1
|
Lee H, Johnson Z, Denton S, Liu N, Akinwande D, Porter E, Kireev D. A non-invasive approach to skin cancer diagnosis via graphene electrical tattoos and electrical impedance tomography. Physiol Meas 2024; 45:055003. [PMID: 38599226 DOI: 10.1088/1361-6579/ad3d26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Objective.Making up one of the largest shares of diagnosed cancers worldwide, skin cancer is also one of the most treatable. However, this is contingent upon early diagnosis and correct skin cancer-type differentiation. Currently, methods for early detection that are accurate, rapid, and non-invasive are limited. However, literature demonstrating the impedance differences between benign and malignant skin cancers, as well as between different types of skin cancer, show that methods based on impedance differentiation may be promising.Approach.In this work, we propose a novel approach to rapid and non-invasive skin cancer diagnosis that leverages the technologies of difference-based electrical impedance tomography (EIT) and graphene electronic tattoos (GETs).Main results.We demonstrate the feasibility of this first-of-its-kind system using both computational numerical and experimental skin phantom models. We considered variations in skin cancer lesion impedance, size, shape, and position relative to the electrodes and evaluated the impact of using individual and multi-electrode GET (mGET) arrays. The results demonstrate that this approach has the potential to differentiate based on lesion impedance, size, and position, but additional techniques are needed to determine shape.Significance.In this way, the system proposed in this work, which combines both EIT and GET technology, exhibits potential as an entirely non-invasive and rapid approach to skin cancer diagnosis.
Collapse
Affiliation(s)
- Hannah Lee
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
| | - Zane Johnson
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States of America
| | - Spencer Denton
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
| | - Ning Liu
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
| | - Deji Akinwande
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, United States of America
| | - Emily Porter
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Dmitry Kireev
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States of America
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, United States of America
- Department of Biomedical Engineering, The University of Massachusetts Amherst, Amherst, MA, United States of America
| |
Collapse
|
2
|
Lee H, Culpepper J, Porter E. Analysis of electrode arrangements for brain stroke diagnosis via electrical impedance tomography through numerical computational models. Physiol Meas 2024; 45:025006. [PMID: 38306666 DOI: 10.1088/1361-6579/ad252c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Objective.Rapid stroke-type classification is crucial for improved prognosis. However, current methods for classification are time-consuming, require expensive equipment, and can only be used in the hospital. One method that has demonstrated promise in a rapid, low-cost, non-invasive approach to stroke diagnosis is electrical impedance tomography (EIT). While EIT for stroke diagnosis has been the topic of several studies in recent years, to date, the impact of electrode placements and arrangements has rarely been analyzed or tested and only in limited scenarios. Optimizing the location and choice of electrodes can have the potential to improve performance and reduce hardware cost and complexity and, most importantly, diagnosis time.Approach.In this study, we analyzed the impact of electrodes in realistic numerical models by (1) investigating the effect of individual electrodes on the resulting simulated EIT boundary measurements and (2) testing the performance of different electrode arrangements using a machine learning classification model.Main results.We found that, as expected, the electrodes deemed most significant in detecting stroke depend on the location of the electrode relative to the stroke lesion, as well as the role of the electrode. Despite this dependence, there are notable electrodes used in the models that are consistently considered to be the most significant across the various stroke lesion locations and various head models. Moreover, we demonstrate that a reduction in the number of electrodes used for the EIT measurements is possible, given that the electrodes are approximately evenly distributed.Significance.In this way, electrode arrangement and location are important variables to consider when improving stroke diagnosis methods using EIT.
Collapse
Affiliation(s)
- Hannah Lee
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jared Culpepper
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas, United States of America
| | - Emily Porter
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| |
Collapse
|
3
|
Shishvan OR, Abdelwahab A, da Rosa NB, Saulnier GJ, Mueller JL, Newell J, Isaacson D. ACT5 Electrical Impedance Tomography System. IEEE Trans Biomed Eng 2024; 71:227-236. [PMID: 37459258 PMCID: PMC10798853 DOI: 10.1109/tbme.2023.3295771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
OBJECTIVE This article introduces the Adaptive Current Tomograph 5 (ACT5) Electrical Impedance Tomography (EIT) system. ACT5 is a 32 electrode applied-current multiple-source EIT system that can display real-time images of conductivity and susceptivity at 27 frames per second. The adaptive current sources in ACT5 can apply fully programmable current patterns with frequencies varying from 5 kHz to 500 kHz. The system also displays real-time ECG readings during the EIT imaging process. METHODS The hardware and software design and specifications are presented, including the current source design, FPGA hardware, safety features, calibration, and shunt impedance measurement. RESULTS Images of conductivity and susceptivity are presented from ACT5 data collected on tank phantoms and a human subject illustrating the system's ability to provide real-time images of pulsatile perfusion and ECG traces. SIGNIFICANCE The portability, high signal-to-noise ratio, and flexibility of applied currents over a wide range of frequencies enable this instrument to be used to obtain useful human subject data with relative clinical ease.
Collapse
|
4
|
Culpepper J, Lee H, Santorelli A, Porter E. Applied machine learning for stroke differentiation by electrical impedance tomography with realistic numerical models. Biomed Phys Eng Express 2023; 10:015012. [PMID: 37939489 DOI: 10.1088/2057-1976/ad0adf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Electrical impedance tomography (EIT) may have potential to overcome existing limitations in stroke differentiation, enabling low-cost, rapid, and mobile data collection. Combining bioimpedance measurement technologies such as EIT with machine learning classifiers to support decision-making can avoid commonly faced reconstruction challenges due to the nonlinear and ill-posed nature of EIT imaging. Therefore, in this work, we advance this field through a study integrating realistic head models with clinically relevant test scenarios, and a robust architecture consisting of nested cross-validation and principal component analysis. Specifically, realistic head models are designed which incorporate the highly conductive layers of cerebrospinal fluid in the subarachnoid space and ventricles. In total, 135 unique models are created to represent a large patient population, with normal, haemorrhagic, and ischemic brains. Simulated EIT voltage data generated from these models are used to assess the classification performance of support vector machines. Parameters explored include driving frequency, signal-to-noise ratio, kernel function, and composition of binary classes. Classifier accuracy at 60 dB signal-to-noise ratio, reported as mean and standard deviation, are (79.92% ± 10.82%) for lesion differentiation, (74.78% ± 3.79%) for lesion detection, (77.49% ± 15.90%) for bleed detection, and (60.31% ± 3.98%) for ischemia detection (after ruling out bleed). The results for each method were obtained with statistics from 3 independent runs with 17,280 observations, polynomial kernel functions, and feature reduction of 76% by PCA (from 208 to 50 features). While results of this study show promise for stroke differentiation using EIT data, our findings indicate that the achievable accuracy is highly dependent on the classification scenario and application-specific classifiers may be necessary to achieve acceptable accuracy.
Collapse
Affiliation(s)
| | - Hannah Lee
- University of Texas at Austin, United States of America
| | | | - Emily Porter
- University of Texas at Austin, United States of America
| |
Collapse
|
5
|
OKC classifier: an efficient approach for classification of imbalanced dataset using hybrid methodology. Soft comput 2022. [DOI: 10.1007/s00500-022-07441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Zheng Z, Wu Z, Zhao R, Ni Y, Jing X, Gao S. A Review of EMG-, FMG-, and EIT-Based Biosensors and Relevant Human–Machine Interactivities and Biomedical Applications. BIOSENSORS 2022; 12:bios12070516. [PMID: 35884319 PMCID: PMC9313012 DOI: 10.3390/bios12070516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022]
Abstract
Wearables developed for human body signal detection receive increasing attention in the current decade. Compared to implantable sensors, wearables are more focused on body motion detection, which can support human–machine interaction (HMI) and biomedical applications. In wearables, electromyography (EMG)-, force myography (FMG)-, and electrical impedance tomography (EIT)-based body information monitoring technologies are broadly presented. In the literature, all of them have been adopted for many similar application scenarios, which easily confuses researchers when they start to explore the area. Hence, in this article, we review the three technologies in detail, from basics including working principles, device architectures, interpretation algorithms, application examples, merits and drawbacks, to state-of-the-art works, challenges remaining to be solved and the outlook of the field. We believe the content in this paper could help readers create a whole image of designing and applying the three technologies in relevant scenarios.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuo Gao
- Correspondence: ; Tel.: +86-18600737330
| |
Collapse
|
7
|
Ke XY, Hou W, Huang Q, Hou X, Bao XY, Kong WX, Li CX, Qiu YQ, Hu SY, Dong LH. Advances in electrical impedance tomography-based brain imaging. Mil Med Res 2022; 9:10. [PMID: 35227324 PMCID: PMC8883715 DOI: 10.1186/s40779-022-00370-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/08/2022] [Indexed: 11/10/2022] Open
Abstract
Novel advances in the field of brain imaging have enabled the unprecedented clinical application of various imaging modalities to facilitate disease diagnosis and treatment. Electrical impedance tomography (EIT) is a functional imaging technique that measures the transfer impedances between electrodes on the body surface to estimate the spatial distribution of electrical properties of tissues. EIT offers many advantages over other neuroimaging technologies, which has led to its potential clinical use. This qualitative review provides an overview of the basic principles, algorithms, and system composition of EIT. Recent advances in the field of EIT are discussed in the context of epilepsy, stroke, brain injuries and edema, and other brain diseases. Further, we summarize factors limiting the development of brain EIT and highlight prospects for the field. In epilepsy imaging, there have been advances in EIT imaging depth, from cortical to subcortical regions. In stroke research, a bedside EIT stroke monitoring system has been developed for clinical practice, and data support the role of EIT in multi-modal imaging for diagnosing stroke. Additionally, EIT has been applied to monitor the changes in brain water content associated with cerebral edema, enabling the early identification of brain edema and the evaluation of mannitol dehydration. However, anatomically realistic geometry, inhomogeneity, cranium completeness, anisotropy and skull type, etc., must be considered to improve the accuracy of EIT modeling. Thus, the further establishment of EIT as a mature and routine diagnostic technique will necessitate the accumulation of more supporting evidence.
Collapse
Affiliation(s)
- Xi-Yang Ke
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, 130021, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Wei Hou
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, 130021, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qi Huang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China
| | - Xue Hou
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, 130021, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xue-Ying Bao
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, 130021, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Wei-Xuan Kong
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, 130021, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Cheng-Xiang Li
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, 130021, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yu-Qi Qiu
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, 130021, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Si-Yi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China.
| | - Li-Hua Dong
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, 130021, Changchun, China. .,Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021, China. .,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
8
|
Lee H, Culpepper J, Farshkaran A, McDermott B, Porter E. Impact of Local Electrodes on Brain Stroke Type Differentiation using Electrical Impedance Tomography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1412-1415. [PMID: 34891549 DOI: 10.1109/embc46164.2021.9629682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrical impedance tomography (EIT) of the head has the potential to provide rapid characterization of brain stroke. This study builds on previous work by implementing a more anatomically complex head model, contrasting results of bleed and clot simulations, and by establishing the electrodes which dominate in voltage difference measurements. This work provides the basis for machine learning with clusters of small numbers of electrodes as unique features for stroke-type detection and differentiation.Clinical Relevance- This application of EIT can aid in early detection, classification, and localization of brain stroke, allowing for faster treatment.
Collapse
|
9
|
Mansouri S, Alharbi Y, Haddad F, Chabcoub S, Alshrouf A, Abd-Elghany AA. Electrical Impedance Tomography - Recent Applications and Developments. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2021; 12:50-62. [PMID: 35069942 PMCID: PMC8667811 DOI: 10.2478/joeb-2021-0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Electrical impedance tomography (EIT) is a low-cost noninvasive imaging method. The main purpose of this paper is to highlight the main aspects of the EIT method and to review the recent advances and developments. The advances in instrumentation and in the different image reconstruction methods and systems are demonstrated in this review. The main applications of the EIT are presented and a special attention made to the papers published during the last years (from 2015 until 2020). The advantages and limitations of EIT are also presented. In conclusion, EIT is a promising imaging approach with a strong potential that has a large margin of progression before reaching the maturity phase.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, TunisTunisia
| | - Yousef Alharbi
- Department of Biomedical Technology, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Fatma Haddad
- Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, TunisTunisia
| | - Souhir Chabcoub
- Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, TunisTunisia
| | - Anwar Alshrouf
- Department of Biomedical Technology, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Amr A. Abd-Elghany
- Department of Biomedical Technology, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Biophysics Department, Faculty of Science, Cairo University, CairoEgypt
| |
Collapse
|
10
|
McDermott B, Elahi A, Santorelli A, O'Halloran M, Avery J, Porter E. Multi-frequency symmetry difference electrical impedance tomography with machine learning for human stroke diagnosis. Physiol Meas 2020; 41:075010. [PMID: 32554876 DOI: 10.1088/1361-6579/ab9e54] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Multi-frequency symmetry difference electrical impedance tomography (MFSD-EIT) can robustly detect and identify unilateral perturbations in symmetric scenes. Here, an investigation is performed to assess if the algorithm can be successfully applied to identify the aetiology of stroke with the aid of machine learning. METHODS Anatomically realistic four-layer finite element method models of the head based on stroke patient images are developed and used to generate EIT data over a 5 Hz-100 Hz frequency range with and without bleed and clot lesions present. Reconstruction generates conductivity maps of each head at each frequency. Application of a quantitative metric assessing changes in symmetry across the sagittal plane of the reconstructed image and over the frequency range allows lesion detection and identification. The algorithm is applied to both simulated and human (n = 34 subjects) data. A classification algorithm is applied to the metric value in order to differentiate between normal, haemorrhage and clot values. MAIN RESULTS An average accuracy of 85% is achieved when MFSD-EIT with support vector machines (SVM) classification is used to identify and differentiate bleed from clot in human data, with 77% accuracy when differentiating normal from stroke in human data. CONCLUSION Applying a classification algorithm to metrics derived from MFSD-EIT images is a novel and promising technique for detection and identification of perturbations in static scenes. SIGNIFICANCE The MFSD-EIT algorithm used with machine learning gives promising results of lesion detection and identification in challenging conditions like stroke. The results imply feasible translation to human patients.
Collapse
Affiliation(s)
- Barry McDermott
- Translational Medical Device Lab, National University of Ireland, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
11
|
Jiang YD, Soleimani M. Capacitively Coupled Electrical Impedance Tomography for Brain Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2104-2113. [PMID: 30703015 DOI: 10.1109/tmi.2019.2895035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrical impedance tomography (EIT) is considered as a potential candidate for brain stroke imaging due to its compactness and potential use in bedside and emergency settings. The electrode-skin contact impedance and low conductivity of skull pose some practical challenges to the EIT head imaging. This paper studies the application of capacitively coupled electrical impedance tomography (CCEIT) in brain imaging for the first time. CCEIT is a new contactless EIT technique which uses voltage excitation without direct contact with the skin, as oppose to directly injecting the current to the skin in EIT. Because the safety issue of a new technique should be strictly treated, simulation work based on a simplified head model was carried out to investigate the safety aspects of CCEIT. By comparing with the standard EIT excited by a typical safe current level used in brain imaging, the safe excitation reference of CCEIT is obtained. This is done by comparing the maximum level of internal electrical field (internal current density) of EIT and that of CCEIT. Simulation results provide useful knowledge of excitation signal level of CCEIT and also show a critical comparison with traditional EIT. Practical experiments were carried out with a 12-electrode CCEIT phantom, saline, and carrot samples. Experimental results show the feasibility and potential of CCEIT for stroke imaging. In this paper, the anomaly diameter resolution is 10 mm (1/18 of the phantom diameter), which indicates that small-volume stroke could be detected. This is achieved by a low excitation voltage of 1 V, showing the possibility of even better performance when higher but yet safe level of excitation voltages is used.
Collapse
|