1
|
Shen Y, Chen J, Liu H, Zhu W, Chen Z, Zhang L, Du R, Wu Z, Liu S, Zhou S, FuminYuan, Zhao H, Yin N, Li J, Qu C, Du H. Genome-wide identification and analysis of phosphate utilization related genes (PURs) reveal their roles involved in low phosphate responses in Brassica napus L. BMC PLANT BIOLOGY 2025; 25:326. [PMID: 40082789 PMCID: PMC11905441 DOI: 10.1186/s12870-025-06315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Phosphorus (P) is an essential macronutrient for Brassica napus L. growth and development, and is mainly acquired from the soil as phosphate (Pi). However, there is no research on the system analysis of Pi utilization related genes (PURs) in B. napus yet. RESULTS In this study, 285 PURs were identified in B. napus genome, including 4 transcription factor (TF) gene families (83 genes) and 17 structural gene families (202 genes). Subcellular localization analysis showed that the proteins encoded by B. napus PURs were mainly located in the nucleus (~ 46.0%) and cell membrane (~ 36.5%). Chromosome localization analysis suggested that B. napus PURs were distributed on An (131) and Cn (149) subgenomes without bias. Analysis of 35 representative species confirmed that PURs were widely present in plants ranging from Chlorophyta to angiosperms with a rapid expansion trend. Collinearity analysis revealed that allopolyploidization and small-scale duplication events resulted in the large expansion of B. napus PURs. For each gene pair of B. napus PURs, the sequence identity of promoter was significantly lower than that of CDS, proving the significant difference in promoter region that might be related to the divergence of PURs expression and function. Transcription factor (TF) binding site prediction, cis-element analysis, and microRNA prediction suggested that the expressions of B. napus PURs are regulated by multiple factors including 32 TF gene families (362), 108 types of CRE (29,770) and 25 types of miRNAs (66). Spatiotemporal expression analysis demonstrated that B. napus PURs were widely expressed during the whole developmental stages, and most synteny-gene pairs (76.42%) shared conserved expression patterns. RNA-seq analyses revealed that most B. napus PURs were induced by low Pi stress, and the hub genes were generally the Pi transporter (PHT) family members. qRT-PCR analysis proved that the expression levels of four B. napus PURs were positively correlated with the root system architecture of three B. napus varieties under low Pi supply at the seedling stage. CONCLUSION The 285 PURs were identified from B. napus with strong LP inducible expression profile. Our findings regarding the evolution, transcriptional regulation, and expression of B. napus PURs provide valuable information for further functional research.
Collapse
Affiliation(s)
- Yibing Shen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jiaqi Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Haijiang Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Wenyu Zhu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Zhuo Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Li Zhang
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Runjie Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Zexuan Wu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Shiying Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Sining Zhou
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - FuminYuan
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Huiyan Zhao
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Nengwen Yin
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
2
|
Xu W, Ma Q, Ju J, Zhang X, Yuan W, Hai H, Wang C, Wang G, Su J. Silencing of GhSHP1 hindered flowering and boll cracking in upland cotton. FRONTIERS IN PLANT SCIENCE 2025; 16:1558293. [PMID: 40070717 PMCID: PMC11893620 DOI: 10.3389/fpls.2025.1558293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/08/2025] [Indexed: 03/14/2025]
Abstract
The opening of cotton bolls is an important characteristic that influences the precocity of cotton. In the field, farmers often use chemical defoliants to induce cotton leaves to fall off earlier, thus accelerating the cracking of cotton bolls. However, the molecular mechanism of cotton boll cracking remains unclear. We identified ten AGAMOUS subfamily genes in upland cotton. Three pairs of Gossypium hirsutum AG subfamily genes (GhAGs) were amplified via tandem duplication. The promoters of the GhAGs contained a diverse array of cis-acting regulatory elements related to light responses, abiotic stress, phytohormones and plant growth and development. Transcriptomic analyses revealed that the expression levels of GhAG subfamily genes were lower in vegetative tissues than in flower and fruit reproductive organs. The qRT-PCR results for different tissues revealed that the GhSHP1 transcript level was highest in the cotton boll shell, and GhSHP1 was selected as the target gene after comprehensive analysis. We further investigated the functional role of GhSHP1 using virus-induced gene silencing (VIGS). Compared with those of the control plants, the flowering and boll cracking times of the GhSHP1-silenced plants were significantly delayed. Moreover, the results of paraffin sectioning at the back suture line of the cotton bolls revealed that the development of the dehiscence zone (DZ) occurred later in the GhSHP1-silenced plants than in the control plants. Furthermore, at the same developmental stage, the degree of lignification in the silenced plants was lower than that in the plants transformed with empty vector. The expression of several upland cotton genes homologous to key Arabidopsis pod cracking genes was significantly downregulated in the GhSHP1-silenced plants. These results revealed that GhSHP1 silencing delayed the flowering and cracking of cotton bolls and that the cracking of cotton bolls was delayed due to effects on DZ development. These findings are highly important for future studies of the molecular mechanism of cotton boll cracking and for breeding early-maturing and high-quality cotton varieties.
Collapse
Affiliation(s)
- Wenjuan Xu
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qi Ma
- Key Laboratory of Cotton Genetic Improvement and High-Yield Cultivation, Xinjiang Production and Construction Corps, and Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shehezi, Xinjiang, China
| | - Jisheng Ju
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xueli Zhang
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenmin Yuan
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Han Hai
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Caixiang Wang
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Gang Wang
- Key Laboratory of Cotton Genetic Improvement and High-Yield Cultivation, Xinjiang Production and Construction Corps, and Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shehezi, Xinjiang, China
| | - Junji Su
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Yao S, Peng J, Hu M, Zhou Q, Zhao X. Genome-Wide Profiling of the ACTIN Gene Family and Its Implications for Agronomic Traits in Brassica napus: A Bioinformatics Study. Int J Mol Sci 2024; 25:10752. [PMID: 39409081 PMCID: PMC11476578 DOI: 10.3390/ijms251910752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
ACTINs are key structural proteins in plants, which form the actin cytoskeleton and are engaged in numerous routine cellular processes. Meanwhile, ACTIN, recognized as a housekeeping gene, has not yet been thoroughly investigated in Brassica napus. The current research has led to the detection of 69 actin genes in B. napus, which were organized into six distinct subfamilies on the basis of phylogenetic relationships. Functional enrichment analysis, along with the construction of protein interaction networks, suggested that BnACTINs play roles in Preserving cell morphology and facilitating cytoplasmic movement, plant development, and adaptive responses to environmental stress. Moreover, the BnACTIN genes presented a wide range of expression levels among different tissues, whereas the majority experienced a substantial increase in expression when subjected to various abiotic stresses, demonstrating a pronounced sensitivity to abiotic factors. Furthermore, association mapping analysis indicated that some BnACTINs potentially affected certain key agronomic traits. Overall, our research deepens the knowledge of BnACTIN genes, promotes the cultivation of improved B. napus strains, and lays the groundwork for subsequent functional research.
Collapse
Affiliation(s)
- Shengli Yao
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiayu Peng
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ming Hu
- Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Qing Zhou
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiuju Zhao
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
4
|
Zhang X, He W, Wang X, Duan Y, Li Y, Wang Y, Jiang Q, Liao B, Zhou S, Li Y. Genome-Wide Analyses of MADS-Box Genes Reveal Their Involvement in Seed Development and Oil Accumulation of Tea-Oil Tree ( Camellia oleifera). Int J Genomics 2024; 2024:3375173. [PMID: 39105136 PMCID: PMC11300058 DOI: 10.1155/2024/3375173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
The seeds of Camellia oleifera produce high amount of oil, which can be broadly used in the fields of food, industry, and medicine. However, the molecular regulation mechanisms of seed development and oil accumulation in C. oleifera are unclear. In this study, evolutionary and expression analyses of the MADS-box gene family were performed across the C. oleifera genome for the first time. A total of 86 MADS-box genes (ColMADS) were identified, including 60 M-type and 26 MIKC members. More gene duplication events occurred in M-type subfamily (6) than that in MIKC subfamily (2), and SEP-like genes were lost from the MIKCC clade. Furthermore, 8, 15, and 17 differentially expressed ColMADS genes (DEGs) were detected between three developmental stages of seed (S1/S2, S2/S3, and S1/S3), respectively. Among these DEGs, the STK-like ColMADS12 and TT16-like ColMADS17 were highly expressed during the seed formation (S1 and S2), agreeing with their predicted functions to positively regulate the seed organogenesis and oil accumulation. While ColMADS57 and ColMADS07 showed increasing expression level with the seed maturation (S2 and S3), conforming to their potential roles in promoting the seed ripening. In all, these results revealed a critical role of MADS-box genes in the C. oleifera seed development and oil accumulation, which will contribute to the future molecular breeding of C. oleifera.
Collapse
Affiliation(s)
- Xianzhi Zhang
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Heyuan Branch CenterGuangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517500, China
| | - Wenliang He
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xinyi Wang
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongliang Duan
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongjuan Li
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yi Wang
- School of Mechanic and Electronic EngineeringZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qingbin Jiang
- Research Institute of Tropical ForestryChinese Academy of Forestry, Guangzhou 510520, China
| | - Boyong Liao
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Sheng Zhou
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongquan Li
- College of Horticulture and Landscape ArchitectureZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
5
|
Chen M, Li L, Wang S, Wang P, Li Y. Transcriptome sequencing and screening of genes related to the MADS-box gene family in Clematis courtoisii. PLoS One 2024; 19:e0294426. [PMID: 38315679 PMCID: PMC10843124 DOI: 10.1371/journal.pone.0294426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/31/2023] [Indexed: 02/07/2024] Open
Abstract
The MADS-box gene family controls plant flowering and floral organ development; therefore, it is particularly important in ornamental plants. To investigate the genes associated with the MADS-box family in Clematis courtoisii, we performed full-length transcriptome sequencing on C. courtoisii using the PacBio Sequel third-generation sequencing platform, as no reference genome data was available. A total of 12.38 Gb of data, containing 9,476,585 subreads and 50,439 Unigenes were obtained. According to functional annotation, a total of 37,923 Unigenes (75.18% of the total) were assigned with functional annotations, and 50 Unigenes were identified as MADS-box related genes. Subsequently, we employed hmmerscan to perform protein sequence similarity search for the translated Unigene sequences and successfully identified 19 Unigenes associated with the MADS-box gene family, including MIKC*(1) and MIKCC (18) genes. Furthermore, within the MIKCC group, six subclasses can be further distinguished.
Collapse
Affiliation(s)
- Mingjian Chen
- Department of Ornamental Plant Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Linfang Li
- Department of Ornamental Plant Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Shu’an Wang
- Department of Ornamental Plant Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Peng Wang
- Department of Ornamental Plant Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Ya Li
- Department of Ornamental Plant Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
6
|
Yao S, Xie M, Hu M, Cui X, Wu H, Li X, Hu P, Tong C, Yu X. Genome-wide characterization of ubiquitin-conjugating enzyme gene family explores its genetic effects on the oil content and yield of Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 14:1118339. [PMID: 37021309 PMCID: PMC10067767 DOI: 10.3389/fpls.2023.1118339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Ubiquitin-conjugating enzyme (UBC) is a critical part of the ubiquitin-proteasome pathway and plays crucial roles in growth, development and abiotic stress response in plants. Although UBC genes have been detected in several plant species, characterization of this gene family at the whole-genome level has not been conducted in Brassica napus. In the present study, 200 putative BnUBCs were identified in B. napus, which were clustered into 18 subgroups based on phylogenetic analysis. BnUBCs within each subgroup showed relatively conserved gene architectures and motifs. Moreover, the gene expression patterns in various tissues as well as the identification of cis-acting regulatory elements in BnUBC promoters suggested further investigation of their potential functions in plant growth and development. Furthermore, three BnUBCs were predicted as candidate genes for regulating agronomic traits related to oil content and yield through association mapping. In conclusion, this study provided a wealth of information on the UBC family in B. napus and revealed their effects on oil content and yield, which will aid future functional research and genetic breeding of B. napus.
Collapse
Affiliation(s)
- Shengli Yao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Meili Xie
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Ming Hu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - XiaoBo Cui
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Haoming Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xiaohua Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Peng Hu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoli Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Song M, Zhang Y, Jia Q, Huang S, An R, Chen N, Zhu Y, Mu J, Hu S. Systematic analysis of MADS-box gene family in the U's triangle species and targeted mutagenesis of BnaAG homologs to explore its role in floral organ identity in Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 13:1115513. [PMID: 36714735 PMCID: PMC9878456 DOI: 10.3389/fpls.2022.1115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
MADS-box transcription factors play an important role in regulating floral organ development and participate in environmental responses. To date, the MADS-box gene family has been widely identified in Brassica rapa (B. rapa), Brassica oleracea (B. oleracea), and Brassica napus (B. napus); however, there are no analogous reports in Brassica nigra (B. nigra), Brassica juncea (B. juncea), and Brassica carinata (B. carinata). In this study, a whole-genome survey of the MADS-box gene family was performed for the first time in the triangle of U species, and a total of 1430 MADS-box genes were identified. Based on the phylogenetic relationship and classification of MADS-box genes in Arabidopsis thaliana (A. thaliana), 1430 MADS-box genes were categorized as M-type subfamily (627 genes), further divided into Mα, Mβ, Mγ, and Mδ subclades, and MIKC-type subfamily (803 genes), further classified into 35 subclades. Gene structure and conserved protein motifs of MIKC-type MADS-box exhibit diversity and specificity among different subclades. Comparative analysis of gene duplication events and syngenic gene pairs among different species indicated that polyploidy is beneficial for MIKC-type gene expansion. Analysis of transcriptome data within diverse tissues and stresses in B. napus showed tissue-specific expression of MIKC-type genes and a broad response to various abiotic stresses, particularly dehydration stress. In addition, four representative floral organ mutants (wtl, feml, aglf-2, and aglf-1) in the T0 generation were generated by editing four AGAMOUS (BnaAG) homoeologs in B. napus that enriched the floral organ variant phenotype. In brief, this study provides useful information for investigating the function of MADS-box genes and contributes to revealing the regulatory mechanisms of floral organ development in the genetic improvement of new varieties.
Collapse
Affiliation(s)
- Min Song
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Qingli Jia
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Shuhua Huang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Nana Chen
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Yantao Zhu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Afridi M, Ahmad K, Malik SS, Rehman N, Yasin M, Khan SM, Hussain A, Khan MR. Genome-wide identification, phylogeny, and expression profiling analysis of shattering genes in rapeseed and mustard plants. J Genet Eng Biotechnol 2022; 20:124. [PMID: 35980545 PMCID: PMC9388710 DOI: 10.1186/s43141-022-00408-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Non-synchronized pods shattering in the Brassicaceae family bring upon huge yield losses around the world. The shattering process was validated to be controlled by eight genes in Arabidopsis, including SHP1, SHP2, FUL, IND, ALC, NAC, RPL, and PG. We performed genome-wide identification, characterization, and expression analysis of shattering genes in B.napus and B. juncea to gain understanding into this gene family and to explain their expression patterns in fresh and mature siliques. RESULTS A comprehensive genome investigation of B.napus and B.juncea revealed 32 shattering genes, which were identified and categorized using protein motif structure, exon-intron organization, and phylogeny. The phylogenetic study revealed that these shattering genes contain little duplications, determined with a distinct chromosome number. Motifs of 32 shattering proteins were observed where motifs1 and 2 were found to be more conserved. A single motif was observed for other genes like Br-nS7, Br-nS9, Br-nS10, Br-jS21, Br-jS23, Br-jS24, Br-jS25, and Br-jS26. Synteny analysis was performed that validated a conserved pattern of blocks among these cultivars. RT-PCR based expressions profiles showed higher expression of shattering genes in B. juncea as compared to B.napus. SHP1, SHP2, and FUL gene were expressed more in mature silique. ALC gene was upregulated in fresh silique of B. napus but downregulation of ALC were observed in fresh silique of B. juncea. CONCLUSION This study authenticates the presence of shattering genes in the local cultivars of Brassica. It has been validated that the expression of shattering genes were more in B. juncea as compared to B.napus. The outcomes of this study contribute to the screening of more candidate genes for further investigation.
Collapse
Affiliation(s)
- Mahideen Afridi
- National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Khurshid Ahmad
- Department of Biological Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Shahana Seher Malik
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Center, Park Road, Islamabad, 44000, Pakistan
| | - Muhammad Yasin
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Center, Park Road, Islamabad, 44000, Pakistan
| | - Shujaul Mulk Khan
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Adil Hussain
- Food and Biotechnology Research Centre (FBRC), Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, Punjab, 56400, Pakistan
| | - Muhammad Ramzan Khan
- National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Center, Park Road, Islamabad, 44000, Pakistan
| |
Collapse
|
9
|
He Y, Li Y, Bai Z, Xie M, Zuo R, Liu J, Xia J, Cheng X, Liu Y, Tong C, Zhang Y, Liu S. Genome-wide identification and functional analysis of cupin_1 domain-containing members involved in the responses to Sclerotinia sclerotiorum and abiotic stress in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:983786. [PMID: 35979083 PMCID: PMC9377217 DOI: 10.3389/fpls.2022.983786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Cupin_1 domain-containing proteins (CDPs) are ubiquitously present in higher plants, which are known to play essential roles in various biological processes. In this study, we carried out genome-wide characterization and systematic investigation of the CDP genes in Brassica napus. A total of 96 BnCDPs, including 71 germin-like proteins (GLPs; proteins with a single cupin_1 domain) and 25 CDP bicupins (proteins with two cupin_1 domains), were identified and clustered into six distinct subfamilies (I-VI) based on the phylogenic analysis, gene structure and motif distribution. Further analysis indicated that whole-genome duplication (WGD) and segmental duplication are main contributors to the species-specific expansion of the BnCDP gene family, and all the duplicated genes subsequently underwent strong purification selection. The promoter region of BnCDPs showed enrichment of cis-regulatory elements associated with development, hormone and stress, as well as transcription factor binding sites, which validates the prediction that BnCDPs are widely involved in plant growth and biotic and abiotic stress responses. The BnCDPs in different subfamilies exhibited obvious differences in expression among 30 developmental tissues/stages of B. napus, implying that BnCDPs may be involved in tissue- and stage-specific developmental processes. Similar trends in expression of most BnCDPs were observed under Sclerotinia sclerotiorum inoculation and four abiotic stresses (dehydration, cold, ABA and salinity), particularly the BnGLPs in subfamily I and III with single cupin_1 domain, revealing that BnCDPs are of great importance in the environmental adaption of B. napus. We then performed a genome-wide association study (GWAS) of 274 B. napus core germplasms on S. sclerotiorum resistance and identified four significantly associated loci harboring five BnGLPs. The expression levels of two candidate genes, BnGLP1.A08 and BnGLP1.C08, were significantly correlated with S. sclerotiorum resistance. Their functional responses to multiple stages of S. sclerotiorum inoculation and four abiotic stresses were further examined through qPCR. Overall, this study provides rich resources for research on the function and evolutionary playground of CDP genes.
Collapse
Affiliation(s)
- Yizhou He
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| | - Zetao Bai
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Meili Xie
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Rong Zuo
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jie Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jing Xia
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaohui Cheng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yueying Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuanyuan Zhang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
10
|
Wahid S, Xie M, Sarfraz S, Liu J, Zhao C, Bai Z, Tong C, Cheng X, Gao F, Liu S. Genome-Wide Identification and Analysis of Ariadne Gene Family Reveal Its Genetic Effects on Agronomic Traits of Brassica napus. Int J Mol Sci 2022; 23:ijms23116265. [PMID: 35682945 PMCID: PMC9181464 DOI: 10.3390/ijms23116265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
E3 ligases promote protein ubiquitination and degradation, which regulate every aspect of eukaryotic life. The Ariadne (ARI) proteins of RBR (ring between ring fingers) protein subfamily has been discovered as a group of potential E3 ubiquitin ligases. Only a few available research studies show their role in plant adaptations processes against the external environment. Presently, the functions of ARI proteins are largely unknown in plants. Therefore, in this study, we performed genome-wide analysis to identify the ARI gene family and explore their potential importance in B. napus. A total of 39 ARI genes were identified in the B. napus genome and were classified into three subfamilies (A, B and C) based on phylogenetic analysis. The protein–protein interaction networks and enrichment analysis indicated that BnARI genes could be involved in endoreduplication, DNA repair, proteasome assembly, ubiquitination, protein kinase activity and stress adaptation. The transcriptome data analysis in various tissues provided us an indication of some BnARI genes’ functional importance in tissue development. We also identified potential BnARI genes that were significantly responsive towards the abiotic stresses. Furthermore, eight BnARI genes were identified as candidate genes for multiple agronomic traits through association mapping analysis in B. napus; among them, BnaA02g12100D, which is the ortholog of AtARI8, was significantly associated with ten agronomic traits. This study provided useful information on BnARI genes, which could aid targeted functional research and genetic improvement for breeding in B. napus.
Collapse
|
11
|
Li L, Cui S, Dang P, Yang X, Wei X, Chen K, Liu L, Chen CY. GWAS and bulked segregant analysis reveal the Loci controlling growth habit-related traits in cultivated Peanut (Arachis hypogaea L.). BMC Genomics 2022; 23:403. [PMID: 35624420 PMCID: PMC9145184 DOI: 10.1186/s12864-022-08640-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Peanut (Arachis hypogaea L.) is a grain legume crop that originated from South America and is now grown around the world. Peanut growth habit affects the variety’s adaptability, planting patterns, mechanized harvesting, disease resistance, and yield. The objective of this study was to map the quantitative trait locus (QTL) associated with peanut growth habit-related traits by combining the genome-wide association analysis (GWAS) and bulked segregant analysis sequencing (BSA-seq) methods. Results GWAS was performed with 17,223 single nucleotide polymorphisms (SNPs) in 103 accessions of the U.S. mini core collection genotyped using an Affymetrix version 2.0 SNP array. With a total of 12,342 high-quality polymorphic SNPs, the 90 suggestive and significant SNPs associated with lateral branch angle (LBA), main stem height (MSH), lateral branch height (LBL), extent radius (ER), and the index of plant type (IOPT) were identified. These SNPs were distributed among 15 chromosomes. A total of 597 associated candidate genes may have important roles in biological processes, hormone signaling, growth, and development. BSA-seq coupled with specific length amplified fragment sequencing (SLAF-seq) method was used to find the association with LBA, an important trait of the peanut growth habit. A 4.08 Mb genomic region on B05 was associated with LBA. Based on the linkage disequilibrium (LD) decay distance, we narrowed down and confirmed the region within the 160 kb region (144,193,467–144,513,467) on B05. Four candidate genes in this region were involved in plant growth. The expression levels of Araip.E64SW detected by qRT-PCR showed significant difference between ‘Jihua 5’ and ‘M130’. Conclusions In this study, the SNP (AX-147,251,085 and AX-144,353,467) associated with LBA by GWAS was overlapped with the results in BSA-seq through combined analysis of GWAS and BSA-seq. Based on LD decay distance, the genome range related to LBA on B05 was shortened to 144,193,467–144,513,467. Three candidate genes related to F-box family proteins (Araip.E64SW, Araip.YG1LK, and Araip.JJ6RA) and one candidate gene related to PPP family proteins (Araip.YU281) may be involved in plant growth and development in this genome region. The expression analysis revealed that Araip.E64SW was involved in peanut growth habits. These candidate genes will provide molecular targets in marker-assisted selection for peanut growth habits. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08640-3.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory for Crop Improvement and Regulation in North China, College of Agronomy, Hebei Agricultural University, Baoding, 071001, The People's Republic of China.,Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, 36948, USA.,School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, The People's Republic of China
| | - Shunli Cui
- State Key Laboratory for Crop Improvement and Regulation in North China, College of Agronomy, Hebei Agricultural University, Baoding, 071001, The People's Republic of China
| | - Phat Dang
- USDA-ARS National Peanut Research Laboratory, Dawson, GA, 39842, USA
| | - Xinlei Yang
- State Key Laboratory for Crop Improvement and Regulation in North China, College of Agronomy, Hebei Agricultural University, Baoding, 071001, The People's Republic of China
| | - Xuejun Wei
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, The People's Republic of China
| | - Kai Chen
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, The People's Republic of China
| | - Lifeng Liu
- State Key Laboratory for Crop Improvement and Regulation in North China, College of Agronomy, Hebei Agricultural University, Baoding, 071001, The People's Republic of China.
| | - Charles Y Chen
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, 36948, USA.
| |
Collapse
|
12
|
Xie M, Zuo R, Bai Z, Yang L, Zhao C, Gao F, Cheng X, Huang J, Liu Y, Li Y, Tong C, Liu S. Genome-Wide Characterization of Serine/Arginine-Rich Gene Family and Its Genetic Effects on Agronomic Traits of Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:829668. [PMID: 35251101 PMCID: PMC8889041 DOI: 10.3389/fpls.2022.829668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Serine/arginine-rich (SR) proteins are indispensable factors for RNA splicing, and they play important roles in development and abiotic stress responses. However, little information on SR genes in Brassica napus is available. In this study, 59 SR genes were identified and classified into seven subfamilies: SR, SCL, RS2Z, RSZ, RS, SR45, and SC. In each subfamily, the genes showed relatively conserved structures and motifs, but displayed distinct expression patterns in different tissues and under abiotic stress, which might be caused by the varied cis-acting regulatory elements among them. Transcriptome datasets from Pacbio/Illumina platforms showed that alternative splicing of SR genes was widespread in B. napus and the majority of paralogous gene pairs displayed different splicing patterns. Protein-protein interaction analysis indicated that SR proteins were involved in the regulation of the whole lifecycle of mRNA, from synthesis to decay. Moreover, the association mapping analysis suggested that 12 SR genes were candidate genes for regulating specific agronomic traits, which indicated that SR genes could affect the development and hence influence the important agronomic traits of B. napus. In summary, this study provided elaborate information on SR genes in B. napus, which will aid further functional studies and genetic improvement of agronomic traits in B. napus.
Collapse
|
13
|
Raza Q, Riaz A, Atif RM, Hussain B, Rana IA, Ali Z, Budak H, Alaraidh IA. Genome-Wide Diversity of MADS-Box Genes in Bread Wheat is Associated with its Rapid Global Adaptability. Front Genet 2022; 12:818880. [PMID: 35111207 PMCID: PMC8801776 DOI: 10.3389/fgene.2021.818880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
MADS-box gene family members play multifarious roles in regulating the growth and development of crop plants and hold enormous promise for bolstering grain yield potential under changing global environments. Bread wheat (Triticum aestivum L.) is a key stable food crop around the globe. Until now, the available information concerning MADS-box genes in the wheat genome has been insufficient. Here, a comprehensive genome-wide analysis identified 300 high confidence MADS-box genes from the publicly available reference genome of wheat. Comparative phylogenetic analyses with Arabidopsis and rice MADS-box genes classified the wheat genes into 16 distinct subfamilies. Gene duplications were mainly identified in subfamilies containing unbalanced homeologs, pointing towards a potential mechanism for gene family expansion. Moreover, a more rapid evolution was inferred for M-type genes, as compared with MIKC-type genes, indicating their significance in understanding the evolutionary history of the wheat genome. We speculate that subfamily-specific distal telomeric duplications in unbalanced homeologs facilitate the rapid adaptation of wheat to changing environments. Furthermore, our in-silico expression data strongly proposed MADS-box genes as active guardians of plants against pathogen insurgency and harsh environmental conditions. In conclusion, we provide an entire complement of MADS-box genes identified in the wheat genome that could accelerate functional genomics efforts and possibly facilitate bridging gaps between genotype-to-phenotype relationships through fine-tuning of agronomically important traits.
Collapse
Affiliation(s)
- Qasim Raza
- Molecular Breeding Laboratory, Rice Research Institute, Kala Shah Kaku, Pakistan
- *Correspondence: Qasim Raza, ; Ibrahim A. Alaraidh,
| | - Awais Riaz
- Molecular Breeding Laboratory, Rice Research Institute, Kala Shah Kaku, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Precision Agriculture and Analytics Lab, National Centre for Big Data and Cloud Computing, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Babar Hussain
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Iqrar Ahmad Rana
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT, United States
| | - Ibrahim A. Alaraidh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Qasim Raza, ; Ibrahim A. Alaraidh,
| |
Collapse
|
14
|
Ahmad M, Waraich EA, Skalicky M, Hussain S, Zulfiqar U, Anjum MZ, Habib ur Rahman M, Brestic M, Ratnasekera D, Lamilla-Tamayo L, Al-Ashkar I, EL Sabagh A. Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:767150. [PMID: 34975951 PMCID: PMC8714756 DOI: 10.3389/fpls.2021.767150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 05/16/2023]
Abstract
Temperature is one of the decisive environmental factors that is projected to increase by 1. 5°C over the next two decades due to climate change that may affect various agronomic characteristics, such as biomass production, phenology and physiology, and yield-contributing traits in oilseed crops. Oilseed crops such as soybean, sunflower, canola, peanut, cottonseed, coconut, palm oil, sesame, safflower, olive etc., are widely grown. Specific importance is the vulnerability of oil synthesis in these crops against the rise in climatic temperature, threatening the stability of yield and quality. The natural defense system in these crops cannot withstand the harmful impacts of heat stress, thus causing a considerable loss in seed and oil yield. Therefore, a proper understanding of underlying mechanisms of genotype-environment interactions that could affect oil synthesis pathways is a prime requirement in developing stable cultivars. Heat stress tolerance is a complex quantitative trait controlled by many genes and is challenging to study and characterize. However, heat tolerance studies to date have pointed to several sophisticated mechanisms to deal with the stress of high temperatures, including hormonal signaling pathways for sensing heat stimuli and acquiring tolerance to heat stress, maintaining membrane integrity, production of heat shock proteins (HSPs), removal of reactive oxygen species (ROS), assembly of antioxidants, accumulation of compatible solutes, modified gene expression to enable changes, intelligent agricultural technologies, and several other agronomic techniques for thriving and surviving. Manipulation of multiple genes responsible for thermo-tolerance and exploring their high expressions greatly impacts their potential application using CRISPR/Cas genome editing and OMICS technology. This review highlights the latest outcomes on the response and tolerance to heat stress at the cellular, organelle, and whole plant levels describing numerous approaches applied to enhance thermos-tolerance in oilseed crops. We are attempting to critically analyze the scattered existing approaches to temperature tolerance used in oilseeds as a whole, work toward extending studies into the field, and provide researchers and related parties with useful information to streamline their breeding programs so that they can seek new avenues and develop guidelines that will greatly enhance ongoing efforts to establish heat stress tolerance in oilseeds.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
- Horticultural Sciences Department, Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL, United States
| | | | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zohaib Anjum
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Habib ur Rahman
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
- Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University Bonn, Bonn, Germany
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Disna Ratnasekera
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
| | - Laura Lamilla-Tamayo
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Ayman EL Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
15
|
Genome-Wide Analysis and the Expression Pattern of the MADS-Box Gene Family in Bletilla striata. PLANTS 2021; 10:plants10102184. [PMID: 34685993 PMCID: PMC8539064 DOI: 10.3390/plants10102184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 02/04/2023]
Abstract
Bletilla striata (Thunb. ex A. Murray) Rchb. f., a species of the perennial herb Orchidaceae, has potent anti-inflammatory and antiviral biological activities. MADS-box transcription factors play critical roles in the various developmental processes of plants. Although this gene family has been extensively investigated in many species, it has not been analyzed for B. striata. In total, 45 MADS-box genes were identified from B. striata in this study, which were classified into five subfamilies (Mδ, MIKC, Mα, Mβ, and Mγ). Meanwhile, the highly correlated protein domains, motif compositions, and exon-intron structures of BsMADSs were investigated according to local B. striata databases. Chromosome distribution and synteny analyses revealed that segmental duplication and homologous exchange were the main BsMADSs expansion mechanisms. Further, RT-qPCR analysis revealed that BsMADSs had different expression patterns in response to various stress treatments. Our results provide a potential theoretical basis for further investigation of the functions of MADS genes during the growth of B. striata.
Collapse
|
16
|
Zaman QU, Wen C, Yuqin S, Mengyu H, Desheng M, Jacqueline B, Baohong Z, Chao L, Qiong H. Characterization of SHATTERPROOF Homoeologs and CRISPR-Cas9-Mediated Genome Editing Enhances Pod-Shattering Resistance in Brassica napus L. CRISPR J 2021; 4:360-370. [PMID: 34152222 DOI: 10.1089/crispr.2020.0129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brassica napus is the most important oil crop plant for edible oil and renewable energy source worldwide. Yield loss caused by pod shattering is a main problem during B. napus harvest. In this study, six BnSHP1 and two BnSHP2 homoeologs were targeted by the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) genome editing system and multiple SHP1 and SHP2 mutated lines were identified for evaluating the contribution for pod-shattering resistance. Our data suggest that BnSHP1A09 is probably a promising homoeolog for controlling lignin contents at dehiscence zone. Simultaneous mutation of BnSHP1A09/C04-B/A04 and BnSHP2A05/C04-A exhibited reduced lignified layer and separation layer adjacent to valves and replum. The pod-shattering resistance index (SRI) subsequently increased to 0.31 in five homoeolog mutation lines compared with the wild type (SRI = 0.036), which provide the theoretical basis for breeding of commercial pod-shattering resistance variety.
Collapse
Affiliation(s)
- Qamar U Zaman
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, P.R. China; East Carolina University, Greenville, North Carolina, USA.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, P.R. China; East Carolina University, Greenville, North Carolina, USA
| | - Chu Wen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, P.R. China; East Carolina University, Greenville, North Carolina, USA
| | - Shi Yuqin
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, P.R. China; East Carolina University, Greenville, North Carolina, USA
| | - Hao Mengyu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, P.R. China; East Carolina University, Greenville, North Carolina, USA
| | - Mei Desheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, P.R. China; East Carolina University, Greenville, North Carolina, USA
| | - Batley Jacqueline
- School of Biological Sciences, The University of Western Australia, Perth, Australia; and East Carolina University, Greenville, North Carolina, USA
| | - Zhang Baohong
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Li Chao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, P.R. China; East Carolina University, Greenville, North Carolina, USA
| | - Hu Qiong
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, P.R. China; East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
17
|
Genome-wide identification and expression analysis of the MADS-box transcription factor family in Camellia sinensis. J Appl Genet 2021; 62:249-264. [PMID: 33598859 DOI: 10.1007/s13353-021-00621-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
The MADS-box genes are an important class of transcription factors and play critical roles in flower development. However, the functions of these genes in the economically important drinking plant, Camellia sinensis, are still not reported. Here, an evolutionary analysis of tea MADS-box genes was performed at whole genome level. A total of 83 MADS-box genes were identified in tea, and their gene structures and expression patterns were further analyzed. The tea MADS-box genes were classified into Mα (26), Mβ (12), Mγ (9), MIKC* (7), and MIKCC (29) clade according to their phylogenetic relationship with Arabidopsis thaliana. Several cis-elements were identified in the promoter regions of the CsMADS genes that are important in regulating growth, development, light responses, and the response to several stresses. Most CsMADS genes display clear different expression patterns in different organs and different species of tea plant. The expression of CsMADS genes can be regulated by abiotic stresses and phytohormone treatment. Our results lay the foundation for future research on the function of CsMADS genes and beneficial for improving tea agricultural traits in the future.
Collapse
|
18
|
Kumar K, Srivastava H, Das A, Tribhuvan KU, Durgesh K, Joshi R, Sevanthi AM, Jain PK, Singh NK, Gaikwad K. Identification and characterization of MADS box gene family in pigeonpea for their role during floral transition. 3 Biotech 2021; 11:108. [PMID: 33569264 DOI: 10.1007/s13205-020-02605-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
MADS box genes are class of transcription factors involved in various physiological and developmental processes in plants. To understand their role in floral transition-related pathways, a genome-wide identification was done in Cajanus cajan, identifying 102 members which were classified into two different groups based on their gene structure. The status of all these genes was further analyzed in three wild species i.e. C. scarabaeoides, C. platycarpus and C. cajanifolius which revealed absence of 31-34 MADS box genes in them hinting towards their role in domestication and evolution. We could locate only a single copy of both FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE PHASE (SVP) genes, while three paralogs of SUPPRESSOR OF ACTIVATION OF CONSTANS 1 (SOC1) were found in C. cajan genome. One of those SOC1 paralogs i.e. CcMADS1.5 was found to be missing in all three wild relatives, also forming separate clade in phylogeny. This SOC1 gene was also lacking the characteristic MADS box domain in it. Expression profiling of major MADS box genes involved in flowering was done in different tissues viz shoot apical meristem, vegetative leaf, reproductive meristem, and reproductive bud. Gene-based time tree of FLC and SOC1 gene dictates their divergence from Arabidopsis before 71 and 23 million year ago (mya), respectively. This study provides valuable insights into the functional characteristics, expression pattern, and evolution of MADS box proteins in grain legumes with emphasis on C. cajan, which may help in further characterizing these genes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02605-7.
Collapse
Affiliation(s)
- Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
- ICAR-Indian Institute of Pulses Research, Kanpur, 208024 Uttar Pradesh India
| | - Harsha Srivastava
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Antara Das
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Kishor U Tribhuvan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834010 Jharkhand India
| | - Kumar Durgesh
- Division of Genetics, ICAR-Indian Agricultural Reserch Institute, New Delhi, 110012 India
| | - Rekha Joshi
- Division of Genetics, ICAR-Indian Agricultural Reserch Institute, New Delhi, 110012 India
| | | | - Pradeep Kumar Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | | | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| |
Collapse
|
19
|
Lohani N, Jain D, Singh MB, Bhalla PL. Engineering Multiple Abiotic Stress Tolerance in Canola, Brassica napus. FRONTIERS IN PLANT SCIENCE 2020; 11:3. [PMID: 32161602 PMCID: PMC7052498 DOI: 10.3389/fpls.2020.00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/03/2020] [Indexed: 05/22/2023]
Abstract
Impacts of climate change like global warming, drought, flooding, and other extreme events are posing severe challenges to global crop production. Contribution of Brassica napus towards the oilseed industry makes it an essential component of international trade and agroeconomics. Consequences from increasing occurrences of multiple abiotic stresses on this crop are leading to agroeconomic losses making it vital to endow B. napus crop with an ability to survive and maintain yield when faced with simultaneous exposure to multiple abiotic stresses. For an improved understanding of the stress sensing machinery, there is a need for analyzing regulatory pathways of multiple stress-responsive genes and other regulatory elements such as non-coding RNAs. However, our understanding of these pathways and their interactions in B. napus is far from complete. This review outlines the current knowledge of stress-responsive genes and their role in imparting multiple stress tolerance in B. napus. Analysis of network cross-talk through omics data mining is now making it possible to unravel the underlying complexity required for stress sensing and signaling in plants. Novel biotechnological approaches such as transgene-free genome editing and utilization of nanoparticles as gene delivery tools are also discussed. These can contribute to providing solutions for developing climate change resilient B. napus varieties with reduced regulatory limitations. The potential ability of synthetic biology to engineer and modify networks through fine-tuning of stress regulatory elements for plant responses to stress adaption is also highlighted.
Collapse
Affiliation(s)
| | | | | | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Genome-wide analysis of spatiotemporal gene expression patterns during floral organ development in Brassica rapa. Mol Genet Genomics 2019; 294:1403-1420. [PMID: 31222475 DOI: 10.1007/s00438-019-01585-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Flowering is a key agronomic trait that directly influences crop yield and quality and serves as a model system for elucidating the molecular basis that controls successful reproduction, adaptation, and diversification of flowering plants. Adequate knowledge of continuous series of expression data from the floral transition to maturation is lacking in Brassica rapa. To unravel the genome expression associated with the development of early small floral buds (< 2 mm; FB2), early large floral buds (2-4 mm; FB4), stamens (STs) and carpels (CPs), transcriptome profiling was carried out with a Br300K oligo microarray. The results showed that at least 6848 known nonredundant genes (30% of the genes of the Br300K) were differentially expressed during the floral transition from vegetative tissues to maturation. Functional annotation of the differentially expressed genes (DEGs) (fold change ≥ 5) by comparison with a close relative, Arabidopsis thaliana, revealed 6552 unigenes (4579 upregulated; 1973 downregulated), including 131 Brassica-specific and 116 functionally known floral Arabidopsis homologs. Additionally, 1723, 236 and 232 DEGs were preferentially expressed in the tissues of STs, FB2, and CPs. These DEGs also included 43 transcription factors, mainly AP2/ERF-ERF, NAC, MADS-MIKC, C2H2, bHLH, and WRKY members. The differential gene expression during flower development induced dramatic changes in activities related to metabolic processes (23.7%), cellular (22.7%) processes, responses to the stimuli (7.5%) and reproduction (1%). A relatively large number of DEGs were observed in STs and were overrepresented by photosynthesis-related activities. Subsequent analysis via semiquantitative RT-PCR, histological analysis performed with in situ hybridization of BrLTP1 and transgenic reporter lines (BrLTP promoter::GUS) of B. rapa ssp. pekinensis supported the spatiotemporal expression patterns. Together, these results suggest that a temporally and spatially regulated process of the selective expression of distinct fractions of the same genome leads to the development of floral organs. Interestingly, most of the differentially expressed floral transcripts were located on chromosomes 3 and 9. This study generated a genome expression atlas of the early floral transition to maturation that represented the flowering regulatory elements of Brassica rapa.
Collapse
|
21
|
Li M, Wang R, Liu Z, Wu X, Wang J. Genome-wide identification and analysis of the WUSCHEL-related homeobox (WOX) gene family in allotetraploid Brassica napus reveals changes in WOX genes during polyploidization. BMC Genomics 2019; 20:317. [PMID: 31023229 PMCID: PMC6482515 DOI: 10.1186/s12864-019-5684-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/11/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND WUSCHEL-related homeobox (WOX) genes encoding plant-specific homeobox (HB) transcription factors play important roles in the growth and development of plants. To date, WOX genes has been identified and analyzed in many polyploids (such as cotton and tobacco), but the evolutionary analysis of them during polyploidization is rare. With the completion of genome sequencing, allotetraploid Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are a good system for studying this question. RESULTS In this study, 52, 25 and 29 WOX genes were identified in allotetraploid B. napus (2n = 4x = 38, AnCn), the An genome donor B. rapa (2n = 2x = 20, Ar) and the Cn genome donor B. oleracea (2n = 2x = 18, Co), respectively. All identified WOX genes in B. napus and its diploid progenitors were divided into three clades, and these genes were selected to perform gene structure and chromosome location analysis. The results showed that at least 70 and 67% of WOX genes maintained the same gene structure and relative position on chromosomes, respectively, indicating that WOX genes in B. napus were highly conserved at the DNA level during polyploidization. In addition, the analysis of duplicated genes and transposable elements (TEs) near WOX genes showed that whole-genome triplication (WGT) events, segmental duplication and abundant TEs played important roles in the expansion of the WOX gene family in B. napus. Moreover, the analysis of the expression profiles of WOX gene pairs with evolutionary relationships suggested that the WOX gene family may have changed at the transcriptional regulation level during polyploidization. CONCLUSIONS The results of this study increased our understanding of the WOX genes in B. napus and its diploid progenitors, providing a rich resource for further study of WOX genes in these species. In addition, the changes in WOX genes during the process of polyploidization were discussed from the aspects of gene number, gene structure, gene relative location and gene expression, which provides a reference for future polyploidization analysis.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Zhengyi Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062 China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|