1
|
Mahapatra C, Kishore A, Gawad J, Al-Emam A, Kouzeiha RA, Rusho MA. Review of electrophysiological models to study membrane potential changes in breast cancer cell transformation and tumor progression. Front Physiol 2025; 16:1536165. [PMID: 40110186 PMCID: PMC11920174 DOI: 10.3389/fphys.2025.1536165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
The transformation of normal breast cells into cancerous cells is a complex process influenced by both genetic and microenvironmental factors. Recent studies highlight the significant role of membrane potential (Vm) alterations in this transformation. Cancer cells typically exhibit a depolarized resting membrane potential (RMP) compared to normal cells, which correlates with increased cellular activity and more aggressive cancer behavior. These RMP and Vm changes are associated with altered ion channel activity, altered calcium dynamics, mitochondrial dysfunction, modified gap junction communication, and disrupted signaling pathways. Such fluctuations in RMP and Vm influence key processes in cancer progression, including cell proliferation, migration, and invasion. Notably, more aggressive subtypes of breast cancer cells display more frequent and pronounced Vm fluctuations. Understanding the electrical properties of cancer cells provides new insights into their behavior and offers potential therapeutic targets, such as ion channels and Vm regulation. This review synthesizes current research on how various factors modulate membrane potential and proposes an electrophysiological model of breast cancer cells based on experimental and clinical data from the literature. These findings may pave the way for novel pharmacological targets for clinicians, researchers, and pharmacologists in treating breast cancer.
Collapse
Affiliation(s)
| | - Arnaw Kishore
- Microbiology and Immunology, Xavier University School of Medicine, Aruba, Netherlands
| | - Jineetkumar Gawad
- Department of Pharmaceutical Chemistry, VIVA Institute of Pharmacy, Virar, India
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Riad Azzam Kouzeiha
- Faculty of Medical Sciences, Lebanese University, Hadath Campus, Beirut, Lebanon
| | - Maher Ali Rusho
- Department of Biomedical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
2
|
Mahapatra C, Thakkar R, Kumar R. Modulatory Impact of Oxidative Stress on Action Potentials in Pathophysiological States: A Comprehensive Review. Antioxidants (Basel) 2024; 13:1172. [PMID: 39456426 PMCID: PMC11504047 DOI: 10.3390/antiox13101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the body's antioxidant defenses, significantly affects cellular function and viability. It plays a pivotal role in modulating membrane potentials, particularly action potentials (APs), essential for properly functioning excitable cells such as neurons, smooth muscles, pancreatic beta cells, and myocytes. The interaction between oxidative stress and AP dynamics is crucial for understanding the pathophysiology of various conditions, including neurodegenerative diseases, cardiac arrhythmias, and ischemia-reperfusion injuries. This review explores how oxidative stress influences APs, focusing on alterations in ion channel biophysics, gap junction, calcium dynamics, mitochondria, and Interstitial Cells of Cajal functions. By integrating current research, we aim to elucidate how oxidative stress contributes to disease progression and discuss potential therapeutic interventions targeting this interaction.
Collapse
Affiliation(s)
- Chitaranjan Mahapatra
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ravindra Thakkar
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Ravinder Kumar
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Mahapatra C, Thakkar R. In Silico Electrophysiological Investigation of Transient Receptor Potential Melastatin-4 Ion Channel Biophysics to Study Detrusor Overactivity. Int J Mol Sci 2024; 25:6875. [PMID: 38999984 PMCID: PMC11241520 DOI: 10.3390/ijms25136875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Enhanced electrical activity in detrusor smooth muscle (DSM) cells is a key factor in detrusor overactivity which causes overactive bladder pathological disorders. Transient receptor potential melastatin-4 (TRPM4) channels, which are calcium-activated cation channels, play a role in regulating DSM electrical activities. These channels likely contribute to depolarizing the DSM cell membrane, leading to bladder overactivity. Our research focuses on understanding TRPM4 channel function in the DSM cells of mice, using computational modeling. We aimed to create a detailed computational model of the TRPM4 channel based on existing electrophysiological data. We employed a modified Hodgkin-Huxley model with an incorporated TRP-like current to simulate action potential firing in response to current and synaptic stimulus inputs. Validation against experimental data showed close agreement with our simulations. Our model is the first to analyze the TRPM4 channel's role in DSM electrical activity, potentially revealing insights into bladder overactivity. In conclusion, TRPM4 channels are pivotal in regulating human DSM function, and TRPM4 channel inhibitors could be promising targets for treating overactive bladder.
Collapse
Affiliation(s)
- Chitaranjan Mahapatra
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Paris Saclay Institute of Neuroscience, 91440 Saclay, France
| | - Ravindra Thakkar
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Mahapatra C, Kumar R. Biophysical Mechanisms of Vaginal Smooth Muscle Contraction: The Role of the Membrane Potential and Ion Channels. PATHOPHYSIOLOGY 2024; 31:225-243. [PMID: 38804298 PMCID: PMC11130850 DOI: 10.3390/pathophysiology31020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
The vagina is an essential component of the female reproductive system and is responsible for providing female sexual satisfaction. Vaginal smooth muscle contraction plays a crucial role in various physiological processes, including sexual arousal, childbirth, and urinary continence. In pathophysiological conditions, such as pelvic floor disorders, aberrations in vaginal smooth muscle function can lead to urinary incontinence and pelvic organ prolapse. A set of cellular and sub-cellular physiological mechanisms regulates the contractile properties of the vaginal smooth muscle cells. Calcium influx is a crucial determinant of smooth muscle contraction, facilitated through voltage-dependent calcium channels and calcium release from intracellular stores. Comprehensive reviews on smooth muscle biophysics are relatively scarce within the scientific literature, likely due to the complexity and specialized nature of the topic. The objective of this review is to provide a comprehensive description of alterations in the cellular physiology of vaginal smooth muscle contraction. The benefit associated with this particular approach is that conducting a comprehensive examination of the cellular mechanisms underlying contractile activation will enable the creation of more targeted therapeutic agents to control vaginal contraction disorders.
Collapse
Affiliation(s)
- Chitaranjan Mahapatra
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Paris Saclay Institute of Neuroscience, 91440 Saclay, France
| | - Ravinder Kumar
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Echeverría F, Gonzalez-Sanabria N, Alvarado-Sanchez R, Fernández M, Castillo K, Latorre R. Large conductance voltage-and calcium-activated K + (BK) channel in health and disease. Front Pharmacol 2024; 15:1373507. [PMID: 38584598 PMCID: PMC10995336 DOI: 10.3389/fphar.2024.1373507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Large Conductance Voltage- and Calcium-activated K+ (BK) channels are transmembrane pore-forming proteins that regulate cell excitability and are also expressed in non-excitable cells. They play a role in regulating vascular tone, neuronal excitability, neurotransmitter release, and muscle contraction. Dysfunction of the BK channel can lead to arterial hypertension, hearing disorders, epilepsy, and ataxia. Here, we provide an overview of BK channel functioning and the implications of its abnormal functioning in various diseases. Understanding the function of BK channels is crucial for comprehending the mechanisms involved in regulating vital physiological processes, both in normal and pathological conditions, controlled by BK. This understanding may lead to the development of therapeutic interventions to address BK channelopathies.
Collapse
Affiliation(s)
- Felipe Echeverría
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Naileth Gonzalez-Sanabria
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Rosangelina Alvarado-Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
6
|
Wang H, Swore J, Sharma S, Szymanski JR, Yuste R, Daniel TL, Regnier M, Bosma MM, Fairhall AL. A complete biomechanical model of Hydra contractile behaviors, from neural drive to muscle to movement. Proc Natl Acad Sci U S A 2023; 120:e2210439120. [PMID: 36897982 PMCID: PMC10089167 DOI: 10.1073/pnas.2210439120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/03/2023] [Indexed: 03/12/2023] Open
Abstract
How does neural activity drive muscles to produce behavior? The recent development of genetic lines in Hydra that allow complete calcium imaging of both neuronal and muscle activity, as well as systematic machine learning quantification of behaviors, makes this small cnidarian an ideal model system to understand and model the complete transformation from neural firing to body movements. To achieve this, we have built a neuromechanical model of Hydra's fluid-filled hydrostatic skeleton, showing how drive by neuronal activity activates distinct patterns of muscle activity and body column biomechanics. Our model is based on experimental measurements of neuronal and muscle activity and assumes gap junctional coupling among muscle cells and calcium-dependent force generation by muscles. With these assumptions, we can robustly reproduce a basic set of Hydra's behaviors. We can further explain puzzling experimental observations, including the dual timescale kinetics observed in muscle activation and the engagement of ectodermal and endodermal muscles in different behaviors. This work delineates the spatiotemporal control space of Hydra movement and can serve as a template for future efforts to systematically decipher the transformations in the neural basis of behavior.
Collapse
Affiliation(s)
- Hengji Wang
- Department of Physics, University of Washington, Seattle, WA98195
- Computational Neuroscience Center, University of Washington, Seattle, WA98195
| | - Joshua Swore
- Department of Biology, University of Washington, Seattle, WA98195
| | - Shashank Sharma
- Department of Physiology and Biophysics, University of Washington, Seattle, WA98195
| | - John R. Szymanski
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY10027
- Marine Biological Laboratory, Woods Hole, MA02543
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY10027
- Marine Biological Laboratory, Woods Hole, MA02543
| | - Thomas L. Daniel
- Department of Biology, University of Washington, Seattle, WA98195
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA98195
| | - Martha M. Bosma
- Department of Biology, University of Washington, Seattle, WA98195
| | - Adrienne L. Fairhall
- Department of Physics, University of Washington, Seattle, WA98195
- Computational Neuroscience Center, University of Washington, Seattle, WA98195
- Department of Physiology and Biophysics, University of Washington, Seattle, WA98195
- Marine Biological Laboratory, Woods Hole, MA02543
| |
Collapse
|
7
|
Morishita R, Sowa K, Kitazumi Y, Shirai O. Directional propagation of action potential within a single cell and intercellular conduction within a cell aggregate using model cell systems. ANAL SCI 2023; 39:945-955. [PMID: 36840856 DOI: 10.1007/s44211-023-00302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/11/2023] [Indexed: 02/26/2023]
Abstract
The mechanism of directional propagation of action potential throughout a single cell was examined using a liquid-membrane model cell system. In the experiments on the liquid-membrane model cell system, liquid-membrane cells were constructed to mimic the function of K+ and voltage-gated Na+ channels, which play important roles in action potential propagation. These channel-mimicking cells were connected electrically, and a model cell system was composed of four parts within the one cell. When one voltage-gated Na+ channel-mimicking cell was connected to form the action potential and generated the inflow current at the one part, action potential occurred in the surrounding area due to the local circulating current and propagated to the other parts. The action potential propagation throughout the cell by a brief electrical stimulus (10 ms) was easier than that by a long electrical stimulus (2 s). The long electric stimulus thus caused hyperpolarized region within the cell. Moreover, the increase in resistance corresponding to the extracellular fluid weakened the action potential propagation. In the simulation experiments using the software LTspice, the characteristics of K+ and Na+ channel-mimicking cells were reproduced in the electrical circuit also. A model cell aggregate consisting of closely packed three model cells and the extracellular fluid was constructed in the electric circuit. When one cell fired, the electrical signal propagated to the neighboring cells through the intercellular and extracellular fluids. This result suggests that electrical propagation can occur between independent cells in closely packed tissues without chemical transmission or direct propagation across the gap junctions.
Collapse
Affiliation(s)
- Ryota Morishita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Keisei Sowa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yuki Kitazumi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Osamu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
8
|
Appukuttan S, Brain KL, Manchanda R. Effect of Variations in Gap Junctional Coupling on the Frequency of Oscillatory Action Potentials in a Smooth Muscle Syncytium. Front Physiol 2021; 12:655225. [PMID: 34658901 PMCID: PMC8517141 DOI: 10.3389/fphys.2021.655225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Gap junctions provide pathways for intercellular communication between adjacent cells, allowing exchange of ions and small molecules. Based on the constituent protein subunits, gap junctions are classified into different subtypes varying in their properties such as unitary conductances, sensitivity to transjunctional voltage, and gating kinetics. Gap junctions couple cells electrically, and therefore the electrical activity originating in one cell can affect and modulate the electrical activity in adjacent cells. Action potentials can propagate through networks of such electrically coupled cells, and this spread is influenced by the nature of gap junctional coupling. Our study aims to computationally explore the effect of differences in gap junctional properties on oscillating action potentials in electrically coupled tissues. Further, we also explore variations in the biophysical environment by altering the size of the syncytium, the location of the pacemaking cell, as well as the occurrence of multiple pacemaking cells within the same syncytium. Our simulation results suggest that the frequency of oscillations is governed by the extent of coupling between cells and the gating kinetics of different gap junction subtypes. The location of pacemaking cells is found to alter the syncytial behavior, and when multiple oscillators are present, there exists an interplay between the oscillator frequency and their relative location within the syncytium. Such variations in the frequency of oscillations can have important implications for the physiological functioning of syncytial tissues.
Collapse
Affiliation(s)
- Shailesh Appukuttan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Keith L. Brain
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rohit Manchanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
9
|
Kasai I, Kitazumi Y, Kano K, Shirai O. Electrical cell-to-cell communication using aggregates of model cells. Phys Chem Chem Phys 2020; 22:21288-21296. [PMID: 32935668 DOI: 10.1039/c9cp06777a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell-to-cell communication via a local current caused by ion transport is elucidated using a model-cell system. To imitate tissues such as smooth muscles and cardiac muscles, liquid-membrane cells mimicking the function of K+ and Na+ channels were made. Connecting these channel-mimicking cells (K+ channel and voltage-gated Na+ channel) in parallel, model cells imitating living cell functions were constructed. Action-potential propagation within the cell aggregate model constructed by multiple model cells was investigated. When an action potential was generated at one cell, the cell behaved as an electric power source. Since a circulating current flowed around the cell, it flowed through neighboring model cells. Influx and efflux currents caused negative and positive shifts of the membrane potential, respectively, on the surface of neighboring model cells. The action potential was generated at the depolarized domain when the membrane potential exceeded the threshold of the voltage-gated Na+ channels. Thus, the action potential spread all over the cell system. When an external electric stimulus was applied to the layered cell-aggregate model system, propagation of the action potential was facilitated as if they were synchronized.
Collapse
Affiliation(s)
- Issei Kasai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
10
|
Fatoyinbo HO, Brown RG, Simpson DJW, van Brunt B. Numerical Bifurcation Analysis of Pacemaker Dynamics in a Model of Smooth Muscle Cells. Bull Math Biol 2020; 82:95. [PMID: 32676881 DOI: 10.1007/s11538-020-00771-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022]
Abstract
Evidence from experimental studies shows that oscillations due to electro-mechanical coupling can be generated spontaneously in smooth muscle cells. Such cellular dynamics are known as pacemaker dynamics. In this article, we address pacemaker dynamics associated with the interaction of [Formula: see text] and [Formula: see text] fluxes in the cell membrane of a smooth muscle cell. First we reduce a pacemaker model to a two-dimensional system equivalent to the reduced Morris-Lecar model and then perform a detailed numerical bifurcation analysis of the reduced model. Existing bifurcation analyses of the Morris-Lecar model concentrate on external applied current, whereas we focus on parameters that model the response of the cell to changes in transmural pressure. We reveal a transition between Type I and Type II excitabilities with no external current required. We also compute a two-parameter bifurcation diagram and show how the transition is explained by the bifurcation structure.
Collapse
Affiliation(s)
- H O Fatoyinbo
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | - R G Brown
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - D J W Simpson
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - B van Brunt
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
11
|
Sengupta N, Manchanda R. Spontaneous synaptic drive in detrusor smooth muscle: computational investigation and implications for urinary bladder function. J Comput Neurosci 2019; 47:167-189. [PMID: 31712945 DOI: 10.1007/s10827-019-00731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
The detrusor, a key component of the urinary bladder wall, is a densely innervated syncytial smooth muscle tissue. Random spontaneous release of neurotransmitter at neuromuscular junctions (NMJs) in the detrusor gives rise to spontaneous excitatory junction potentials (SEJPs). These sub-threshold passive signals not only offer insights into the syncytial nature of the tissue, their spatio-temporal integration is critical to the generation of spontaneous neurogenic action potentials which lead to focal contractions during the filling phase of the bladder. Given the structural complexity and the contractile nature of the tissue, electrophysiological investigations on spatio-temporal integration of SEJPs in the detrusor are technically challenging. Here we report a biophysically constrained computational model of a detrusor syncytium overlaid with spatially distributed innervation, using which we explored salient features of the integration of SEJPs in the tissue and the key factors that contribute to this integration. We validated our model against experimental data, ascertaining that observations were congruent with theoretical predictions. With the help of comparative studies, we propose that the amplitude of the spatio-temporally integrated SEJP is most sensitive to the inter-cellular coupling strength in the detrusor, while frequency of observed events depends more strongly on innervation density. An experimentally testable prediction arising from our study is that spontaneous release frequency of neurotransmitter may be implicated in the generation of detrusor overactivity. Set against histological observations, we also conjecture possible changes in the electrical activity of the detrusor during pathology involving patchy denervation. Our model thus provides a physiologically realistic, heuristic framework to investigate the spread and integration of passive potentials in an innervated syncytial tissue under normal conditions and in pathophysiology.
Collapse
Affiliation(s)
- Nilapratim Sengupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rohit Manchanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
12
|
Gupta S, Manchanda R. A computational model of large conductance voltage and calcium activated potassium channels: implications for calcium dynamics and electrophysiology in detrusor smooth muscle cells. J Comput Neurosci 2019; 46:233-256. [PMID: 31025235 DOI: 10.1007/s10827-019-00713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 11/25/2022]
Abstract
The large conductance voltage and calcium activated potassium (BK) channels play a crucial role in regulating the excitability of detrusor smooth muscle, which lines the wall of the urinary bladder. These channels have been widely characterized in terms of their molecular structure, pharmacology and electrophysiology. They control the repolarising and hyperpolarising phases of the action potential, thereby regulating the firing frequency and contraction profiles of the smooth muscle. Several groups have reported varied profiles of BK currents and I-V curves under similar experimental conditions. However, no single computational model has been able to reconcile these apparent discrepancies. In view of the channels' physiological importance, it is imperative to understand their mechanistic underpinnings so that a realistic model can be created. This paper presents a computational model of the BK channel, based on the Hodgkin-Huxley formalism, constructed by utilising three activation processes - membrane potential, calcium inflow from voltage-gated calcium channels on the membrane and calcium released from the ryanodine receptors present on the sarcoplasmic reticulum. In our model, we attribute the discrepant profiles to the underlying cytosolic calcium received by the channel during its activation. The model enables us to make heuristic predictions regarding the nature of the sub-membrane calcium dynamics underlying the BK channel's activation. We have employed the model to reproduce various physiological characteristics of the channel and found the simulated responses to be in accordance with the experimental findings. Additionally, we have used the model to investigate the role of this channel in electrophysiological signals, such as the action potential and spontaneous transient hyperpolarisations. Furthermore, the clinical effects of BK channel openers, mallotoxin and NS19504, were simulated for the detrusor smooth muscle cells. Our findings support the proposed application of these drugs for amelioration of the condition of overactive bladder. We thus propose a physiologically realistic BK channel model which can be integrated with other biophysical mechanisms such as ion channels, pumps and exchangers to further elucidate its micro-domain interaction with the intracellular calcium environment.
Collapse
Affiliation(s)
- Suranjana Gupta
- Computational NeuroPhysiology Lab, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Rohit Manchanda
- Computational NeuroPhysiology Lab, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
13
|
Manchanda R, Appukuttan S, Padmakumar M. Electrophysiology of Syncytial Smooth Muscle. J Exp Neurosci 2019; 13:1179069518821917. [PMID: 30733629 PMCID: PMC6343439 DOI: 10.1177/1179069518821917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/05/2018] [Indexed: 01/21/2023] Open
Abstract
As in other excitable tissues, two classes of electrical signals are of fundamental importance to the functioning of smooth muscles: junction potentials, which arise from neurotransmission and represent the initiation of excitation (or in some instances inhibition) of the tissue, and spikes or action potentials, which represent the accomplishment of excitation and lead on to contractile activity. Unlike the case in skeletal muscle and in neurons, junction potentials and spikes in smooth muscle have been poorly understood in relation to the electrical properties of the tissue and in terms of their spatiotemporal spread within it. This owes principally to the experimental difficulties involved in making precise electrical recordings from smooth muscles and also to two inherent features of this class of muscle, ie, the syncytial organization of its cells and the distributed innervation they receive, which renders their biophysical analysis problematic. In this review, we outline the development of hypotheses and knowledge on junction potentials and spikes in syncytial smooth muscle, showing how our concepts have frequently undergone radical changes and how recent developments hold promise in unraveling some of the many puzzles that remain. We focus especially on computational models and signal analysis approaches. We take as illustrative examples the smooth muscles of two organs with distinct functional characteristics, the vas deferens and urinary bladder, while also touching on features of electrical functioning in the smooth muscles of other organs.
Collapse
Affiliation(s)
- Rohit Manchanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shailesh Appukuttan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Mithun Padmakumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
14
|
Padmakumar M, Brain K, Manchanda R. Analysis of spontaneous depolarization-linked hyperpolarizations in mouse detrusor smooth muscle cells. BIOMEDICAL RESEARCH JOURNAL 2019. [DOI: 10.4103/bmrj.bmrj_9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|