1
|
Hertel A, Kuru M, Tollens F, Tharmaseelan H, Nörenberg D, Rathmann N, Schoenberg SO, Froelich MF. Comparison of diagnostic accuracy of radiomics parameter maps and standard reconstruction for the detection of liver lesions in computed tomography. Front Oncol 2024; 14:1444115. [PMID: 39435296 PMCID: PMC11491382 DOI: 10.3389/fonc.2024.1444115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/29/2024] [Indexed: 10/23/2024] Open
Abstract
Background The liver is a frequent location of metastatic disease in various malignant tumor entities. Computed tomography (CT) is the most frequently employed modality for initial diagnosis. However, liver metastases may only be delineated vaguely on CT. Calculating radiomics features in feature maps can unravel textures not visible to the human eye on a standard CT reconstruction (SCTR). This study aimed to investigate the comparative diagnostic accuracy of radiomics feature maps and SCTR for liver metastases. Materials and methods Forty-seven patients with hepatic metastatic colorectal cancer were retrospectively enrolled. Whole-liver maps of original radiomics features were generated. A representative feature was selected for each feature class based on the visualization of example lesions from five patients. These maps and the conventional CT image data were viewed and evaluated by four readers in terms of liver parenchyma, number of lesions, visual contrast of lesions and diagnostic confidence. T-tests and chi²-tests were performed with a significance cut off of p<0.05 to compare the feature maps with SCRT, and the data were visualized as boxplots. Results Regarding the number of lesions detected, SCTR showed superior performance compared to radiomics maps. However, the feature map for firstorder RootMeanSquared was ranked superior in terms of very high visual contrast in 57.4% of cases, compared to 41.0% in standard reconstructions (p < 0.001). All other radiomics maps ranked significantly lower in visual contrast when compared to SCTR. For diagnostic confidence, firstorder RootMeanSquared reached very high ratings in 47.9% of cases, compared to 62.8% for SCTR (p < 0.001). The conventional CT images showed superior results in all categories for the other features investigated. Conclusion The application of firstorder RootMeanSquared feature maps may help visualize faintly demarcated liver lesions by increasing visual contrast. However, reading of SCTR remains necessary for diagnostic confidence.
Collapse
Affiliation(s)
- Alexander Hertel
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim,
Heidelberg University, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Christiansen SD, Liu J, Bullrich MB, Sharma M, Boulton M, Pandey SK, Sposato LA, Drangova M. Deep learning prediction of stroke thrombus red blood cell content from multiparametric MRI. Interv Neuroradiol 2024; 30:541-549. [PMID: 36437762 PMCID: PMC11483724 DOI: 10.1177/15910199221140962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/03/2022] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND AND PURPOSE Thrombus red blood cell (RBC) content has been shown to be a significant factor influencing the efficacy of acute ischemic stroke treatment. In this study, our objective was to evaluate the ability of convolutional neural networks (CNNs) to predict ischemic stroke thrombus RBC content using multiparametric MR images. MATERIALS AND METHODS Retrieved stroke thrombi were scanned ex vivo using a three-dimensional multi-echo gradient echo sequence and histologically analyzed. 188 thrombus R2*, quantitative susceptibility mapping and late-echo GRE magnitude image slices were used to train and test a 3-layer CNN through cross-validation. Data augmentation techniques involving input equalization and random image transformation were employed to improve network performance. The network was assessed for its ability to quantitatively predict RBC content and to classify thrombi into RBC-rich and RBC-poor groups. RESULTS The CNN predicted thrombus RBC content with an accuracy of 62% (95% CI 48-76%) when trained on the original dataset and improved to 72% (95% CI 60-84%) on the augmented dataset. The network classified thrombi as RBC-rich or poor with an accuracy of 71% (95% CI 58-84%) and an area under the curve of 0.72 (95% CI 0.57-0.87) when trained on the original dataset and improved to 80% (95% CI 69-91%) and 0.84 (95% CI 0.73-0.95), respectively, on the augmented dataset. CONCLUSIONS The CNN was able to accurately predict thrombus RBC content using multiparametric MR images, and could provide a means to guide treatment strategy in acute ischemic stroke.
Collapse
Affiliation(s)
- Spencer D Christiansen
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Junmin Liu
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Maria Bres Bullrich
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Manas Sharma
- Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Melfort Boulton
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Sachin K Pandey
- Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Luciano A Sposato
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Maria Drangova
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Kar SS, Cetin H, Abraham J, Srivastava SK, Madabhushi A, Ehlers JP. Combination of optical coherence tomography-derived shape and texture features are associated with development of sub-foveal geographic atrophy in dry AMD. Sci Rep 2024; 14:17602. [PMID: 39080402 PMCID: PMC11289404 DOI: 10.1038/s41598-024-68259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Geographic atrophy (GA) is an advanced form of dry age-related macular degeneration (AMD) that leads to progressive and irreversible vision loss. Identifying patients with greatest risk of GA progression is important for targeted utilization of emerging therapies. This study aimed to comprehensively evaluate the role of shape-based fractal dimension features ( F fd ) of sub-retinal pigment epithelium (sub-RPE) compartment and texture-based radiomics features ( F t ) of Ellipsoid Zone (EZ)-RPE and sub-RPE compartments for risk stratification for subfoveal GA (sfGA) progression. This was a retrospective study of 137 dry AMD subjects with a 5-year follow-up. Based on sfGA status at year 5, eyes were categorized as Progressors and Non-progressors. A total of 15 shape-based F fd of sub-RPE surface and 494 F t from each of sub-RPE and EZ-RPE compartments were extracted from baseline spectral domain-optical coherence tomography scans. The top nine features were identified from F fd and F t feature pool separately using minimum Redundancy maximum Relevance feature selection and used to train a Random Forest (RF) classifier independently using three-fold cross validation on the training set ( S t , N = 90) to distinguish between sfGA Progressors and Non-progressors. Combined F fd and F t was also evaluated in predicting risk of sfGA progression. The RF classifier yielded AUC of 0.85, 0.79 and 0.89 on independent test set ( S v , N = 47) using F fd , F t , and their combination, respectively. Using combined F fd and F t , the improvement in AUC was statistically significant on S v with p-values of 0.032 and 0.04 compared to using only F fd and only F t , respectively. Combined F fd and F t appears to identify high-risk patients. Our results show that FD and texture features could be potentially used for predicting risk of sfGA progression and future therapeutic response.
Collapse
Grants
- R43EB028736 NIBIB NIH HHS
- R01CA208236 NCI NIH HHS
- U01 CA239055 NCI NIH HHS
- R01 HL158071 NHLBI NIH HHS
- R01 HL151277 NHLBI NIH HHS
- IP30EY025585 NIH-NEI P30 Core Gran
- R01HL151277 National Heart, Lung and Blood Institute
- R01CA202752 NCI NIH HHS
- R01 CA216579 NCI NIH HHS
- R01 CA268207 NCI NIH HHS
- IP30EY025585 Unrestricted Grants from The Research to Prevent Blindness, Inc (Cole Eye Institute), Cleveland Eye Bank Foundation awarded to the Cole Eye Institute (Cole Eye)
- R01 CA208236 NCI NIH HHS
- R01CA216579 NCI NIH HHS
- R01 CA202752 NCI NIH HHS
- VA Merit Review Award IBX004121A United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service
- C06 RR012463 NCRR NIH HHS
- U01CA248226 NCI NIH HHS
- P30 EY025585 NEI NIH HHS
- C06 RR12463-01 NCRR NIH HHS
- R01CA268207A1 NCI NIH HHS
- U01 CA248226 NCI NIH HHS
- I01 BX004121 BLRD VA
- R43 EB028736 NIBIB NIH HHS
- R01HL158071 National Heart, Lung and Blood Institute
- R01 CA257612 NCI NIH HHS
- Breast Cancer Research Program (W81XWH-19-1-0668), the Prostate Cancer Research Program (W81XWH-15-1-0558, W81XWH-20-1-0851), the Lung Cancer Research Program (W81XWH-18-1-0440, W81XWH-20-1-0595), the Peer Reviewed Cancer Research Program (W81XWH-18-1-0404, W81XWH-21-1-0345), the Kidney Precision Medicine Project (KPMP) Glue Grant and sponsored research agreements from Bristol Myers-Squibb, Boehri Office of the Assistant Secretary of Defense for Health Affairs
- U54 CA254566 NCI NIH HHS
- R01CA220581 NCI NIH HHS
- U54CA254566 NCI NIH HHS
- U01CA239055 NCI NIH HHS
- R01CA257612 NCI NIH HHS
- R01CA249992 NCI NIH HHS
- R01 CA249992 NCI NIH HHS
- R01 CA220581 NCI NIH HHS
- K23 EY022947 NEI NIH HHS
- National Cancer Institute
- National Institute of Biomedical Imaging and Bioengineering
- National Center for Research Resources
Collapse
Affiliation(s)
- Sudeshna Sil Kar
- Department of Biomedical Engineering, Emory University, Atlanta, GA, USA
| | - Hasan Cetin
- The Tony and Leona Campane Center for Excellence in Image-Guided Surgery and Advanced Imaging Research, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue/Desk i32, Cleveland, OH, 44195, USA
| | - Joseph Abraham
- The Tony and Leona Campane Center for Excellence in Image-Guided Surgery and Advanced Imaging Research, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue/Desk i32, Cleveland, OH, 44195, USA
| | - Sunil K Srivastava
- The Tony and Leona Campane Center for Excellence in Image-Guided Surgery and Advanced Imaging Research, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue/Desk i32, Cleveland, OH, 44195, USA
- Vitreoretinal Service, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Emory University, Atlanta, GA, USA.
- Atlanta Veterans Administration Medical Center, Atlanta, GA, USA.
- Wallace H Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Suite W212, Atlanta, GA, 30322, USA.
| | - Justis P Ehlers
- The Tony and Leona Campane Center for Excellence in Image-Guided Surgery and Advanced Imaging Research, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue/Desk i32, Cleveland, OH, 44195, USA.
- Vitreoretinal Service, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
4
|
Tai DT, Nhu NT, Tuan PA, Sulieman A, Omer H, Alirezaei Z, Bradley D, Chow JCL. A user-friendly deep learning application for accurate lung cancer diagnosis. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:611-622. [PMID: 38607727 DOI: 10.3233/xst-230255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
BACKGROUND Accurate diagnosis and subsequent delineated treatment planning require the experience of clinicians in the handling of their case numbers. However, applying deep learning in image processing is useful in creating tools that promise faster high-quality diagnoses, but the accuracy and precision of 3-D image processing from 2-D data may be limited by factors such as superposition of organs, distortion and magnification, and detection of new pathologies. The purpose of this research is to use radiomics and deep learning to develop a tool for lung cancer diagnosis. METHODS This study applies radiomics and deep learning in the diagnosis of lung cancer to help clinicians accurately analyze the images and thereby provide the appropriate treatment planning. 86 patients were recruited from Bach Mai Hospital, and 1012 patients were collected from an open-source database. First, deep learning has been applied in the process of segmentation by U-NET and cancer classification via the use of the DenseNet model. Second, the radiomics were applied for measuring and calculating diameter, surface area, and volume. Finally, the hardware also was designed by connecting between Arduino Nano and MFRC522 module for reading data from the tag. In addition, the displayed interface was created on a web platform using Python through Streamlit. RESULTS The applied segmentation model yielded a validation loss of 0.498, a train loss of 0.27, a cancer classification validation loss of 0.78, and a training accuracy of 0.98. The outcomes of the diagnostic capabilities of lung cancer (recognition and classification of lung cancer from chest CT scans) were quite successful. CONCLUSIONS The model provided means for storing and updating patients' data directly on the interface which allowed the results to be readily available for the health care providers. The developed system will improve clinical communication and information exchange. Moreover, it can manage efforts by generating correlated and coherent summaries of cancer diagnoses.
Collapse
Affiliation(s)
- Duong Thanh Tai
- Department of Medical Physics, Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nguyen Tan Nhu
- School of Biomedical Engineering, Ho Chi Minh City International University (VNU-HCM), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Vietnam
| | - Pham Anh Tuan
- Nuclear Medicine and Oncology Centre, Bach Mai Hospital, Ha Noi, Vietnam
| | - Abdelmoneim Sulieman
- Radiology and Medical Imaging Department Prince Sattam Bin Abdulaziz University College of Applied Medical Sciences, Al-Kharj, Saudi Arabia
- Radiological Science Department, College of Applied Medical Sciences, Al Ahsa, Saudi Arabia, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hiba Omer
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Zahra Alirezaei
- Radiology Department, Paramedical School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - David Bradley
- Applied Physics and Radiation Technologies Group, CCDCU, Sunway University, Subang Jaya, PJ, Malaysia
- School of Mathematics and Physics, University of Surrey, Guildford, UK
| | - James C L Chow
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
5
|
Kar SS, Cetin H, Abraham J, Srivastava SK, Whitney J, Madabhushi A, Ehlers JP. Novel Fractal-Based Sub-RPE Compartment OCT Radiomics Biomarkers Are Associated With Subfoveal Geographic Atrophy in Dry AMD. IEEE Trans Biomed Eng 2023; 70:2914-2921. [PMID: 37097804 PMCID: PMC10581743 DOI: 10.1109/tbme.2023.3270201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
OBJECTIVE The purpose of this study was to quantitatively characterize the shape of the sub-retinal pigment epithelium (sub-RPE, i.e., space bounded by RPE and Bruch's membrane) compartment on SD-OCT using fractal dimension (FD) features and evaluate their impact on risk of subfoveal geographic atrophy (sfGA) progression. METHODS This was an IRB-approved retrospective study of 137 subjects with dry age-related macular degeneration (AMD) with subfoveal GA. Based on sfGA status at year five, eyes were categorized as "Progressors" and "Non-progressors". FD analysis allows quantification of the degree of shape complexity and architectural disorder associated with a structure. To characterize the structural irregularities along the sub-RPE surface between the two groups of patients, a total of 15 shape descriptors of FD were extracted from the sub-RPE compartment of baseline OCT scans. The top four features were identified using minimum Redundancy maximum Relevance (mRmR) feature selection method and evaluated with Random Forest (RF) classifier using three-fold cross validation from the training set (N = 90). Classifier performance was subsequently validated on the independent test set (N = 47). RESULTS Using the top four FD features, a RF classifier yielded an AUC of 0.85 on the independent test set. Mean fractal entropy (p-value = 4.8e-05) was identified as the most significant biomarker; higher values of entropy being associated with greater shape disorder and risk for sfGA progression. CONCLUSIONS FD assessment holds promise for identifying high-risk eyes for GA progression. SIGNIFICANCE With further validation, FD features could be potentially used for clinical trial enrichment and assessments for therapeutic response in dry AMD patients.
Collapse
|
6
|
Calimano-Ramirez LF, Virarkar MK, Hernandez M, Ozdemir S, Kumar S, Gopireddy DR, Lall C, Balaji KC, Mete M, Gumus KZ. MRI-based nomograms and radiomics in presurgical prediction of extraprostatic extension in prostate cancer: a systematic review. Abdom Radiol (NY) 2023; 48:2379-2400. [PMID: 37142824 DOI: 10.1007/s00261-023-03924-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Prediction of extraprostatic extension (EPE) is essential for accurate surgical planning in prostate cancer (PCa). Radiomics based on magnetic resonance imaging (MRI) has shown potential to predict EPE. We aimed to evaluate studies proposing MRI-based nomograms and radiomics for EPE prediction and assess the quality of current radiomics literature. METHODS We used PubMed, EMBASE, and SCOPUS databases to find related articles using synonyms for MRI radiomics and nomograms to predict EPE. Two co-authors scored the quality of radiomics literature using the Radiomics Quality Score (RQS). Inter-rater agreement was measured using the intraclass correlation coefficient (ICC) from total RQS scores. We analyzed the characteristic s of the studies and used ANOVAs to associate the area under the curve (AUC) to sample size, clinical and imaging variables, and RQS scores. RESULTS We identified 33 studies-22 nomograms and 11 radiomics analyses. The mean AUC for nomogram articles was 0.783, and no significant associations were found between AUC and sample size, clinical variables, or number of imaging variables. For radiomics articles, there were significant associations between number of lesions and AUC (p < 0.013). The average RQS total score was 15.91/36 (44%). Through the radiomics operation, segmentation of region-of-interest, selection of features, and model building resulted in a broader range of results. The qualities the studies lacked most were phantom tests for scanner variabilities, temporal variability, external validation datasets, prospective designs, cost-effectiveness analysis, and open science. CONCLUSION Utilizing MRI-based radiomics to predict EPE in PCa patients demonstrates promising outcomes. However, quality improvement and standardization of radiomics workflow are needed.
Collapse
Affiliation(s)
- Luis F Calimano-Ramirez
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, 32209, USA
| | - Mayur K Virarkar
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, 32209, USA
| | - Mauricio Hernandez
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, 32209, USA
| | - Savas Ozdemir
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, 32209, USA
| | - Sindhu Kumar
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, 32209, USA
| | - Dheeraj R Gopireddy
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, 32209, USA
| | - Chandana Lall
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, 32209, USA
| | - K C Balaji
- Department of Urology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Mutlu Mete
- Department of Computer Science and Information System, Texas A&M University-Commerce, Commerce, TX, 75428, USA
| | - Kazim Z Gumus
- Department of Radiology, University of Florida College of Medicine Jacksonville, Jacksonville, FL, 32209, USA.
| |
Collapse
|
7
|
Huynh LM, Hwang Y, Taylor O, Baine MJ. The Use of MRI-Derived Radiomic Models in Prostate Cancer Risk Stratification: A Critical Review of Contemporary Literature. Diagnostics (Basel) 2023; 13:diagnostics13061128. [PMID: 36980436 PMCID: PMC10047271 DOI: 10.3390/diagnostics13061128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The development of precise medical imaging has facilitated the establishment of radiomics, a computer-based method of quantitatively analyzing subvisual imaging characteristics. The present review summarizes the current literature on the use of diagnostic magnetic resonance imaging (MRI)-derived radiomics in prostate cancer (PCa) risk stratification. A stepwise literature search of publications from 2017 to 2022 was performed. Of 218 articles on MRI-derived prostate radiomics, 33 (15.1%) generated models for PCa risk stratification. Prediction of Gleason score (GS), adverse pathology, postsurgical recurrence, and postradiation failure were the primary endpoints in 15 (45.5%), 11 (33.3%), 4 (12.1%), and 3 (9.1%) studies. In predicting GS and adverse pathology, radiomic models differentiated well, with receiver operator characteristic area under the curve (ROC-AUC) values of 0.50–0.92 and 0.60–0.92, respectively. For studies predicting post-treatment recurrence or failure, ROC-AUC for radiomic models ranged from 0.73 to 0.99 in postsurgical and radiation cohorts. Finally, of the 33 studies, 7 (21.2%) included external validation. Overall, most investigations showed good to excellent prediction of GS and adverse pathology with MRI-derived radiomic features. Direct prediction of treatment outcomes, however, is an ongoing investigation. As these studies mature and reach potential for clinical integration, concerted effort to validate these radiomic models must be undertaken.
Collapse
Affiliation(s)
- Linda My Huynh
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 987521 Nebraska Medical Center, Omaha, NE 68198-7521, USA
- Department of Urology, University of California, Orange, CA 92868, USA
| | - Yeagyeong Hwang
- Department of Urology, University of California, Orange, CA 92868, USA
| | - Olivia Taylor
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 987521 Nebraska Medical Center, Omaha, NE 68198-7521, USA
| | - Michael J. Baine
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 987521 Nebraska Medical Center, Omaha, NE 68198-7521, USA
- Correspondence:
| |
Collapse
|
8
|
Chiacchio G, Castellani D, Nedbal C, De Stefano V, Brocca C, Tramanzoli P, Galosi AB, Donalisio da Silva R, Teoh JYC, Tiong HY, Naik N, Somani BK, Merseburger AS, Gauhar V. Radiomics vs radiologist in prostate cancer. Results from a systematic review. World J Urol 2023; 41:709-724. [PMID: 36867239 DOI: 10.1007/s00345-023-04305-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/20/2023] [Indexed: 03/04/2023] Open
Abstract
PURPOSE Radiomics in uro-oncology is a rapidly evolving science proving to be a novel approach for optimizing the analysis of massive data from medical images to provide auxiliary guidance in clinical issues. This scoping review aimed to identify key aspects wherein radiomics can potentially improve the accuracy of diagnosis, staging, and extraprostatic extension in prostate cancer (PCa). METHODS The literature search was performed on June 2022 using PubMed, Embase, and Cochrane Central Controlled Register of Trials. Studies were included if radiomics were compared with radiological reports only. RESULTS Seventeen papers were included. The combination of PIRADS and radiomics score models improves the PIRADS score reporting of 2 and 3 lesions even in the peripheral zone. Multiparametric MRI-based radiomics models suggest that by simply omitting diffusion contrast enhancement imaging in radiomics models can simplify the process of analysis of clinically significant PCa by PIRADS. Radiomics features correlated with the Gleason grade with excellent discriminative ability. Radiomics has higher accuracy in predicting not only the presence but also the side of extraprostatic extension. CONCLUSIONS Radiomics research on PCa mainly uses MRI as an imaging modality and is focused on diagnosis and risk stratification and has the best future possibility of improving PIRADS reporting. Radiomics has established its superiority over radiologist-reported outcomes but the variability has to be taken into consideration before translating it to clinical practice.
Collapse
Affiliation(s)
- Giuseppe Chiacchio
- Urology Unit, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Università Politecnica delle Marche, Via Conca 71, 60126, Ancona, Italy
| | - Daniele Castellani
- Urology Unit, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Università Politecnica delle Marche, Via Conca 71, 60126, Ancona, Italy.
| | - Carlotta Nedbal
- Urology Unit, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Università Politecnica delle Marche, Via Conca 71, 60126, Ancona, Italy
| | - Virgilio De Stefano
- Urology Unit, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Università Politecnica delle Marche, Via Conca 71, 60126, Ancona, Italy
| | - Carlo Brocca
- Urology Unit, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Università Politecnica delle Marche, Via Conca 71, 60126, Ancona, Italy
| | - Pietro Tramanzoli
- Urology Unit, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Università Politecnica delle Marche, Via Conca 71, 60126, Ancona, Italy
| | - Andrea Benedetto Galosi
- Urology Unit, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Università Politecnica delle Marche, Via Conca 71, 60126, Ancona, Italy
| | | | - Jeremy Yuen-Chun Teoh
- Department of Surgery, S.H.Ho Urology Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yee Tiong
- Department of Urology, National University Hospital, Singapore, Singapore
| | - Nithesh Naik
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bhaskar K Somani
- Department of Urology, University Hospitals Southampton, NHS Trust, Southampton, UK
| | - Axel S Merseburger
- Clinic of Urology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Vineet Gauhar
- Department of Urology, Ng Teng Fong General Hospital, Singapore, Singapore
| |
Collapse
|
9
|
Carrera-Escalé L, Benali A, Rathert AC, Martín-Pinardel R, Bernal-Morales C, Alé-Chilet A, Barraso M, Marín-Martinez S, Feu-Basilio S, Rosinés-Fonoll J, Hernandez T, Vilá I, Castro-Dominguez R, Oliva C, Vinagre I, Ortega E, Gimenez M, Vellido A, Romero E, Zarranz-Ventura J. Radiomics-Based Assessment of OCT Angiography Images for Diabetic Retinopathy Diagnosis. OPHTHALMOLOGY SCIENCE 2022; 3:100259. [PMID: 36578904 PMCID: PMC9791596 DOI: 10.1016/j.xops.2022.100259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
Purpose To evaluate the diagnostic accuracy of machine learning (ML) techniques applied to radiomic features extracted from OCT and OCT angiography (OCTA) images for diabetes mellitus (DM), diabetic retinopathy (DR), and referable DR (R-DR) diagnosis. Design Cross-sectional analysis of a retinal image dataset from a previous prospective OCTA study (ClinicalTrials.govNCT03422965). Participants Patients with type 1 DM and controls included in the progenitor study. Methods Radiomic features were extracted from fundus retinographies, OCT, and OCTA images in each study eye. Logistic regression, linear discriminant analysis, support vector classifier (SVC)-linear, SVC-radial basis function, and random forest models were created to evaluate their diagnostic accuracy for DM, DR, and R-DR diagnosis in all image types. Main Outcome Measures Area under the receiver operating characteristic curve (AUC) mean and standard deviation for each ML model and each individual and combined image types. Results A dataset of 726 eyes (439 individuals) were included. For DM diagnosis, the greatest AUC was observed for OCT (0.82, 0.03). For DR detection, the greatest AUC was observed for OCTA (0.77, 0.03), especially in the 3 × 3 mm superficial capillary plexus OCTA scan (0.76, 0.04). For R-DR diagnosis, the greatest AUC was observed for OCTA (0.87, 0.12) and the deep capillary plexus OCTA scan (0.86, 0.08). The addition of clinical variables (age, sex, etc.) improved most models AUC for DM, DR and R-DR diagnosis. The performance of the models was similar in unilateral and bilateral eyes image datasets. Conclusions Radiomics extracted from OCT and OCTA images allow identification of patients with DM, DR, and R-DR using standard ML classifiers. OCT was the best test for DM diagnosis, OCTA for DR and R-DR diagnosis and the addition of clinical variables improved most models. This pioneer study demonstrates that radiomics-based ML techniques applied to OCT and OCTA images may be an option for DR screening in patients with type 1 DM. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Key Words
- AI, artificial intelligence
- AUC, area under the curve
- Artificial intelligence
- DCP, deep capillary plexus
- DM, diabetes mellitus
- DR, diabetic retinopathy
- Diabetic retinopathy
- FR, fundus retinographies
- LDA, linear discriminant analysis
- LR, logistic regression
- ML, machine learning
- Machine learning
- OCT angiography
- OCTA, OCT angiography
- R-DR, referable DR
- RF, random forest
- Radiomics
- SCP, superficial capillary plexus
- SVC, support vector classifier
- rbf, radial basis function
Collapse
Affiliation(s)
- Laura Carrera-Escalé
- Intelligent Data Science and Artificial Intelligence (IDEAI) Research Center,Department of Computer Science, Facultat d’Informàtica de Barcelona (FIB), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Anass Benali
- Intelligent Data Science and Artificial Intelligence (IDEAI) Research Center,Department of Computer Science, Facultat d’Informàtica de Barcelona (FIB), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Ann-Christin Rathert
- Intelligent Data Science and Artificial Intelligence (IDEAI) Research Center,Department of Computer Science, Facultat d’Informàtica de Barcelona (FIB), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Ruben Martín-Pinardel
- Intelligent Data Science and Artificial Intelligence (IDEAI) Research Center,Department of Computer Science, Facultat d’Informàtica de Barcelona (FIB), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | - Anibal Alé-Chilet
- Institut Clínic d´Oftalmología (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marina Barraso
- Institut Clínic d´Oftalmología (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sara Marín-Martinez
- Institut Clínic d´Oftalmología (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Silvia Feu-Basilio
- Institut Clínic d´Oftalmología (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Josep Rosinés-Fonoll
- Institut Clínic d´Oftalmología (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Teresa Hernandez
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain,Institut Clínic d´Oftalmología (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Irene Vilá
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain,Institut Clínic d´Oftalmología (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Cristian Oliva
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain,Institut Clínic d´Oftalmología (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Irene Vinagre
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain,Diabetes Unit, Hospital Clínic de Barcelona, Spain,Institut Clínic de Malalties Digestives i Metaboliques (ICMDM), Hospital Clínic de Barcelona, Spain
| | - Emilio Ortega
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain,Diabetes Unit, Hospital Clínic de Barcelona, Spain,Institut Clínic de Malalties Digestives i Metaboliques (ICMDM), Hospital Clínic de Barcelona, Spain
| | - Marga Gimenez
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain,Diabetes Unit, Hospital Clínic de Barcelona, Spain,Institut Clínic de Malalties Digestives i Metaboliques (ICMDM), Hospital Clínic de Barcelona, Spain
| | - Alfredo Vellido
- Intelligent Data Science and Artificial Intelligence (IDEAI) Research Center,Department of Computer Science, Facultat d’Informàtica de Barcelona (FIB), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Enrique Romero
- Intelligent Data Science and Artificial Intelligence (IDEAI) Research Center,Department of Computer Science, Facultat d’Informàtica de Barcelona (FIB), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Javier Zarranz-Ventura
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain,Institut Clínic d´Oftalmología (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain,Diabetes Unit, Hospital Clínic de Barcelona, Spain,School of Medicine, Universitat de Barcelona, Spain,Correspondence: Javier Zarranz-Ventura, MD, PhD, C/ Sabino Arana 1, Barcelona 08028, Spain.
| |
Collapse
|
10
|
Quantib Prostate Compared to an Expert Radiologist for the Diagnosis of Prostate Cancer on mpMRI: A Single-Center Preliminary Study. Tomography 2022; 8:2010-2019. [PMID: 36006066 PMCID: PMC9415513 DOI: 10.3390/tomography8040168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background: To evaluate the clinical utility of an Artificial Intelligence (AI) radiology solution, Quantib Prostate, for prostate cancer (PCa) lesions detection on multiparametric Magnetic Resonance Images (mpMRI). Methods: Prostate mpMRI exams of 108 patients were retrospectively studied. The diagnostic performance of an expert radiologist (>8 years of experience) and of an inexperienced radiologist aided by Quantib software were compared. Three groups of patients were assessed: patients with positive mpMRI, positive target biopsy, and/or at least one positive random biopsy (group A, 73 patients); patients with positive mpMRI and a negative biopsy (group B, 14 patients), and patients with negative mpMRI who did not undergo biopsy (group-C, 21 patients). Results: In group A, the AI-assisted radiologist found new lesions with positive biopsy correlation, increasing the diagnostic PCa performance when compared with the expert radiologist, reaching an SE of 92.3% and a PPV of 90.1% (vs. 71.7% and 84.4%). In group A, the expert radiologist found 96 lesions on 73 mpMRI exams (17.7% PIRADS3, 56.3% PIRADS4, and 26% PIRADS5). The AI-assisted radiologist found 121 lesions (0.8% PIRADS3, 53.7% PIRADS4, and 45.5% PIRADS5). At biopsy, 33.9% of the lesions were ISUP1, 31.4% were ISUP2, 22% were ISUP3, 10.2% were ISUP4, and 2.5% were ISUP5. In group B, where biopsies were negative, the AI-assisted radiologist excluded three lesions but confirmed all the others. In group-C, the AI-assisted radiologist found 37 new lesions, most of them PIRADS 3, with 32.4% localized in the peripherical zone and 67.6% in the transition zone. Conclusions: Quantib software is a very sensitive tool to use specifically in high-risk patients (high PIRADS and high Gleason score).
Collapse
|
11
|
Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine. Cancers (Basel) 2022; 14:cancers14122860. [PMID: 35740526 PMCID: PMC9220825 DOI: 10.3390/cancers14122860] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recently, radiogenomics has played a significant role and offered a new understanding of cancer’s biology and behavior in response to standard therapy. It also provides a more precise prognosis, investigation, and analysis of the patient’s cancer. Over the years, Artificial Intelligence (AI) has provided a significant strength in radiogenomics. In this paper, we offer computational and oncological prospects of the role of AI in radiogenomics, as well as its offers, achievements, opportunities, and limitations in the current clinical practices. Abstract Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computational as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles.
Collapse
|
12
|
Antunes JT, Ismail M, Hossain I, Wang Z, Prasanna P, Madabhushi A, Tiwari P, Viswanath SE. RADIomic Spatial TexturAl descripTor (RADISTAT): Quantifying spatial organization of imaging heterogeneity associated with tumor response to treatment. IEEE J Biomed Health Inform 2022; 26:2627-2636. [PMID: 35085099 DOI: 10.1109/jbhi.2022.3146778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Localized disease heterogeneity on imaging extracted via radiomics approaches have recently been associated with disease prognosis and treatment response. Traditionally, radiomics analyses leverage texture operators to derive voxel- or region-wise feature values towards quantifying subtle variations in image appearance within a region-of-interest (ROI). With the goal of mining additional voxel-wise texture patterns from radiomic expression maps, we introduce a new RADIomic Spatial TexturAl descripTor (RADISTAT). This was driven by the hypothesis that quantifying spatial organization of texture patterns within an ROI could allow for better capturing interactions between different tissue classes present in a given region; thus enabling more accurate characterization of disease or response phenotypes. RADISTAT involves: (a) robustly identifying sub-compartments of low, intermediate, and high radiomic expression (i.e. heterogeneity) in a feature map and (b) quantifying spatial organization of sub-compartments via graph interactions. RADISTAT was evaluated in two clinically challenging problems: (1) discriminating nodal/distant metastasis from metastasis-free rectal cancer patients on post-chemoradiation T2w MRI, and (2) distinguishing tumor progression from pseudo-progression in glioblastoma multiforme using post-chemoradiation T1w MRI. Across over 800 experiments, RADISTAT yielded a consistent discriminatory signature for tumor progression (GBM) and disease metastasis (RCa); where its sub-compartments were associated with pathologic tissue types (fibrosis or tumor, determined via fusion of MRI and pathology). In a multi-institutional setting for both clinical problems, RADISTAT resulted in higher classifier performance (11% improvement in AUC, on average) compared to radiomic descriptors. Furthermore, combining RADISTAT with radiomic descriptors resulted in significantly improved performance compared to using radiomic descriptors alone.
Collapse
|
13
|
Bertelli E, Mercatelli L, Marzi C, Pachetti E, Baccini M, Barucci A, Colantonio S, Gherardini L, Lattavo L, Pascali MA, Agostini S, Miele V. Machine and Deep Learning Prediction Of Prostate Cancer Aggressiveness Using Multiparametric MRI. Front Oncol 2022; 11:802964. [PMID: 35096605 PMCID: PMC8792745 DOI: 10.3389/fonc.2021.802964] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most frequent male malignancy and the assessment of PCa aggressiveness, for which a biopsy is required, is fundamental for patient management. Currently, multiparametric (mp) MRI is strongly recommended before biopsy. Quantitative assessment of mpMRI might provide the radiologist with an objective and noninvasive tool for supporting the decision-making in clinical practice and decreasing intra- and inter-reader variability. In this view, high dimensional radiomics features and Machine Learning (ML) techniques, along with Deep Learning (DL) methods working on raw images directly, could assist the radiologist in the clinical workflow. The aim of this study was to develop and validate ML/DL frameworks on mpMRI data to characterize PCas according to their aggressiveness. We optimized several ML/DL frameworks on T2w, ADC and T2w+ADC data, using a patient-based nested validation scheme. The dataset was composed of 112 patients (132 peripheral lesions with Prostate Imaging Reporting and Data System (PI-RADS) score ≥ 3) acquired following both PI-RADS 2.0 and 2.1 guidelines. Firstly, ML/DL frameworks trained and validated on PI-RADS 2.0 data were tested on both PI-RADS 2.0 and 2.1 data. Then, we trained, validated and tested ML/DL frameworks on a multi PI-RADS dataset. We reported the performances in terms of Area Under the Receiver Operating curve (AUROC), specificity and sensitivity. The ML/DL frameworks trained on T2w data achieved the overall best performance. Notably, ML and DL frameworks trained and validated on PI-RADS 2.0 data obtained median AUROC values equal to 0.750 and 0.875, respectively, on unseen PI-RADS 2.0 test set. Similarly, ML/DL frameworks trained and validated on multi PI-RADS T2w data showed median AUROC values equal to 0.795 and 0.750, respectively, on unseen multi PI-RADS test set. Conversely, all the ML/DL frameworks trained and validated on PI-RADS 2.0 data, achieved AUROC values no better than the chance level when tested on PI-RADS 2.1 data. Both ML/DL techniques applied on mpMRI seem to be a valid aid in predicting PCa aggressiveness. In particular, ML/DL frameworks fed with T2w images data (objective, fast and non-invasive) show good performances and might support decision-making in patient diagnostic and therapeutic management, reducing intra- and inter-reader variability.
Collapse
Affiliation(s)
- Elena Bertelli
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Laura Mercatelli
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Chiara Marzi
- “Nello Carrara” Institute of Applied Physics (IFAC), National Research Council of Italy (CNR), Sesto Fiorentino, Italy
| | - Eva Pachetti
- “Alessandro Faedo” Institute of Information Science and Technologies (ISTI), National Research Council of Italy (CNR), Pisa, Italy
- Department of Information Engineering (DII), University of Pisa, Pisa, Italy
| | - Michela Baccini
- “Giuseppe Parenti” Department of Statistics, Computer Science, Applications(DiSIA), University of Florence, Florence, Italy
- Florence Center for Data Science, University of Florence, Florence, Italy
| | - Andrea Barucci
- “Nello Carrara” Institute of Applied Physics (IFAC), National Research Council of Italy (CNR), Sesto Fiorentino, Italy
| | - Sara Colantonio
- “Alessandro Faedo” Institute of Information Science and Technologies (ISTI), National Research Council of Italy (CNR), Pisa, Italy
| | - Luca Gherardini
- “Giuseppe Parenti” Department of Statistics, Computer Science, Applications(DiSIA), University of Florence, Florence, Italy
| | - Lorenzo Lattavo
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Maria Antonietta Pascali
- “Alessandro Faedo” Institute of Information Science and Technologies (ISTI), National Research Council of Italy (CNR), Pisa, Italy
| | - Simone Agostini
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Florence, Italy
| |
Collapse
|
14
|
Ferro M, de Cobelli O, Musi G, del Giudice F, Carrieri G, Busetto GM, Falagario UG, Sciarra A, Maggi M, Crocetto F, Barone B, Caputo VF, Marchioni M, Lucarelli G, Imbimbo C, Mistretta FA, Luzzago S, Vartolomei MD, Cormio L, Autorino R, Tătaru OS. Radiomics in prostate cancer: an up-to-date review. Ther Adv Urol 2022; 14:17562872221109020. [PMID: 35814914 PMCID: PMC9260602 DOI: 10.1177/17562872221109020] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most common worldwide diagnosed malignancy in male population. The diagnosis, the identification of aggressive disease, and the post-treatment follow-up needs a more comprehensive and holistic approach. Radiomics is the extraction and interpretation of images phenotypes in a quantitative manner. Radiomics may give an advantage through advancements in imaging modalities and through the potential power of artificial intelligence techniques by translating those features into clinical outcome prediction. This article gives an overview on the current evidence of methodology and reviews the available literature on radiomics in PCa patients, highlighting its potential for personalized treatment and future applications.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy, via Ripamonti 435 Milano, Italy
| | - Ottavio de Cobelli
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gennaro Musi
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Francesco del Giudice
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Carrieri
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | | | - Alessandro Sciarra
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Martina Maggi
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Vincenzo Francesco Caputo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, Chieti, Italy; Urology Unit, ‘SS. Annunziata’ Hospital, Chieti, Italy
- Department of Urology, ASL Abruzzo 2, Chieti, Italy
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation, Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Ciro Imbimbo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Francesco Alessandro Mistretta
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Stefano Luzzago
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Mihai Dorin Vartolomei
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, Târgu Mures, Romania
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Luigi Cormio
- Urology and Renal Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Urology Unit, Bonomo Teaching Hospital, Foggia, Italy
| | | | - Octavian Sabin Tătaru
- Institution Organizing University Doctoral Studies, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, Târgu Mures, Romania
| |
Collapse
|
15
|
Selective identification and localization of indolent and aggressive prostate cancers via CorrSigNIA: an MRI-pathology correlation and deep learning framework. Med Image Anal 2022; 75:102288. [PMID: 34784540 PMCID: PMC8678366 DOI: 10.1016/j.media.2021.102288] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 09/02/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023]
Abstract
Automated methods for detecting prostate cancer and distinguishing indolent from aggressive disease on Magnetic Resonance Imaging (MRI) could assist in early diagnosis and treatment planning. Existing automated methods of prostate cancer detection mostly rely on ground truth labels with limited accuracy, ignore disease pathology characteristics observed on resected tissue, and cannot selectively identify aggressive (Gleason Pattern≥4) and indolent (Gleason Pattern=3) cancers when they co-exist in mixed lesions. In this paper, we present a radiology-pathology fusion approach, CorrSigNIA, for the selective identification and localization of indolent and aggressive prostate cancer on MRI. CorrSigNIA uses registered MRI and whole-mount histopathology images from radical prostatectomy patients to derive accurate ground truth labels and learn correlated features between radiology and pathology images. These correlated features are then used in a convolutional neural network architecture to detect and localize normal tissue, indolent cancer, and aggressive cancer on prostate MRI. CorrSigNIA was trained and validated on a dataset of 98 men, including 74 men that underwent radical prostatectomy and 24 men with normal prostate MRI. CorrSigNIA was tested on three independent test sets including 55 men that underwent radical prostatectomy, 275 men that underwent targeted biopsies, and 15 men with normal prostate MRI. CorrSigNIA achieved an accuracy of 80% in distinguishing between men with and without cancer, a lesion-level ROC-AUC of 0.81±0.31 in detecting cancers in both radical prostatectomy and biopsy cohort patients, and lesion-levels ROC-AUCs of 0.82±0.31 and 0.86±0.26 in detecting clinically significant cancers in radical prostatectomy and biopsy cohort patients respectively. CorrSigNIA consistently outperformed other methods across different evaluation metrics and cohorts. In clinical settings, CorrSigNIA may be used in prostate cancer detection as well as in selective identification of indolent and aggressive components of prostate cancer, thereby improving prostate cancer care by helping guide targeted biopsies, reducing unnecessary biopsies, and selecting and planning treatment.
Collapse
|
16
|
Kalra G, Kar SS, Sevgi DD, Madabhushi A, Srivastava SK, Ehlers JP. Quantitative Imaging Biomarkers in Age-Related Macular Degeneration and Diabetic Eye Disease: A Step Closer to Precision Medicine. J Pers Med 2021; 11:1161. [PMID: 34834513 PMCID: PMC8622761 DOI: 10.3390/jpm11111161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 01/21/2023] Open
Abstract
The management of retinal diseases relies heavily on digital imaging data, including optical coherence tomography (OCT) and fluorescein angiography (FA). Targeted feature extraction and the objective quantification of features provide important opportunities in biomarker discovery, disease burden assessment, and predicting treatment response. Additional important advantages include increased objectivity in interpretation, longitudinal tracking, and ability to incorporate computational models to create automated diagnostic and clinical decision support systems. Advances in computational technology, including deep learning and radiomics, open new doors for developing an imaging phenotype that may provide in-depth personalized disease characterization and enhance opportunities in precision medicine. In this review, we summarize current quantitative and radiomic imaging biomarkers described in the literature for age-related macular degeneration and diabetic eye disease using imaging modalities such as OCT, FA, and OCT angiography (OCTA). Various approaches used to identify and extract these biomarkers that utilize artificial intelligence and deep learning are also summarized in this review. These quantifiable biomarkers and automated approaches have unleashed new frontiers of personalized medicine where treatments are tailored, based on patient-specific longitudinally trackable biomarkers, and response monitoring can be achieved with a high degree of accuracy.
Collapse
Affiliation(s)
- Gagan Kalra
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (G.K.); (D.D.S.); (S.K.S.)
- Tony and Leona Campane Center for Excellence in Image-Guided Surgery & Advanced, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Sudeshna Sil Kar
- Tony and Leona Campane Center for Excellence in Image-Guided Surgery & Advanced, Cleveland Clinic, Cleveland, OH 44195, USA;
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Duriye Damla Sevgi
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (G.K.); (D.D.S.); (S.K.S.)
- Tony and Leona Campane Center for Excellence in Image-Guided Surgery & Advanced, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
- Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, OH 44106, USA
| | - Sunil K. Srivastava
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (G.K.); (D.D.S.); (S.K.S.)
- Tony and Leona Campane Center for Excellence in Image-Guided Surgery & Advanced, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Justis P. Ehlers
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (G.K.); (D.D.S.); (S.K.S.)
- Tony and Leona Campane Center for Excellence in Image-Guided Surgery & Advanced, Cleveland Clinic, Cleveland, OH 44195, USA;
| |
Collapse
|
17
|
Lu C, Shiradkar R, Liu Z. Integrating pathomics with radiomics and genomics for cancer prognosis: A brief review. Chin J Cancer Res 2021; 33:563-573. [PMID: 34815630 PMCID: PMC8580801 DOI: 10.21147/j.issn.1000-9604.2021.05.03] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
In the last decade, the focus of computational pathology research community has shifted from replicating the pathological examination for diagnosis done by pathologists to unlocking and discovering "sub-visual" prognostic image cues from the histopathological image. While we are getting more knowledge and experience in digital pathology, the emerging goal is to integrate other-omics or modalities that will contribute for building a better prognostic assay. In this paper, we provide a brief review of representative works that focus on integrating pathomics with radiomics and genomics for cancer prognosis. It includes: correlation of pathomics and genomics; fusion of pathomics and genomics; fusion of pathomics and radiomics. We also present challenges, potential opportunities, and avenues for future work.
Collapse
Affiliation(s)
- Cheng Lu
- Biomedical Engineering Department, Case Western Reserve University, Cleveland 44106, OH, USA
| | - Rakesh Shiradkar
- Biomedical Engineering Department, Case Western Reserve University, Cleveland 44106, OH, USA
| | - Zaiyi Liu
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510080, China
| |
Collapse
|
18
|
Machine Learning: Applications and Advanced Progresses of Radiomics in Endocrine Neoplasms. JOURNAL OF ONCOLOGY 2021; 2021:8615450. [PMID: 34671399 PMCID: PMC8523238 DOI: 10.1155/2021/8615450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Endocrine neoplasms remain a great threat to human health. It is extremely important to make a clear diagnosis and timely treatment of endocrine tumors. Machine learning includes radiomics, which has long been utilized in clinical cancer research. Radiomics refers to the extraction of valuable information by analyzing a large amount of standard data with high-throughput medical images mainly including computed tomography, positron emission tomography, magnetic resonance imaging, and ultrasound. With the quantitative imaging analysis and model building, radiomics can reflect specific underlying characteristics of a disease that otherwise could not be evaluated visually. More and more promising results of radiomics in oncological practice have been seen in recent years. Radiomics may have the potential to supplement traditional imaging analysis and assist in providing precision medicine for patients. Radiomics had developed rapidly in endocrine neoplasms practice in the past decade. In this review, we would introduce the general workflow of radiomics and summarize the applications and developments of radiomics in endocrine neoplasms in recent years. The limitations of current radiomic research studies and future development directions would also be discussed.
Collapse
|
19
|
Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization. Int J Mol Sci 2021; 22:ijms22189971. [PMID: 34576134 PMCID: PMC8465891 DOI: 10.3390/ijms22189971] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Radiomics and genomics represent two of the most promising fields of cancer research, designed to improve the risk stratification and disease management of patients with prostate cancer (PCa). Radiomics involves a conversion of imaging derivate quantitative features using manual or automated algorithms, enhancing existing data through mathematical analysis. This could increase the clinical value in PCa management. To extract features from imaging methods such as magnetic resonance imaging (MRI), the empiric nature of the analysis using machine learning and artificial intelligence could help make the best clinical decisions. Genomics information can be explained or decoded by radiomics. The development of methodologies can create more-efficient predictive models and can better characterize the molecular features of PCa. Additionally, the identification of new imaging biomarkers can overcome the known heterogeneity of PCa, by non-invasive radiological assessment of the whole specific organ. In the future, the validation of recent findings, in large, randomized cohorts of PCa patients, can establish the role of radiogenomics. Briefly, we aimed to review the current literature of highly quantitative and qualitative results from well-designed studies for the diagnoses, treatment, and follow-up of prostate cancer, based on radiomics, genomics and radiogenomics research.
Collapse
|
20
|
Fournier L, Costaridou L, Bidaut L, Michoux N, Lecouvet FE, de Geus-Oei LF, Boellaard R, Oprea-Lager DE, Obuchowski NA, Caroli A, Kunz WG, Oei EH, O'Connor JPB, Mayerhoefer ME, Franca M, Alberich-Bayarri A, Deroose CM, Loewe C, Manniesing R, Caramella C, Lopci E, Lassau N, Persson A, Achten R, Rosendahl K, Clement O, Kotter E, Golay X, Smits M, Dewey M, Sullivan DC, van der Lugt A, deSouza NM, European Society Of Radiology. Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers. Eur Radiol 2021; 31:6001-6012. [PMID: 33492473 PMCID: PMC8270834 DOI: 10.1007/s00330-020-07598-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials. KEY POINTS: • Data-driven processes like radiomics risk false discoveries due to high-dimensionality of the dataset compared to sample size, making adequate diversity of the data, cross-validation and external validation essential to mitigate the risks of spurious associations and overfitting. • Use of radiomic signatures within clinical trials requires multistep standardisation of image acquisition, image analysis and data mining processes. • Biological correlation may be established after clinical validation but is not mandatory.
Collapse
Affiliation(s)
- Laure Fournier
- PARCC, INSERM, Radiology Department, AP-HP, Hopital europeen Georges Pompidou, Université de Paris, F-75015, Paris, France
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
| | - Lena Costaridou
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- School of Medicine, University of Patras, University Campus, Rio, 26 500, Patras, Greece
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, LN6 7TS, UK
| | - Nicolas Michoux
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), B-1200, Brussels, Belgium
| | - Frederic E Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), B-1200, Brussels, Belgium
| | - Lioe-Fee de Geus-Oei
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
| | - Ronald Boellaard
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers (VU University), Amsterdam, The Netherlands
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
| | - Daniela E Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers (VU University), Amsterdam, The Netherlands
| | - Nancy A Obuchowski
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Caroli
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Wolfgang G Kunz
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Edwin H Oei
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - James P B O'Connor
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Marius E Mayerhoefer
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Manuela Franca
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, Centro Hospitalar Universitário do Porto, Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, Porto, Portugal
| | - Angel Alberich-Bayarri
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers in Medicine (QUIBIM), Valencia, Spain
| | - Christophe M Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christian Loewe
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Division of Cardiovascular and Interventional Radiology, Dept. for Bioimaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rashindra Manniesing
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Caroline Caramella
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Radiology Department, Hôpital Marie Lannelongue, Institut d'Oncologie Thoracique, Université Paris-Saclay, Le Plessis-Robinson, France
| | - Egesta Lopci
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, Humanitas Clinical and Research Hospital - IRCCS, Rozzano, MI, Italy
| | - Nathalie Lassau
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
- Imaging Department, Gustave Roussy Cancer Campus Grand, Paris, UMR 1281, INSERM, CNRS, CEA, Universite Paris-Saclay, Saint-Aubin, France
| | - Anders Persson
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, and Department of Health, Medicine and Caring Sciences, Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Rik Achten
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology and Medical Imaging, Ghent University Hospital, Gent, Belgium
| | - Karen Rosendahl
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| | - Olivier Clement
- PARCC, INSERM, Radiology Department, AP-HP, Hopital europeen Georges Pompidou, Université de Paris, F-75015, Paris, France
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
| | - Elmar Kotter
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
| | - Xavier Golay
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
- Queen Square Institute of Neurology, University College London, London, UK
| | - Marion Smits
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marc Dewey
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel C Sullivan
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA
- Dept. of Radiology, Duke University, 311 Research Dr, Durham, NC, 27710, USA
| | - Aad van der Lugt
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Nandita M deSouza
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria.
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium.
- Quantitative Imaging Biomarkers Alliance, Radiological Society of North America, Oak Brook, IL, USA.
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK.
| | | |
Collapse
|
21
|
Sil Kar S, Sevgi DD, Dong V, Srivastava SK, Madabhushi A, Ehlers JP. Multi-Compartment Spatially-Derived Radiomics From Optical Coherence Tomography Predict Anti-VEGF Treatment Durability in Macular Edema Secondary to Retinal Vascular Disease: Preliminary Findings. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2021; 9:1000113. [PMID: 34350068 PMCID: PMC8328398 DOI: 10.1109/jtehm.2021.3096378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/06/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Diabetic macular edema (DME) and retinal vein occlusion (RVO) are the leading causes of visual impairments across the world. Vascular endothelial growth factor (VEGF) stimulates breakdown of blood-retinal barrier that causes accumulation of fluid within macula. Anti-VEGF therapy is the first-line treatment for both the diseases; however, the degree of response varies for individual patients. The main objective of this work was to identify the (i) texture-based radiomics features within individual fluid and retinal tissue compartments of baseline spectral-domain optical coherence tomography (SD-OCT) images and (ii) the specific spatial compartments that contribute most pertinent features for predicting therapeutic response. METHODS A total of 962 texture-based radiomics features were extracted from each of the fluid and retinal tissue compartments of OCT images, obtained from the PERMEATE study. Top-performing features selected from the consensus of different feature selection methods were evaluated in conjunction with four different machine learning classifiers: Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Random Forest (RF), and Support Vector Machine (SVM) in a cross-validated approach to distinguish eyes tolerating extended interval dosing (non-rebounders) and those requiring more frequent dosing (rebounders). RESULTS Combination of fluid and retinal tissue features yielded a cross-validated area under receiver operating characteristic curve (AUC) of 0.78±0.08 in distinguishing rebounders from non-rebounders. CONCLUSIONS This study revealed that the texture-based radiomics features pertaining to IRF subcompartment were most discriminating between rebounders and non-rebounders to anti-VEGF therapy. Clinical Impact: With further validation, OCT-based imaging biomarkers could be used for treatment management of DME patients.
Collapse
Affiliation(s)
- Sudeshna Sil Kar
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA
| | - Duriye Damla Sevgi
- The Tony and Leona Campane Center for Excellence in Image-Guided Surgery and Advancing Imaging ResearchCleveland Clinic Cole Eye InstituteClevelandOH44106USA
| | - Vincent Dong
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA
| | - Sunil K. Srivastava
- The Tony and Leona Campane Center for Excellence in Image-Guided Surgery and Advancing Imaging ResearchCleveland Clinic Cole Eye InstituteClevelandOH44106USA
| | - Anant Madabhushi
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA
| | - Justis P. Ehlers
- The Tony and Leona Campane Center for Excellence in Image-Guided Surgery and Advancing Imaging ResearchCleveland Clinic Cole Eye InstituteClevelandOH44106USA
| |
Collapse
|
22
|
Spohn SK, Bettermann AS, Bamberg F, Benndorf M, Mix M, Nicolay NH, Fechter T, Hölscher T, Grosu R, Chiti A, Grosu AL, Zamboglou C. Radiomics in prostate cancer imaging for a personalized treatment approach - current aspects of methodology and a systematic review on validated studies. Theranostics 2021; 11:8027-8042. [PMID: 34335978 PMCID: PMC8315055 DOI: 10.7150/thno.61207] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed malignancies of men in the world. Due to a variety of treatment options in different risk groups, proper diagnostic and risk stratification is pivotal in treatment of PCa. The development of precise medical imaging procedures simultaneously to improvements in big data analysis has led to the establishment of radiomics - a computer-based method of extracting and analyzing image features quantitatively. This approach bears the potential to assess and improve PCa detection, tissue characterization and clinical outcome prediction. This article gives an overview on the current aspects of methodology and systematically reviews available literature on radiomics in PCa patients, showing its potential for personalized therapy approaches. The qualitative synthesis includes all imaging modalities and focuses on validated studies, putting forward future directions.
Collapse
Affiliation(s)
- Simon K.B. Spohn
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Germany
| | - Alisa S. Bettermann
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Fabian Bamberg
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Matthias Benndorf
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Nils H. Nicolay
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
| | - Tobias Fechter
- Department of Radiation Oncology - Division of Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Tobias Hölscher
- Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Radu Grosu
- Institute of Computer Engineering, Vienne University of Technology, Vienna, Austria
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Anca L. Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Germany
- German Oncology Center, European University of Cyprus, Limassol, Cyprus
| |
Collapse
|
23
|
He D, Wang X, Fu C, Wei X, Bao J, Ji X, Bai H, Xia W, Gao X, Huang Y, Hou J. MRI-based radiomics models to assess prostate cancer, extracapsular extension and positive surgical margins. Cancer Imaging 2021; 21:46. [PMID: 34225808 PMCID: PMC8259026 DOI: 10.1186/s40644-021-00414-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/10/2021] [Indexed: 01/01/2023] Open
Abstract
Purpose To investigate the performance of magnetic resonance imaging (MRI)-based radiomics models for benign and malignant prostate lesion discrimination and extracapsular extension (ECE) and positive surgical margins (PSM) prediction. Methods and materials In total, 459 patients who underwent multiparametric MRI (mpMRI) before prostate biopsy were included. Radiomic features were extracted from both T2-weighted imaging (T2WI) and the apparent diffusion coefficient (ADC). Patients were divided into different training sets and testing sets for different targets according to a ratio of 7:3. Radiomics signatures were built using radiomic features on the training set, and integrated models were built by adding clinical characteristics. The areas under the receiver operating characteristic curves (AUCs) were calculated to assess the classification performance on the testing sets. Results The radiomics signatures for benign and malignant lesion discrimination achieved AUCs of 0.775 (T2WI), 0.863 (ADC) and 0.855 (ADC + T2WI). The corresponding integrated models improved the AUC to 0.851/0.912/0.905, respectively. The radiomics signatures for ECE achieved the highest AUC of 0.625 (ADC), and the corresponding integrated model achieved the highest AUC (0.728). The radiomics signatures for PSM prediction achieved AUCs of 0.614 (T2WI) and 0.733 (ADC). The corresponding integrated models reached AUCs of 0.680 and 0.766, respectively. Conclusions The MRI-based radiomics models, which took advantage of radiomic features on ADC and T2WI scans, showed good performance in discriminating benign and malignant prostate lesions and predicting ECE and PSM. Combining radiomics signatures and clinical factors enhanced the performance of the models, which may contribute to clinical diagnosis and treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s40644-021-00414-6.
Collapse
Affiliation(s)
- Dong He
- Department of Urology, The First Affiliated Hospital of SooChow University, No.188, Shizi St, Canglang District, 215006, Suzhou, Jiangsu, China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of SooChow University, No.188, Shizi St, Canglang District, 215006, Suzhou, Jiangsu, China
| | - Chenchao Fu
- Department of Urology, The First Affiliated Hospital of SooChow University, No.188, Shizi St, Canglang District, 215006, Suzhou, Jiangsu, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of SooChow University, No.188, Shizi St, Canglang District, 215006, Suzhou, Jiangsu, China
| | - Jie Bao
- Department of Radiology, The First Affiliated Hospital of SooChow University, No.188, Shizi St, Canglang District, 215006, Suzhou, Jiangsu, China
| | - Xuefu Ji
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou New District, 215163, Jiangsu, China.,The School of Electro-Optical Engineering, Changchun University of Science and Technology, 130013, Changchun, China
| | - Honglin Bai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou New District, 215163, Jiangsu, China
| | - Wei Xia
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou New District, 215163, Jiangsu, China
| | - Xin Gao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou New District, 215163, Jiangsu, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of SooChow University, No.188, Shizi St, Canglang District, 215006, Suzhou, Jiangsu, China.
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of SooChow University, No.188, Shizi St, Canglang District, 215006, Suzhou, Jiangsu, China. .,Department of Urology, Dushu Lake Hospital affiliated to SooChow University, No.9, Chongwen Road, Suzhou Industrial Park District, Suzhou, Jiangsu, 215000, China.
| |
Collapse
|
24
|
Singh D, Kumar V, Das CJ, Singh A, Mehndiratta A. Characterisation of prostate cancer using texture analysis for diagnostic and prognostic monitoring. NMR IN BIOMEDICINE 2021; 34:e4495. [PMID: 33638244 DOI: 10.1002/nbm.4495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Automated classification of significant prostate cancer (PCa) using MRI plays a potential role in assisting in clinical decision-making. Multiparametric MRI using a machine-aided approach is a better step to improve the overall accuracy of diagnosis of PCa. The objective of this study was to develop and validate a framework for differentiating Prostate Imaging-Reporting and Data System version 2 (PI-RADS v2) grades (grade 2 to grade 5) of PCa using texture features and machine learning (ML) methods with diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC). The study cohort included an MRI dataset of 59 patients with clinically proven PCa. Regions of interest (ROIs) for a total of 435 lesions were delineated from the segmented peripheral zones of DWI and ADC. Six texture methods comprising 98 texture features in total (49 each of DWI and ADC) were extracted from lesion ROIs. Random forest (RF) and correlation-based feature selection methods were applied on feature vectors to select the best features for classification. Two ML classifiers, support vector machine (SVM) and K-nearest neighbour, were used and validated by 10-fold cross-validation. The proposed framework achieved high diagnostic performance with a sensitivity of 85.25% ± 3.84%, specificity of 95.71% ± 1.96%, accuracy of 84.90% ± 3.37% and area under the receiver-operating characteristic curve of 0.98 for PI-RADS v2 grades (2 to 5) classification using the RF feature selection method and Gaussian SVM classifier with combined features of DWI + ADC. The proposed computer-assisted framework can distinguish between PCa lesions with different aggressiveness based on PI-RADS v2 standards using texture analysis to improve the efficiency of PCa diagnostic performance.
Collapse
Affiliation(s)
- Dharmesh Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Virendra Kumar
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| | - Chandan J Das
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Mehndiratta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Chaunzwa TL, Hosny A, Xu Y, Shafer A, Diao N, Lanuti M, Christiani DC, Mak RH, Aerts HJWL. Deep learning classification of lung cancer histology using CT images. Sci Rep 2021; 11:5471. [PMID: 33727623 PMCID: PMC7943565 DOI: 10.1038/s41598-021-84630-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor histology is an important predictor of therapeutic response and outcomes in lung cancer. Tissue sampling for pathologist review is the most reliable method for histology classification, however, recent advances in deep learning for medical image analysis allude to the utility of radiologic data in further describing disease characteristics and for risk stratification. In this study, we propose a radiomics approach to predicting non-small cell lung cancer (NSCLC) tumor histology from non-invasive standard-of-care computed tomography (CT) data. We trained and validated convolutional neural networks (CNNs) on a dataset comprising 311 early-stage NSCLC patients receiving surgical treatment at Massachusetts General Hospital (MGH), with a focus on the two most common histological types: adenocarcinoma (ADC) and Squamous Cell Carcinoma (SCC). The CNNs were able to predict tumor histology with an AUC of 0.71(p = 0.018). We also found that using machine learning classifiers such as k-nearest neighbors (kNN) and support vector machine (SVM) on CNN-derived quantitative radiomics features yielded comparable discriminative performance, with AUC of up to 0.71 (p = 0.017). Our best performing CNN functioned as a robust probabilistic classifier in heterogeneous test sets, with qualitatively interpretable visual explanations to its predictions. Deep learning based radiomics can identify histological phenotypes in lung cancer. It has the potential to augment existing approaches and serve as a corrective aid for diagnosticians.
Collapse
Affiliation(s)
- Tafadzwa L. Chaunzwa
- grid.38142.3c000000041936754XArtificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA USA ,grid.62560.370000 0004 0378 8294Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women’s Hospital, Boston, MA USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Chevy Chase, MD USA
| | - Ahmed Hosny
- grid.38142.3c000000041936754XArtificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA USA ,grid.62560.370000 0004 0378 8294Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women’s Hospital, Boston, MA USA
| | - Yiwen Xu
- grid.38142.3c000000041936754XArtificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA USA ,grid.62560.370000 0004 0378 8294Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women’s Hospital, Boston, MA USA
| | - Andrea Shafer
- grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA USA
| | - Nancy Diao
- grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA USA
| | - Michael Lanuti
- grid.32224.350000 0004 0386 9924Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA USA
| | - David C. Christiani
- grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA USA ,grid.32224.350000 0004 0386 9924Department of Medicine, Massachusetts General Hospital, Boston, MA USA
| | - Raymond H. Mak
- grid.38142.3c000000041936754XArtificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA USA ,grid.62560.370000 0004 0378 8294Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women’s Hospital, Boston, MA USA
| | - Hugo J. W. L. Aerts
- grid.38142.3c000000041936754XArtificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA USA ,grid.62560.370000 0004 0378 8294Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women’s Hospital, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Radiology, Dana Farber Cancer Institute and Brigham and Women’s Hospital, Boston, MA USA ,grid.5012.60000 0001 0481 6099Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
26
|
Liu JTC, Glaser AK, Bera K, True LD, Reder NP, Eliceiri KW, Madabhushi A. Harnessing non-destructive 3D pathology. Nat Biomed Eng 2021; 5:203-218. [PMID: 33589781 PMCID: PMC8118147 DOI: 10.1038/s41551-020-00681-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
High-throughput methods for slide-free three-dimensional (3D) pathological analyses of whole biopsies and surgical specimens offer the promise of modernizing traditional histology workflows and delivering improvements in diagnostic performance. Advanced optical methods now enable the interrogation of orders of magnitude more tissue than previously possible, where volumetric imaging allows for enhanced quantitative analyses of cell distributions and tissue structures that are prognostic and predictive. Non-destructive imaging processes can simplify laboratory workflows, potentially reducing costs, and can ensure that samples are available for subsequent molecular assays. However, the large size of the feature-rich datasets that they generate poses challenges for data management and computer-aided analysis. In this Perspective, we provide an overview of the imaging technologies that enable 3D pathology, and the computational tools-machine learning, in particular-for image processing and interpretation. We also discuss the integration of various other diagnostic modalities with 3D pathology, along with the challenges and opportunities for clinical adoption and regulatory approval.
Collapse
Affiliation(s)
- Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - Adam K Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Lawrence D True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Nicholas P Reder
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kevin W Eliceiri
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, OH, USA.
| |
Collapse
|
27
|
A Multi-Center, Multi-Vendor Study to Evaluate the Generalizability of a Radiomics Model for Classifying Prostate cancer: High Grade vs. Low Grade. Diagnostics (Basel) 2021; 11:diagnostics11020369. [PMID: 33671533 PMCID: PMC7926758 DOI: 10.3390/diagnostics11020369] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022] Open
Abstract
Radiomics applied in MRI has shown promising results in classifying prostate cancer lesions. However, many papers describe single-center studies without external validation. The issues of using radiomics models on unseen data have not yet been sufficiently addressed. The aim of this study is to evaluate the generalizability of radiomics models for prostate cancer classification and to compare the performance of these models to the performance of radiologists. Multiparametric MRI, photographs and histology of radical prostatectomy specimens, and pathology reports of 107 patients were obtained from three healthcare centers in the Netherlands. By spatially correlating the MRI with histology, 204 lesions were identified. For each lesion, radiomics features were extracted from the MRI data. Radiomics models for discriminating high-grade (Gleason score ≥ 7) versus low-grade lesions were automatically generated using open-source machine learning software. The performance was tested both in a single-center setting through cross-validation and in a multi-center setting using the two unseen datasets as external validation. For comparison with clinical practice, a multi-center classifier was tested and compared with the Prostate Imaging Reporting and Data System version 2 (PIRADS v2) scoring performed by two expert radiologists. The three single-center models obtained a mean AUC of 0.75, which decreased to 0.54 when the model was applied to the external data, the radiologists obtained a mean AUC of 0.46. In the multi-center setting, the radiomics model obtained a mean AUC of 0.75 while the radiologists obtained a mean AUC of 0.47 on the same subset. While radiomics models have a decent performance when tested on data from the same center(s), they may show a significant drop in performance when applied to external data. On a multi-center dataset our radiomics model outperformed the radiologists, and thus, may represent a more accurate alternative for malignancy prediction.
Collapse
|
28
|
Cutaia G, La Tona G, Comelli A, Vernuccio F, Agnello F, Gagliardo C, Salvaggio L, Quartuccio N, Sturiale L, Stefano A, Calamia M, Arnone G, Midiri M, Salvaggio G. Radiomics and Prostate MRI: Current Role and Future Applications. J Imaging 2021; 7:34. [PMID: 34460633 PMCID: PMC8321264 DOI: 10.3390/jimaging7020034] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Multiparametric prostate magnetic resonance imaging (mpMRI) is widely used as a triage test for men at a risk of prostate cancer. However, the traditional role of mpMRI was confined to prostate cancer staging. Radiomics is the quantitative extraction and analysis of minable data from medical images; it is emerging as a promising tool to detect and categorize prostate lesions. In this paper we review the role of radiomics applied to prostate mpMRI in detection and localization of prostate cancer, prediction of Gleason score and PI-RADS classification, prediction of extracapsular extension and of biochemical recurrence. We also provide a future perspective of artificial intelligence (machine learning and deep learning) applied to the field of prostate cancer.
Collapse
Affiliation(s)
- Giuseppe Cutaia
- Section of Radiology, BiND, University Hospital “Paolo Giaccone”, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (G.C.); (G.L.T.); (F.V.); (F.A.); (C.G.); (M.C.); (M.M.); (G.S.)
| | - Giuseppe La Tona
- Section of Radiology, BiND, University Hospital “Paolo Giaccone”, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (G.C.); (G.L.T.); (F.V.); (F.A.); (C.G.); (M.C.); (M.M.); (G.S.)
| | - Albert Comelli
- Ri.Med Foundation, Via Bandiera 11, 90133 Palermo, Italy;
| | - Federica Vernuccio
- Section of Radiology, BiND, University Hospital “Paolo Giaccone”, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (G.C.); (G.L.T.); (F.V.); (F.A.); (C.G.); (M.C.); (M.M.); (G.S.)
| | - Francesco Agnello
- Section of Radiology, BiND, University Hospital “Paolo Giaccone”, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (G.C.); (G.L.T.); (F.V.); (F.A.); (C.G.); (M.C.); (M.M.); (G.S.)
| | - Cesare Gagliardo
- Section of Radiology, BiND, University Hospital “Paolo Giaccone”, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (G.C.); (G.L.T.); (F.V.); (F.A.); (C.G.); (M.C.); (M.M.); (G.S.)
| | - Leonardo Salvaggio
- Section of Radiology, BiND, University Hospital “Paolo Giaccone”, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (G.C.); (G.L.T.); (F.V.); (F.A.); (C.G.); (M.C.); (M.M.); (G.S.)
| | - Natale Quartuccio
- Nuclear Medicine Unit, ARNAS Ospedali Civico, Di Cristina e Benfratelli, 90133 Palermo, Italy; (N.Q.); (L.S.); (G.A.)
| | - Letterio Sturiale
- Nuclear Medicine Unit, ARNAS Ospedali Civico, Di Cristina e Benfratelli, 90133 Palermo, Italy; (N.Q.); (L.S.); (G.A.)
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy;
| | - Mauro Calamia
- Section of Radiology, BiND, University Hospital “Paolo Giaccone”, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (G.C.); (G.L.T.); (F.V.); (F.A.); (C.G.); (M.C.); (M.M.); (G.S.)
| | - Gaspare Arnone
- Nuclear Medicine Unit, ARNAS Ospedali Civico, Di Cristina e Benfratelli, 90133 Palermo, Italy; (N.Q.); (L.S.); (G.A.)
| | - Massimo Midiri
- Section of Radiology, BiND, University Hospital “Paolo Giaccone”, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (G.C.); (G.L.T.); (F.V.); (F.A.); (C.G.); (M.C.); (M.M.); (G.S.)
| | - Giuseppe Salvaggio
- Section of Radiology, BiND, University Hospital “Paolo Giaccone”, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (G.C.); (G.L.T.); (F.V.); (F.A.); (C.G.); (M.C.); (M.M.); (G.S.)
| |
Collapse
|
29
|
Li L, Shiradkar R, Leo P, Algohary A, Fu P, Tirumani SH, Mahran A, Buzzy C, Obmann VC, Mansoori B, El-Fahmawi A, Shahait M, Tewari A, Magi-Galluzzi C, Lee D, Lal P, Ponsky L, Klein E, Purysko AS, Madabhushi A. A novel imaging based Nomogram for predicting post-surgical biochemical recurrence and adverse pathology of prostate cancer from pre-operative bi-parametric MRI. EBioMedicine 2020; 63:103163. [PMID: 33321450 PMCID: PMC7744939 DOI: 10.1016/j.ebiom.2020.103163] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023] Open
Abstract
Background We developed and validated an integrated radiomic-clinicopathologic nomogram (RadClip) for post-surgical biochemical recurrence free survival (bRFS) and adverse pathology (AP) prediction in men with prostate cancer (PCa). RadClip was further compared against extant prognostics tools like CAPRA and Decipher. Methods A retrospective study of 198 patients with PCa from four institutions who underwent pre-operative 3 Tesla MRI followed by radical prostatectomy, between 2009 and 2017 with a median 35-month follow-up was performed. Radiomic features were extracted from prostate cancer regions on bi-parametric magnetic resonance imaging (bpMRI). Cox Proportional-Hazards (CPH) model warped with minimum redundancy maximum relevance (MRMR) feature selection was employed to select bpMRI radiomic features for bRFS prediction in the training set (D1, N = 71). In addition, a bpMRI radiomic risk score (RadS) and associated nomogram, RadClip, were constructed in D1 and then compared against the Decipher, pre-operative (CAPRA), and post-operative (CAPRA-S) nomograms for bRFS and AP prediction in the testing set (D2, N = 127). Findings “RadClip yielded a higher C-index (0.77, 95% CI 0.65-0.88) compared to CAPRA (0.68, 95% CI 0.57-0.8) and Decipher (0.51, 95% CI 0.33-0.69) and was found to be comparable to CAPRA-S (0.75, 95% CI 0.65-0.85). RadClip resulted in a higher AUC (0.71, 95% CI 0.62-0.81) for predicting AP compared to Decipher (0.66, 95% CI 0.56-0.77) and CAPRA (0.69, 95% CI 0.59-0.79).” Interpretation RadClip was more prognostic of bRFS and AP compared to Decipher and CAPRA. It could help pre-operatively identify PCa patients at low risk of biochemical recurrence and AP and who therefore might defer additional therapy. Funding The National Institutes of Health, the U.S. Department of Veterans Affairs, and the Department of Defense.
Collapse
Affiliation(s)
- Lin Li
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | - Rakesh Shiradkar
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | - Patrick Leo
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | - Ahmad Algohary
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | - Amr Mahran
- Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Christina Buzzy
- Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Verena C Obmann
- Department of Radiology, Case Western Reserve University and University Hospitals Cleveland Medical Centers, Cleveland, OH, USA; Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Bahar Mansoori
- Department of Radiology, Abdominal Imaging Division, University of Washington, Seattle, WA, USA
| | - Ayah El-Fahmawi
- Penn Medicine, University of Pennsylvania Health System, PA, USA
| | - Mohammed Shahait
- Penn Medicine, University of Pennsylvania Health System, PA, USA
| | - Ashutosh Tewari
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - David Lee
- Penn Medicine, University of Pennsylvania Health System, PA, USA
| | - Priti Lal
- Penn Medicine, University of Pennsylvania Health System, PA, USA
| | - Lee Ponsky
- Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Eric Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrei S Purysko
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA; Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anant Madabhushi
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland Veterans Administration Medical Center, USA.
| |
Collapse
|
30
|
Alvarez-Jimenez C, Sandino AA, Prasanna P, Gupta A, Viswanath SE, Romero E. Identifying Cross-Scale Associations between Radiomic and Pathomic Signatures of Non-Small Cell Lung Cancer Subtypes: Preliminary Results. Cancers (Basel) 2020; 12:cancers12123663. [PMID: 33297357 PMCID: PMC7762258 DOI: 10.3390/cancers12123663] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Despite the complementarity between radiology and histopathology, both from a diagnostic and a prognostic perspective, quantitative analyses of these modalities are usually performed in disconnected silos. This work presents initial results for differentiating two major non-small cell lung cancer (NSCLC) subtypes by exploring cross-scale associations between Computed Tomography (CT) images and corresponding digitized pathology images. (2) Methods: The analysis comprised three phases, (i) a multi-resolution cell density quantification to identify discriminant pathomic patterns for differentiating adenocarcinoma (ADC) and squamous cell carcinoma (SCC), (ii) radiomic characterization of CT images by using Haralick descriptors to quantify tumor textural heterogeneity as represented by gray-level co-occurrences to discriminate the two pathological subtypes, and (iii) quantitative correlation analysis between the multi-modal features to identify potential associations between them. This analysis was carried out using two publicly available digitized pathology databases (117 cases from TCGA and 54 cases from CPTAC) and a public radiological collection of CT images (101 cases from NSCLC-R). (3) Results: The top-ranked cell density pathomic features from the histopathology analysis were correlation, contrast, homogeneity, sum of entropy and difference of variance; which yielded a cross-validated AUC of 0.72 ± 0.02 on the training set (CPTAC) and hold-out validation AUC of 0.77 on the testing set (TCGA). Top-ranked co-occurrence radiomic features within NSCLC-R were contrast, correlation and sum of entropy which yielded a cross-validated AUC of 0.72 ± 0.01. Preliminary but significant cross-scale associations were identified between cell density statistics and CT intensity values using matched specimens available in the TCGA cohort, which were used to significantly improve the overall discriminatory performance of radiomic features in differentiating NSCLC subtypes (AUC = 0.78 ± 0.01). (4) Conclusions: Initial results suggest that cross-scale associations may exist between digital pathology and CT imaging which can be used to identify relevant radiomic and histopathology features to accurately distinguish lung adenocarcinomas from squamous cell carcinomas.
Collapse
Affiliation(s)
- Charlems Alvarez-Jimenez
- Computer Imaging and Medical Application Laboratory, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (C.A.-J.); (A.A.S.)
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Alvaro A. Sandino
- Computer Imaging and Medical Application Laboratory, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (C.A.-J.); (A.A.S.)
| | - Prateek Prasanna
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
| | - Satish E. Viswanath
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Eduardo Romero
- Computer Imaging and Medical Application Laboratory, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (C.A.-J.); (A.A.S.)
- Correspondence:
| |
Collapse
|
31
|
Beig N, Bera K, Tiwari P. Introduction to radiomics and radiogenomics in neuro-oncology: implications and challenges. Neurooncol Adv 2020; 2:iv3-iv14. [PMID: 33521636 PMCID: PMC7829475 DOI: 10.1093/noajnl/vdaa148] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuro-oncology largely consists of malignancies of the brain and central nervous system including both primary as well as metastatic tumors. Currently, a significant clinical challenge in neuro-oncology is to tailor therapies for patients based on a priori knowledge of their survival outcome or treatment response to conventional or experimental therapies. Radiomics or the quantitative extraction of subvisual data from conventional radiographic imaging has recently emerged as a powerful data-driven approach to offer insights into clinically relevant questions related to diagnosis, prediction, prognosis, as well as assessing treatment response. Furthermore, radiogenomic approaches provide a mechanism to establish statistical correlations of radiomic features with point mutations and next-generation sequencing data to further leverage the potential of routine MRI scans to serve as "virtual biopsy" maps. In this review, we provide an introduction to radiomic and radiogenomic approaches in neuro-oncology, including a brief description of the workflow involving preprocessing, tumor segmentation, and extraction of "hand-crafted" features from the segmented region of interest, as well as identifying radiogenomic associations that could ultimately lead to the development of reliable prognostic and predictive models in neuro-oncology applications. Lastly, we discuss the promise of radiomics and radiogenomic approaches in personalizing treatment decisions in neuro-oncology, as well as the challenges with clinical adoption, which will rely heavily on their demonstrated resilience to nonstandardization in imaging protocols across sites and scanners, as well as in their ability to demonstrate reproducibility across large multi-institutional cohorts.
Collapse
Affiliation(s)
- Niha Beig
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Pallavi Tiwari
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
32
|
Antunes JT, Ofshteyn A, Bera K, Wang EY, Brady JT, Willis JE, Friedman KA, Marderstein EL, Kalady MF, Stein SL, Purysko AS, Paspulati R, Gollamudi J, Madabhushi A, Viswanath SE. Radiomic Features of Primary Rectal Cancers on Baseline T 2 -Weighted MRI Are Associated With Pathologic Complete Response to Neoadjuvant Chemoradiation: A Multisite Study. J Magn Reson Imaging 2020; 52:1531-1541. [PMID: 32216127 PMCID: PMC7529659 DOI: 10.1002/jmri.27140] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Twenty-five percent of rectal adenocarcinoma patients achieve pathologic complete response (pCR) to neoadjuvant chemoradiation and could avoid proctectomy. However, pretreatment clinical or imaging markers are lacking in predicting response to chemoradiation. Radiomic texture features from MRI have recently been associated with therapeutic response in other cancers. PURPOSE To construct a radiomics texture model based on pretreatment MRI for identifying patients who will achieve pCR to neoadjuvant chemoradiation in rectal cancer, including validation across multiple scanners and sites. STUDY TYPE Retrospective. SUBJECTS In all, 104 rectal cancer patients staged with MRI prior to long-course chemoradiation followed by proctectomy; curated from three institutions. FIELD STRENGTH/SEQUENCE 1.5T-3.0T, axial higher resolution T2 -weighted turbo spin echo sequence. ASSESSMENT Pathologic response was graded on postsurgical specimens. In total, 764 radiomic features were extracted from single-slice sections of rectal tumors on processed pretreatment T2 -weighted MRI. STATISTICAL TESTS Three feature selection schemes were compared for identifying radiomic texture descriptors associated with pCR via a discovery cohort (one site, N = 60, cross-validation). The top-selected radiomic texture features were used to train and validate a random forest classifier model for pretreatment identification of pCR (two external sites, N = 44). Model performance was evaluated via area under the curve (AUC), accuracy, sensitivity, and specificity. RESULTS Laws kernel responses and gradient organization features were most associated with pCR (P ≤ 0.01); as well as being commonly identified across all feature selection schemes. The radiomics model yielded a discovery AUC of 0.699 ± 0.076 and a hold-out validation AUC of 0.712 with 70.5% accuracy (70.0% sensitivity, 70.6% specificity) in identifying pCR. Radiomic texture features were resilient to variations in magnetic field strength as well as being consistent between two different expert annotations. Univariate analysis revealed no significant associations of baseline clinicopathologic or MRI findings with pCR (P = 0.07-0.96). DATA CONCLUSION Radiomic texture features from pretreatment MRIs may enable early identification of potential pCR to neoadjuvant chemoradiation, as well as generalize across sites. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Jacob T. Antunes
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106
| | - Asya Ofshteyn
- University Hospitals Cleveland Medical Center, Department of Surgery, Cleveland, OH, 44106
| | - Kaustav Bera
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106
| | - Erik Y. Wang
- University Hospitals Cleveland Medical Center, Department of Surgery, Cleveland, OH, 44106
| | - Justin T. Brady
- University Hospitals Cleveland Medical Center, Department of Surgery, Cleveland, OH, 44106
| | - Joseph E. Willis
- University Hospitals Cleveland Medical Center, Department of Pathology, Cleveland, OH, 44106
| | - Kenneth A. Friedman
- University Hospitals Cleveland Medical Center, Department of Pathology, Cleveland, OH, 44106
| | - Eric L. Marderstein
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106
| | - Matthew F. Kalady
- Cleveland Clinic, Department of Colorectal Surgery, Cleveland, OH, 44106
| | - Sharon L. Stein
- University Hospitals Cleveland Medical Center, Department of Surgery, Cleveland, OH, 44106
| | - Andrei S. Purysko
- Cleveland Clinic, Section of Abdominal Imaging and Nuclear Radiology Department, Cleveland, OH, 44195
| | - Rajmohan Paspulati
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, 44106
| | - Jayakrishna Gollamudi
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, 44106
| | - Anant Madabhushi
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106
| | - Satish E. Viswanath
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106
| |
Collapse
|
33
|
Verma R, Correa R, Hill VB, Statsevych V, Bera K, Beig N, Mahammedi A, Madabhushi A, Ahluwalia M, Tiwari P. Tumor Habitat-derived Radiomic Features at Pretreatment MRI That Are Prognostic for Progression-free Survival in Glioblastoma Are Associated with Key Morphologic Attributes at Histopathologic Examination: A Feasibility Study. Radiol Artif Intell 2020; 2:e190168. [PMID: 33330847 PMCID: PMC7706886 DOI: 10.1148/ryai.2020190168] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To identify radiomic features extracted from the tumor habitat on routine MR images that are prognostic for progression-free survival (PFS) and to assess their morphologic basis with corresponding histopathologic attributes in glioblastoma (GBM). MATERIALS AND METHODS In this retrospective study, 156 pretreatment GBM MR images (gadolinium-enhanced T1-weighted, T2-weighted, and fluid-attenuated inversion recovery [FLAIR] images) were curated. Of these 156 images, 122 were used for training (90 from The Cancer Imaging Archive and 32 from the Cleveland Clinic, acquired between December 1, 2011, and May 1, 2018) and 34 were used for validation. The validation set was obtained from the Ivy Glioblastoma Atlas Project database, for which the percentage extent of 11 histologic attributes was available on corresponding histopathologic specimens of the resected tumor. Following expert annotations of the tumor habitat (necrotic core, enhancing tumor, and FLAIR-hyperintense subcompartments), 1008 radiomic descriptors (eg, Haralick texture features, Laws energy features, co-occurrence of local anisotropic gradient orientations [CoLIAGe]) were extracted from the three MRI sequences. The top radiomic features were obtained from each subcompartment in the training set on the basis of their ability to risk-stratify patients according to PFS. These features were then concatenated to create a radiomics risk score (RRS). The RRS was independently validated on a holdout set. In addition, correlations (P < .05) of RRS features were computed, with the percentage extent of the 11 histopathologic attributes, using Spearman correlation analysis. RESULTS RRS yielded a concordance index of 0.80 on the validation set and constituted radiomic features, including Laws (capture edges, waves, ripple patterns) and CoLIAGe (capture disease heterogeneity) from enhancing tumor and FLAIR hyperintensity. These radiomic features were correlated with histopathologic attributes associated with disease aggressiveness in GBM, particularly tumor infiltration (P = .0044) and hyperplastic blood vessels (P = .0005). CONCLUSION Preliminary findings demonstrated significant associations of prognostic radiomic features with disease-specific histologic attributes, with implications for risk-stratifying patients with GBM for personalized treatment decisions. Supplemental material is available for this article. © RSNA, 2020.
Collapse
Affiliation(s)
- Ruchika Verma
- From the Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland OH 44106 (R.V., R.C., K.B., N.B., A. Madabhushi, P.T.); Department of Neuroradiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill (V.B.H.); Brain Tumor and Neuro-Oncology Center (V.S., M.A.), and Department of Diagnostic Radiology (A. Mahammedi), Cleveland Clinic, Cleveland, Ohio; and Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio (A. Madabhushi)
| | - Ramon Correa
- From the Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland OH 44106 (R.V., R.C., K.B., N.B., A. Madabhushi, P.T.); Department of Neuroradiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill (V.B.H.); Brain Tumor and Neuro-Oncology Center (V.S., M.A.), and Department of Diagnostic Radiology (A. Mahammedi), Cleveland Clinic, Cleveland, Ohio; and Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio (A. Madabhushi)
| | - Virginia B. Hill
- From the Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland OH 44106 (R.V., R.C., K.B., N.B., A. Madabhushi, P.T.); Department of Neuroradiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill (V.B.H.); Brain Tumor and Neuro-Oncology Center (V.S., M.A.), and Department of Diagnostic Radiology (A. Mahammedi), Cleveland Clinic, Cleveland, Ohio; and Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio (A. Madabhushi)
| | - Volodymyr Statsevych
- From the Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland OH 44106 (R.V., R.C., K.B., N.B., A. Madabhushi, P.T.); Department of Neuroradiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill (V.B.H.); Brain Tumor and Neuro-Oncology Center (V.S., M.A.), and Department of Diagnostic Radiology (A. Mahammedi), Cleveland Clinic, Cleveland, Ohio; and Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio (A. Madabhushi)
| | - Kaustav Bera
- From the Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland OH 44106 (R.V., R.C., K.B., N.B., A. Madabhushi, P.T.); Department of Neuroradiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill (V.B.H.); Brain Tumor and Neuro-Oncology Center (V.S., M.A.), and Department of Diagnostic Radiology (A. Mahammedi), Cleveland Clinic, Cleveland, Ohio; and Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio (A. Madabhushi)
| | - Niha Beig
- From the Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland OH 44106 (R.V., R.C., K.B., N.B., A. Madabhushi, P.T.); Department of Neuroradiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill (V.B.H.); Brain Tumor and Neuro-Oncology Center (V.S., M.A.), and Department of Diagnostic Radiology (A. Mahammedi), Cleveland Clinic, Cleveland, Ohio; and Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio (A. Madabhushi)
| | - Abdelkader Mahammedi
- From the Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland OH 44106 (R.V., R.C., K.B., N.B., A. Madabhushi, P.T.); Department of Neuroradiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill (V.B.H.); Brain Tumor and Neuro-Oncology Center (V.S., M.A.), and Department of Diagnostic Radiology (A. Mahammedi), Cleveland Clinic, Cleveland, Ohio; and Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio (A. Madabhushi)
| | - Anant Madabhushi
- From the Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland OH 44106 (R.V., R.C., K.B., N.B., A. Madabhushi, P.T.); Department of Neuroradiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill (V.B.H.); Brain Tumor and Neuro-Oncology Center (V.S., M.A.), and Department of Diagnostic Radiology (A. Mahammedi), Cleveland Clinic, Cleveland, Ohio; and Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio (A. Madabhushi)
| | - Manmeet Ahluwalia
- From the Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland OH 44106 (R.V., R.C., K.B., N.B., A. Madabhushi, P.T.); Department of Neuroradiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill (V.B.H.); Brain Tumor and Neuro-Oncology Center (V.S., M.A.), and Department of Diagnostic Radiology (A. Mahammedi), Cleveland Clinic, Cleveland, Ohio; and Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio (A. Madabhushi)
| | - Pallavi Tiwari
- From the Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland OH 44106 (R.V., R.C., K.B., N.B., A. Madabhushi, P.T.); Department of Neuroradiology, Feinberg School of Medicine, Northwestern University, Chicago, Ill (V.B.H.); Brain Tumor and Neuro-Oncology Center (V.S., M.A.), and Department of Diagnostic Radiology (A. Mahammedi), Cleveland Clinic, Cleveland, Ohio; and Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio (A. Madabhushi)
| |
Collapse
|
34
|
How can we combat multicenter variability in MR radiomics? Validation of a correction procedure. Eur Radiol 2020; 31:2272-2280. [PMID: 32975661 DOI: 10.1007/s00330-020-07284-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/06/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Test a practical realignment approach to compensate the technical variability of MR radiomic features. METHODS T1 phantom images acquired on 2 scanners, FLAIR and contrast-enhanced T1-weighted (CE-T1w) images of 18 brain tumor patients scanned on both 1.5-T and 3-T scanners, and 36 T2-weighted (T2w) images of prostate cancer patients scanned in one of two centers were investigated. The ComBat procedure was used for harmonizing radiomic features. Differences in statistical distributions in feature values between 1.5- and 3-T images were tested before and after harmonization. The prostate studies were used to determine the impact of harmonization to distinguish between Gleason grades (GGs). RESULTS In the phantom data, 40 out of 42 radiomic feature values were significantly different between the 2 scanners before harmonization and none after. In white matter regions, the statistical distributions of features were significantly different (p < 0.05) between the 1.5- and 3-T images for 37 out of 42 features in both FLAIR and CE-T1w images. After harmonization, no statistically significant differences were observed. In brain tumors, 41 (FLAIR) or 36 (CE-T1w) out of 42 features were significantly different between the 1.5- and 3-T images without harmonization, against 1 (FLAIR) or none (CE-T1w) with harmonization. In prostate studies, 636 radiomic features were significantly different between GGs after harmonization against 461 before. The ability to distinguish between GGs using radiomic features was increased after harmonization. CONCLUSION ComBat harmonization efficiently removes inter-center technical inconsistencies in radiomic feature values and increases the sensitivity of studies using data from several scanners. KEY POINTS • Radiomic feature values obtained using different MR scanners or imaging protocols can be harmonized by combining off-the-shelf image standardization and feature realignment procedures. • Harmonized radiomic features enable one to pool data from different scanners and centers without a substantial loss of statistical power caused by intra- and inter-center variability. • The proposed realignment method is applicable to radiomic features from different MR sequences and tumor types and does not rely on any phantom acquisition.
Collapse
|
35
|
T1 and T2 MR fingerprinting measurements of prostate cancer and prostatitis correlate with deep learning-derived estimates of epithelium, lumen, and stromal composition on corresponding whole mount histopathology. Eur Radiol 2020; 31:1336-1346. [PMID: 32876839 DOI: 10.1007/s00330-020-07214-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/10/2020] [Accepted: 08/20/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVES To explore the associations between T1 and T2 magnetic resonance fingerprinting (MRF) measurements and corresponding tissue compartment ratios (TCRs) on whole mount histopathology of prostate cancer (PCa) and prostatitis. MATERIALS AND METHODS A retrospective, IRB-approved, HIPAA-compliant cohort consisting of 14 PCa patients who underwent 3 T multiparametric MRI along with T1 and T2 MRF maps prior to radical prostatectomy was used. Correspondences between whole mount specimens and MRI and MRF were manually established. Prostatitis, PCa, and normal peripheral zone (PZ) regions of interest (ROIs) on pathology were segmented for TCRs of epithelium, lumen, and stroma using two U-net deep learning models. Corresponding ROIs were mapped to T2-weighted MRI (T2w), apparent diffusion coefficient (ADC), and T1 and T2 MRF maps. Their correlations with TCRs were computed using Pearson's correlation coefficient (R). Statistically significant differences in means were assessed using one-way ANOVA. RESULTS Statistically significant differences (p < 0.01) in means of TCRs and T1 and T2 MRF were observed between PCa, prostatitis, and normal PZ. A negative correlation was observed between T1 and T2 MRF and epithelium (R = - 0.38, - 0.44, p < 0.05) of PCa. T1 MRF was correlated in opposite directions with stroma of PCa and prostatitis (R = 0.35, - 0.44, p < 0.05). T2 MRF was positively correlated with lumen of PCa and prostatitis (R = 0.57, 0.46, p < 0.01). Mean T2 MRF showed significant differences (p < 0.01) between PCa and prostatitis across both transition zone (TZ) and PZ, while mean T1 MRF was significant (p = 0.02) in TZ. CONCLUSION Significant associations between MRF (T1 in the TZ and T2 in the PZ) and tissue compartments on corresponding histopathology were observed. KEY POINTS • Mean T2 MRF measurements and ADC within cancerous regions of interest dropped with increasing ISUP prognostic groups (IPG). • Mean T1 and T2 MRF measurements were significantly different (p < 0.001) across IPGs, prostatitis, and normal peripheral zone (NPZ). • T2 MRF showed stronger correlations in the peripheral zone, while T1 MRF showed stronger correlations in the transition zone with histopathology for prostate cancer.
Collapse
|
36
|
Rusu M, Shao W, Kunder CA, Wang JB, Soerensen SJC, Teslovich NC, Sood RR, Chen LC, Fan RE, Ghanouni P, Brooks JD, Sonn GA. Registration of presurgical MRI and histopathology images from radical prostatectomy via RAPSODI. Med Phys 2020; 47:4177-4188. [PMID: 32564359 PMCID: PMC7586964 DOI: 10.1002/mp.14337] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/17/2020] [Accepted: 06/08/2020] [Indexed: 01/29/2023] Open
Abstract
PURPOSE Magnetic resonance imaging (MRI) has great potential to improve prostate cancer diagnosis; however, subtle differences between cancer and confounding conditions render prostate MRI interpretation challenging. The tissue collected from patients who undergo radical prostatectomy provides a unique opportunity to correlate histopathology images of the prostate with preoperative MRI to accurately map the extent of cancer from histopathology images onto MRI. We seek to develop an open-source, easy-to-use platform to align presurgical MRI and histopathology images of resected prostates in patients who underwent radical prostatectomy to create accurate cancer labels on MRI. METHODS Here, we introduce RAdiology Pathology Spatial Open-Source multi-Dimensional Integration (RAPSODI), the first open-source framework for the registration of radiology and pathology images. RAPSODI relies on three steps. First, it creates a three-dimensional (3D) reconstruction of the histopathology specimen as a digital representation of the tissue before gross sectioning. Second, RAPSODI registers corresponding histopathology and MRI slices. Third, the optimized transforms are applied to the cancer regions outlined on the histopathology images to project those labels onto the preoperative MRI. RESULTS We tested RAPSODI in a phantom study where we simulated various conditions, for example, tissue shrinkage during fixation. Our experiments showed that RAPSODI can reliably correct multiple artifacts. We also evaluated RAPSODI in 157 patients from three institutions that underwent radical prostatectomy and have very different pathology processing and scanning. RAPSODI was evaluated in 907 corresponding histpathology-MRI slices and achieved a Dice coefficient of 0.97 ± 0.01 for the prostate, a Hausdorff distance of 1.99 ± 0.70 mm for the prostate boundary, a urethra deviation of 3.09 ± 1.45 mm, and a landmark deviation of 2.80 ± 0.59 mm between registered histopathology images and MRI. CONCLUSION Our robust framework successfully mapped the extent of cancer from histopathology slices onto MRI providing labels from training machine learning methods to detect cancer on MRI.
Collapse
Affiliation(s)
- Mirabela Rusu
- Department of RadiologySchool of MedicineStanford UniversityStanfordCA94305USA
| | - Wei Shao
- Department of RadiologySchool of MedicineStanford UniversityStanfordCA94305USA
| | - Christian A. Kunder
- Department of PathologySchool of MedicineStanford UniversityStanfordCA94305USA
| | | | - Simon J. C. Soerensen
- Department of UrologySchool of MedicineStanford UniversityStanfordCA94305USA
- Department of UrologyAarhus University HospitalAarhusDenmark
| | - Nikola C. Teslovich
- Department of UrologySchool of MedicineStanford UniversityStanfordCA94305USA
| | - Rewa R. Sood
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
| | - Leo C. Chen
- Department of UrologySchool of MedicineStanford UniversityStanfordCA94305USA
| | - Richard E. Fan
- Department of UrologySchool of MedicineStanford UniversityStanfordCA94305USA
| | - Pejman Ghanouni
- Department of RadiologySchool of MedicineStanford UniversityStanfordCA94305USA
| | - James D. Brooks
- Department of UrologySchool of MedicineStanford UniversityStanfordCA94305USA
| | - Geoffrey A. Sonn
- Department of RadiologySchool of MedicineStanford UniversityStanfordCA94305USA
- Department of UrologySchool of MedicineStanford UniversityStanfordCA94305USA
| |
Collapse
|
37
|
Automated Classification of Significant Prostate Cancer on MRI: A Systematic Review on the Performance of Machine Learning Applications. Cancers (Basel) 2020; 12:cancers12061606. [PMID: 32560558 PMCID: PMC7352160 DOI: 10.3390/cancers12061606] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 11/16/2022] Open
Abstract
Significant prostate carcinoma (sPCa) classification based on MRI using radiomics or deep learning approaches has gained much interest, due to the potential application in assisting in clinical decision-making. OBJECTIVE To systematically review the literature (i) to determine which algorithms are most frequently used for sPCa classification, (ii) to investigate whether there exists a relation between the performance and the method or the MRI sequences used, (iii) to assess what study design factors affect the performance on sPCa classification, and (iv) to research whether performance had been evaluated in a clinical setting Methods: The databases Embase and Ovid MEDLINE were searched for studies describing machine learning or deep learning classification methods discriminating between significant and nonsignificant PCa on multiparametric MRI that performed a valid validation procedure. Quality was assessed by the modified radiomics quality score. We computed the median area under the receiver operating curve (AUC) from overall methods and the interquartile range. RESULTS From 2846 potentially relevant publications, 27 were included. The most frequent algorithms used in the literature for PCa classification are logistic regression (22%) and convolutional neural networks (CNNs) (22%). The median AUC was 0.79 (interquartile range: 0.77-0.87). No significant effect of number of included patients, image sequences, or reference standard on the reported performance was found. Three studies described an external validation and none of the papers described a validation in a prospective clinical trial. CONCLUSIONS To unlock the promising potential of machine and deep learning approaches, validation studies and clinical prospective studies should be performed with an established protocol to assess the added value in decision-making.
Collapse
|
38
|
Stanzione A, Gambardella M, Cuocolo R, Ponsiglione A, Romeo V, Imbriaco M. Prostate MRI radiomics: A systematic review and radiomic quality score assessment. Eur J Radiol 2020; 129:109095. [PMID: 32531722 DOI: 10.1016/j.ejrad.2020.109095] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiomics have the potential to further increase the value of MRI in prostate cancer management. However, implementation in clinical practice is still far and concerns have been raised regarding the methodological quality of radiomic studies. Therefore, we aimed to systematically review the literature to assess the quality of prostate MRI radiomic studies using the radiomics quality score (RQS). METHODS Multiple medical literature archives (PubMed, Web of Science and EMBASE) were searched to retrieve original investigations focused on prostate MRI radiomic approaches up to the end of June 2019. Three researchers independently assessed each paper using the RQS. Data from the most experienced researcher were used for descriptive analysis. Inter-rater reproducibility was assessed using the intraclass correlation coefficient (ICC) on the total RQS score. RESULTS 73 studies were included in the analysis. Overall, the average RQS total score was 7.93 ± 5.13 on a maximum of 36 points, with a final average percentage of 23 ± 13%. Among the most critical items, the lack of feature robustness testing strategies and external validation datasets. The ICC resulted poor to moderate, with an average value of 0.57 and 95% Confidence Intervals between 0.44 and 0.69. CONCLUSIONS Current studies on prostate MRI radiomics still lack the quality required to allow their introduction in clinical practice.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Michele Gambardella
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Renato Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
39
|
Beig N, Bera K, Prasanna P, Antunes J, Correa R, Singh S, Saeed Bamashmos A, Ismail M, Braman N, Verma R, Hill VB, Statsevych V, Ahluwalia MS, Varadan V, Madabhushi A, Tiwari P. Radiogenomic-Based Survival Risk Stratification of Tumor Habitat on Gd-T1w MRI Is Associated with Biological Processes in Glioblastoma. Clin Cancer Res 2020; 26:1866-1876. [PMID: 32079590 PMCID: PMC7165059 DOI: 10.1158/1078-0432.ccr-19-2556] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/11/2019] [Accepted: 01/14/2020] [Indexed: 01/31/2023]
Abstract
PURPOSE To (i) create a survival risk score using radiomic features from the tumor habitat on routine MRI to predict progression-free survival (PFS) in glioblastoma and (ii) obtain a biological basis for these prognostic radiomic features, by studying their radiogenomic associations with molecular signaling pathways. EXPERIMENTAL DESIGN Two hundred three patients with pretreatment Gd-T1w, T2w, T2w-FLAIR MRI were obtained from 3 cohorts: The Cancer Imaging Archive (TCIA; n = 130), Ivy GAP (n = 32), and Cleveland Clinic (n = 41). Gene-expression profiles of corresponding patients were obtained for TCIA cohort. For every study, following expert segmentation of tumor subcompartments (necrotic core, enhancing tumor, peritumoral edema), 936 3D radiomic features were extracted from each subcompartment across all MRI protocols. Using Cox regression model, radiomic risk score (RRS) was developed for every protocol to predict PFS on the training cohort (n = 130) and evaluated on the holdout cohort (n = 73). Further, Gene Ontology and single-sample gene set enrichment analysis were used to identify specific molecular signaling pathway networks associated with RRS features. RESULTS Twenty-five radiomic features from the tumor habitat yielded the RRS. A combination of RRS with clinical (age and gender) and molecular features (MGMT and IDH status) resulted in a concordance index of 0.81 (P < 0.0001) on training and 0.84 (P = 0.03) on the test set. Radiogenomic analysis revealed associations of RRS features with signaling pathways for cell differentiation, cell adhesion, and angiogenesis, which contribute to chemoresistance in GBM. CONCLUSIONS Our findings suggest that prognostic radiomic features from routine Gd-T1w MRI may also be significantly associated with key biological processes that affect response to chemotherapy in GBM.
Collapse
Affiliation(s)
- Niha Beig
- Case Western Reserve University, Cleveland, Ohio
| | - Kaustav Bera
- Case Western Reserve University, Cleveland, Ohio
| | | | | | - Ramon Correa
- Case Western Reserve University, Cleveland, Ohio
| | | | | | - Marwa Ismail
- Case Western Reserve University, Cleveland, Ohio
| | | | | | - Virginia B Hill
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - Anant Madabhushi
- Case Western Reserve University, Cleveland, Ohio
- Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, Ohio
| | | |
Collapse
|
40
|
Korn RL, Rahmanuddin S, Borazanci E. Use of Precision Imaging in the Evaluation of Pancreas Cancer. Cancer Treat Res 2019; 178:209-236. [PMID: 31209847 DOI: 10.1007/978-3-030-16391-4_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreas cancer is an aggressive and fatal disease that will become one of the leading causes of cancer mortality by 2030. An all-out effort is underway to better understand the basic biologic mechanisms of this disease ranging from early development to metastatic disease. In order to change the course of this disease, diagnostic radiology imaging may play a vital role in providing a precise, noninvasive method for early diagnosis and assessment of treatment response. Recent progress in combining medical imaging, advanced image analysis and artificial intelligence, termed radiomics, can offer an innovate approach in detecting the earliest changes of tumor development as well as a rapid method for the detection of response. In this chapter, we introduce the principles of radiomics and demonstrate how it can provide additional information into tumor biology, early detection, and response assessments advancing the goals of precision imaging to deliver the right treatment to the right person at the right time.
Collapse
Affiliation(s)
- Ronald L Korn
- Virginia G Piper Cancer Center at HonorHealth, Scottsdale, AZ, USA. .,Translational Genomics Research Institute, An Affiliate of City of Hope, Phoenix, AZ, USA. .,Imaging Endpoints Core Lab, Scottsdale, AZ, USA.
| | | | - Erkut Borazanci
- Virginia G Piper Cancer Center at HonorHealth, Scottsdale, AZ, USA.,Translational Genomics Research Institute, An Affiliate of City of Hope, Phoenix, AZ, USA
| |
Collapse
|
41
|
Sui H, Liu L, Li X, Zuo P, Cui J, Mo Z. CT-based radiomics features analysis for predicting the risk of anterior mediastinal lesions. J Thorac Dis 2019; 11:1809-1818. [PMID: 31285873 DOI: 10.21037/jtd.2019.05.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background To retrospectively validate CT-based radiomics features for predicting the risk of anterior mediastinal lesions. Methods A retrospective study was performed through February 2013 to March 2018 on 298 patients who had pathologically confirmed anterior mediastinal lesions. The patients all underwent CT scans before their treatment, including 130 unenhanced computed tomography (UECT) and 168 contrast-enhanced CT (CECT) scans. The lesion areas were delineated, and a total of 1,029 radiomics features were extracted. The least absolute shrinkage and selection operator (Lasso) algorithm method was used to select the radiomics features significantly associated with discrimination of high-risk from low-risk lesions in the anterior mediastinum. Then, 8-fold and 3-fold cross-validation logistic regression (LR) models were taken as the feature selection classifiers to build the radiomics models for UECT and CECT scan respectively. The predictive performance of the radiomics features was evaluated based on the receiver operating characteristics (ROC) curve. Results Each of the two radiomics classifiers included the optimal 12 radiomic features. In terms of the area under ROC curve, using the radiomics model in discriminating high-risk lesions from the low-risks, CECT images accounted for 74.1% with a sensitivity of 66.67% and specificity of 64.81%. Meanwhile, UECT images were 84.2% with a sensitivity of 71.43% and specificity of 74.07%. Conclusions The association of the two proposed CT-based radiomics features with the discrimination of high and low-risk lesions in anterior mediastinum was confirmed, and the radiomics features of the UECT scan were proven to have better prediction performance than the CECT's in risk grading.
Collapse
Affiliation(s)
- He Sui
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xuejia Li
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Panli Zuo
- Huiying Medical Technology Co., Ltd., Beijing 100192, China
| | - Jingjing Cui
- Huiying Medical Technology Co., Ltd., Beijing 100192, China
| | - Zhanhao Mo
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|