genes in response to diverse biotic and abiotic factors should be evaluated before each RT-qPCR experiment.
Collapse
Affiliation(s)
- Saqib Rahman
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhenzhen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Muhammad Umair Sial
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
- * E-mail:
| |
Collapse
|
11
|
Lau MJ, Hoffmann AA, Endersby-Harshman NM. A diagnostic primer pair to distinguish between wMel and wAlbB Wolbachia infections. PLoS One 2021; 16:e0257781. [PMID: 34555085 PMCID: PMC8459989 DOI: 10.1371/journal.pone.0257781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Detection of the Wolbachia endosymbiont in Aedes aegypti mosquitoes through real-time polymerase chain reaction assays is widely used during and after Wolbachia releases in dengue reduction trials involving the wMel and wAlbB strains. Although several different primer pairs have been applied in current successful Wolbachia releases, they cannot be used in a single assay to distinguish between these strains. Here, we developed a new diagnostic primer pair, wMwA, which can detect the wMel or wAlbB infection in the same assay. We also tested current Wolbachia primers and show that there is variation in their performance when they are used to assess the relative density of Wolbachia. The new wMwA primers provide an accurate and efficient estimate of the presence and density of both Wolbachia infections, with practical implications for Wolbachia estimates in field collected Ae. aegypti where Wolbachia releases have taken place.
Collapse
Affiliation(s)
- Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Nancy M. Endersby-Harshman
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Ariizumi T, Murata S, Fujisawa S, Isezaki M, Maekawa N, Okagawa T, Sato T, Oishi E, Taneno A, Konnai S, Ohashi K. Selection of reference genes for quantitative PCR analysis in poultry red mite (Dermanyssus gallinae). J Vet Med Sci 2021; 83:558-565. [PMID: 33583914 PMCID: PMC8111338 DOI: 10.1292/jvms.20-0677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Poultry red mites (PRMs, Dermanyssus gallinae) are harmful ectoparasites
that affect farmed chickens and cause serious economic losses in the poultry industry
worldwide. Acaricides are used for PRM control; however, some PRMs have developed
acaricide-resistant properties, which have indicated the need for different approaches for
PRM control. Therefore, it is necessary to elucidate the biological status of PRMs to
develop alternative PRM control strategies. Quantitative polymerase chain reaction (qPCR)
allows analysis of the biological status at the transcript level. However, reference genes
are preferable for accurate comparison of expression level changes given the large
variation in the quality of the PRM samples collected in each farm. This study aimed to
identify candidate reference genes with stable expression levels in the different blood
feeding states and life stages of PRMs. First, we selected candidates based on the
following criteria: sufficient expression intensity and no significant expression
difference between fed and starved states. We selected and characterized seven candidate
reference genes. Among them, we evaluated the gene expression stability between the
starved and fed states using RefFinder; moreover, we compared their expression levels in
each life-stage and identified two reference genes, Elongation factor
1-alpha (ELF1A)-like and apolipophorins-like.
Finally, we evaluated the utility of the candidates as reference genes, and the use of
ELF1A-like and apolipophorins-like successfully
normalized ATP synthase subunit g -like gene expression. Thus,
ELF1A-like and apolipophorins-like could be suitable
reference genes in PRMs.
Collapse
Affiliation(s)
- Takuma Ariizumi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Takumi Sato
- Vaxxinova Japan K.K., 1-24-8 Hamamatsucho, Minato-ku, Tokyo 105-0013, Japan
| | - Eiji Oishi
- Vaxxinova Japan K.K., 1-24-8 Hamamatsucho, Minato-ku, Tokyo 105-0013, Japan
| | - Akira Taneno
- Vaxxinova Japan K.K., 1-24-8 Hamamatsucho, Minato-ku, Tokyo 105-0013, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
13
|
Reference gene selection for transcriptional profiling in Cryptocercus punctulatus, an evolutionary link between Isoptera and Blattodea. Sci Rep 2020; 10:22169. [PMID: 33335167 PMCID: PMC7746730 DOI: 10.1038/s41598-020-79030-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/26/2020] [Indexed: 11/21/2022] Open
Abstract
The subsocial life style and wood-feeding capability of Cryptocercus gives us an evolutionary key to unlock some outstanding questions in biology. With the advent of the Genomics Era, there is an unprecedented opportunity to address the evolution of eusociality and the acquisition of lignocellulases at the genetic level. However, to quantify gene expression, an appropriate normalization strategy is warranted to control for the non-specific variations among samples across different experimental conditions. To search for the internal references, 10 housekeeping genes from a gut transcriptome of a wood-feeding cockroach, Cryptocercus punctulatus, were selected as the candidates for the RT-qPCR analysis. The expression profiles of these candidates, including ACT, EF1α, GAPDH, HSP60, HSP70, αTUB, UBC, RPS18, ATPase and GST, were analyzed using a panel of analytical tools, including geNorm, NormFinder, BestKeeper, and comparative ΔCT method. RefFinder, a comprehensive ranking system integrating all four above-mentioned algorithms, rated ACT as the most stable reference gene for different developmental stages and tissues. Expression analysis of the target genes, Hex-1 and Cell-1, using the most or the least appropriate reference genes and a single or multiple normalizers signified this research. Our finding is the first step toward establishing a standardized RT-qPCR analysis in Cryptocercus.
Collapse
|
14
|
Srivastava AK, Choudhury SR, Karmakar S. Neuronal Bmi-1 is critical for melatonin induced ubiquitination and proteasomal degradation of α-synuclein in experimental Parkinson's disease models. Neuropharmacology 2020; 194:108372. [PMID: 33157086 DOI: 10.1016/j.neuropharm.2020.108372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/18/2020] [Accepted: 10/23/2020] [Indexed: 11/15/2022]
Abstract
Epigenetic polycomb repressor complex-1 subunit BMI-1 plays a pivotal role in the process of gene repression to maintain the self-renewal and differentiation state of neurogenic tissues. Accumulating reports links lower expression of BMI-1 fails to regulate the repression of anti-oxidant response genes disrupt mitochondrial homeostasis underlying neurodegeneration. Interestingly, this negative relation between BMI-1 function and neurodegeneration is distinct but has not been generalized as a potential biomarker particularly in Parkinson's disease (PD). Hyperphosphorylated BMI-1 undergoes canonical polycomb E3 ligase function loss, thereby leads to reduce monoubiquitylation of histone 2A at lysine 119 (H2AK119ub) corroborates cellular accumulation of α-synuclein protein phosphorylated at serine 129 (pα-SYN (S129). In general, neuroprotectant suppressing pα-SYN (S129) level turns ineffective upon depletion of neuronal BMI-1. However, it has been observed that our neuroprotectant exposure suppresses the cellular pα-SYN (S129) and restore the the BMI-1 expression level in neuronal tissues. The pharmacological inhibition and activation of proteasomal machinery promote the cellular accumulation and degradation of neuronal pα-SYN (S129), respectively. Furthermore, our investigation reveals that accumulated pα-SYN (S129) are priorly complexed with BMI-1 undergoes ubiquitin-dependent proteasomal degradation and established as key pathway for therpeutic effect in PD. These findings linked the unestablished non-canonical role of BMI-1 in the clearance of pathological α-SYN and suspected to be a novel therapeutic target in PD.
Collapse
Affiliation(s)
- Anup K Srivastava
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India.
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India.
| |
Collapse
|
15
|
Evaluation of the expression stability of reference genes in Apis mellifera under pyrethroid treatment. Sci Rep 2020; 10:16140. [PMID: 32999330 PMCID: PMC7527991 DOI: 10.1038/s41598-020-73125-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/04/2020] [Indexed: 11/08/2022] Open
Abstract
Honeybees (Apis mellifera L.), which unquestionably play an economically important role in pollination and agricultural production, are at risk of decline. To study changes in gene expression in insects upon exposure to pesticides or other external stimuli, appropriate reference genes are required for data normalization. Since there is no such gene that is absolutely invariable under all experimental conditions, the aim of this study was to identify the most stable targets suitable for subsequent normalization in quantitative experiments based on real-time polymerase chain reaction in honeybee research. Here, we evaluated the expression of fifteen candidate housekeeping genes from three breeding lines of honeybees treated with pyrethroids to identify the most stable genes. The tested insects were exposed to deltamethrin or lambda-cyhalothrin, and then, changes in the accumulation of selected transcripts were assessed, followed by statistical analyses. We concluded that AmRPL32, AmACT and AmRPL13a were the commonly recorded most stable genes in honeybees treated with the selected pyrethroids.
Collapse
|
16
|
Liu W, Yuan X, Yuan S, Dai L, Dong S, Liu J, Peng L, Wang M, Tang Y, Xiao Y. Optimal reference genes for gene expression analysis in polyploid of Cyprinus carpio and Carassius auratus. BMC Genet 2020; 21:107. [PMID: 32943013 PMCID: PMC7499967 DOI: 10.1186/s12863-020-00915-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Reference genes are usually stably expressed in various cells and tissues. However, it was reported that the expression of some reference genes may be distinct in different species. In this study, we intend to answer whether the expression of reported traditional reference genes changes or not in the polyploid fish RESULTS: By retrieving the mRNA sequencing data of three different ploidy fish from the NCBI SRA database, we selected 12 candidate reference genes, and examined their expression levels in the 10 tissues and in the four cell lines of three different ploidy fish by real-time PCR. Then, the expression profiles of these 12 candidate reference genes were systematically evaluated by using the software platforms: BestKeeper, NormFinder and geNorm. CONCLUSION The 28S ribosomal protein S5 gene (RPS5) and the ribosomal protein S18 gene (RPS18) are the most suitable reference genes for the polyploid of Cyprinus carpio and Carassius auratus, demonstrated by both of the tissues and the cultured cells.
Collapse
Affiliation(s)
- Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Xiudan Yuan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Shuli Yuan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Liuye Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Shenghua Dong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Minmeng Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Yi Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.
| |
Collapse
|
17
|
Jeon JH, Moon K, Kim Y, Kim YH. Reference gene selection for qRT-PCR analysis of season- and tissue-specific gene expression profiles in the honey bee Apis mellifera. Sci Rep 2020; 10:13935. [PMID: 32811887 PMCID: PMC7435199 DOI: 10.1038/s41598-020-70965-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 01/10/2023] Open
Abstract
Honey bees are both important pollinators and model insects due to their highly developed sociality and colony management. To better understand the molecular mechanisms underlying honey bee colony management, it is important to investigate the expression of genes putatively involved in colony physiology. Although quantitative real-time PCR (qRT-PCR) can be used to quantify the relative expression of target genes, internal reference genes (which are stably expressed across different conditions) must first be identified to ensure accurate normalisation of target genes. To identify reliable reference genes in honey bee (Apis mellifera) colonies, therefore, we evaluated seven candidate genes (ACT, EIF, EF1, RPN2, RPS5, RPS18 and GAPDH) in samples collected from three honey bee tissue types (head, thorax and abdomen) across all four seasons using three analysis programmes (NormFinder, BestKeeper and geNorm). Subsequently, we validated various normalisation methods using each of the seven reference genes and a combination of multiple genes by calculating the expression of catalase (CAT). Although the genes ranked as the most stable gene were slightly different on conditions and analysis methods, our results suggest that RPS5, RPS18 and GAPDH represent optimal honey bee reference genes for target gene normalisation in qRT-PCR analysis of various honey bee tissue samples collected across seasons.
Collapse
Affiliation(s)
- Ji Hyang Jeon
- Department of Applied Biology, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - KyungHwan Moon
- Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - YeongHo Kim
- Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - Young Ho Kim
- Department of Applied Biology, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea. .,Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea.
| |
Collapse
|
18
|
Deng Y, Zhao H, Yang S, Zhang L, Zhang L, Hou C. Screening and Validation of Reference Genes for RT-qPCR Under Different Honey Bee Viral Infections and dsRNA Treatment. Front Microbiol 2020; 11:1715. [PMID: 32849362 PMCID: PMC7406718 DOI: 10.3389/fmicb.2020.01715] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/30/2020] [Indexed: 01/22/2023] Open
Abstract
Honey bee viruses are one of the most important pathogens that have contributed to the decrease in honey bee colony health. To analyze the infection dynamics of honey bee viruses, quantification of viral gene expression by RT-qPCR is necessary. However, suitable reference genes have not been reported from viral and RNAi studies of honey bee. Here, we evaluated the expression of 11 common reference genes (ache2, rps18, β-actin, tbp, tif, rpl32, gadph, ubc, α-tubulin, rpl14, and rpsa) from Apis mellifera (Am) and Apis cerana (Ac) under Israeli acute paralysis virus (IAPV), chronic bee paralysis virus (CBPV), and Chinese sacbrood virus (CSBV) infection as well as dsRNA-PGRP-SA treatment, and we confirmed their validation by evaluating the levels of the defensin 1 and prophenoloxidase (ppo) genes during viral infection. Our results showed that the expression of selected genes varied under different viral infections. ache2, rps18, β-actin, tbp, and tif can be used to normalize expression levels in Apis mellifera under IAPV infection, while the combination of actin and tif is suitable for CBPV-infected experiments. The combination of rpl14, tif, rpsa, ubc, and ache2 as well as more reference genes is suitable for CSBV treatment in Apis cerana. Rpl14, tif, rps18, ubc, and α-tubulin were the most stable reference genes under dsRNA treatment in Apis mellifera. Furthermore, the geNorm and NormFinder algorithms showed that tif was the best suitable reference gene for these four treatments. This study screened and validated suitable reference genes for the quantification of viral levels in honey bee, as well as for RNAi experiments.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Li Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lina Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
19
|
Srivastava AK, Roy Choudhury S, Karmakar S. Melatonin/polydopamine nanostructures for collective neuroprotection-based Parkinson's disease therapy. Biomater Sci 2020; 8:1345-1363. [PMID: 31912833 DOI: 10.1039/c9bm01602c] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and localized deposition of cytoplasmic fibrillary inclusions as Lewy bodies in the brain. The aberrant phosphorylation of α-synuclein at serine 129 is the key process on its early onset, which alters the cellular conformation to oligomers and insoluble aggregates, underpinning cellular oxidative stress and mitochondrial dysfunction, leading to devastating PD synucleinopathy. The multiple neuroprotective roles of dopamine and melatonin are often demonstrated separately; however, this approach suffers from low and short bioavailability and is associated with side-effects upon overdosing. Herein, highly pleiotropic melatonin-enriched polydopamine nanostructures were fabricated, which showed efficient brain tissue retention, sustainable and prolonged melatonin release, and prevented neuroblastoma cell death elicited by Parkinson's disease-associated and mitochondrial damaging stimuli. The synergistic neuroprotection re-established the mitochondrial membrane potential, reduced the generation of cellular reactive oxygen species (ROS), inhibited the activation of both the caspase-dependent and independent apoptotic pathways, and exhibited an anti-inflammatory effect. At the molecular level, it suppressed α-synuclein phosphorylation at Ser 129 and reduced the cellular deposition of high molecular weight oligomers. The therapeutic assessment on ex vivo organotypic brain slice culture, and in vivo experimental PD model confirmed the superior brain targeting, collective neuroprotection on dopaminergic neurons with reduced alpha-synuclein phosphorylation and deposition in the hippocampal and substantia nigra region of the brain. Thus, nature-inspired melatonin-enriched polydopamine nanostructures conferring collective neuroprotective effects attributes activation of anti-oxidative, anti-inflammatory, and anti-apoptotic pathways may be superior for application in a nanomedicine-based PD therapy.
Collapse
Affiliation(s)
- Anup K Srivastava
- Institute of Nano Science and Technology, Habitat Centre, Sector-64, Mohali, Punjab-160062, India.
| | | | | |
Collapse
|
20
|
Freitas FCP, Depintor TS, Agostini LT, Luna-Lucena D, Nunes FMF, Bitondi MMG, Simões ZLP, Lourenço AP. Evaluation of reference genes for gene expression analysis by real-time quantitative PCR (qPCR) in three stingless bee species (Hymenoptera: Apidae: Meliponini). Sci Rep 2019; 9:17692. [PMID: 31776359 PMCID: PMC6881334 DOI: 10.1038/s41598-019-53544-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Stingless bees are generalist pollinators distributed through the pantropical region. There is growing evidence that their wild populations are experiencing substantial decline in response to habitat degradation and pesticides. Policies for conservation of endangered species will benefit from studies focusing on genetic and molecular aspects of their development and behavior. The most common method for looking at gene expression is real-time quantitative polymerase chain reaction preceded by reverse transcription (RT-qPCR) of the mRNA of interest. This method requires the identification of reliable reference genes to correctly estimate fluctuations in transcript levels. To contribute to molecular studies on stingless bees, we used Frieseomelitta varia, Melipona quadrifasciata, and Scaptotrigona bipunctata species to test the expression stability of eight reference genes (act, ef1-α, gapdh, rpl32, rps5, rps18, tbp, and tbp-af) in RT-qPCR procedures in five physiological and experimental conditions (development, sex, tissues, bacteria injection, and pesticide exposure). In general, the rpl32, rps5 and rps18 ribosomal protein genes and tpb-af gene showed the highest stability, thus being identified as suitable reference genes for the three stingless bee species and defined conditions. Our results also emphasized the need to evaluate the stability of candidate genes for any designed experimental condition and stingless bee species.
Collapse
Affiliation(s)
- Flávia C P Freitas
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Thiago S Depintor
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas T Agostini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Danielle Luna-Lucena
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Francis M F Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Márcia M G Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Zilá L P Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Anete P Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil. .,Departamento de Ciências Biológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil.
| |
Collapse
|
21
|
Wang Z, Meng Q, Zhu X, Sun S, Gao S, Gou Y, Liu A. Evaluation and Validation of Reference Genes for Quantitative Real-Time PCR in Helopeltis theivora Waterhouse (Hemiptera: Miridae). Sci Rep 2019; 9:13291. [PMID: 31527603 PMCID: PMC6746731 DOI: 10.1038/s41598-019-49479-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Helopeltis theivora Waterhouse is a predominant sucking pest in many tropic economic crops, such as tea, cocoa and coffee. Quantitative real-time PCR (qRT-PCR) is one of the most powerful tools to analyze the gene expression level and investigate the mechanism of insect physiology at transcriptional level. Gene expression studies utilizing qRT-PCR have been applied to numerous insects so far. However, no universal reference genes could be used for H. theivora. To obtain accurate and reliable normalized data in H. theivora, twelve candidate reference genes were examined under different tissues, developmental stages and sexes by using geNorm, NormFinder, BestKeeper, Delta Ct and RefFinder algorithms, respectively. The results revealed that the ideal reference genes differed across the treatments, and the consensus rankings generated from stability values provided by these programs suggested a combination of two genes for normalization. To be specific, RPS3A and Actin were the best suitable reference genes for tissues, RPL13A and GAPDH were suitable for developmental stages, EF1α and RPL13A were suitable for sexes, and RPL13A and RPS3A were suitable for all samples. This study represents the first systematic analysis of reference genes for qRT-PCR experiments in H. theivora, and the results can provide a credible normalization for qRT-PCR data, facilitating transcript profiling studies of functional genes in this insect.
Collapse
Affiliation(s)
- Zheng Wang
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
| | - Qianqian Meng
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
| | - Xi Zhu
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China.,Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Shiwei Sun
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
| | - Shengfeng Gao
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
| | - Yafeng Gou
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
| | - Aiqin Liu
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China. .,Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|