1
|
Edelmann M, Fan S, De Oliveira T, Goldhardt T, Sartorius D, Midelashvili T, Conrads K, Paul NB, Beißbarth T, Fleischer JR, Blume ML, Bohnenberger H, Josipovic N, Papantonis A, Linnebacher M, Dröge LH, Ghadimi M, Rieken S, Conradi LC. Tumor Vessel Normalization via PFKFB3 Inhibition Alleviates Hypoxia and Increases Tumor Necrosis in Rectal Cancer upon Radiotherapy. CANCER RESEARCH COMMUNICATIONS 2024; 4:2008-2024. [PMID: 39007350 PMCID: PMC11310748 DOI: 10.1158/2767-9764.crc-24-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Treatment of patients with locally advanced rectal cancer (RC) is based on neoadjuvant chemoradiotherapy followed by surgery. In order to reduce the development of therapy resistance, it is necessary to further improve previous treatment approaches. Recent in vivo experimental studies suggested that the reduction of tumor hypoxia by tumor vessel normalization (TVN), through the inhibition of the glycolytic activator PFKFB3, could significantly improve tumor response to therapy. We have evaluated in vitro and in vivo the effects of the PFKFB3 inhibitor 2E-3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) on cell survival, clonogenicity, migration, invasion, and metabolism using colorectal cancer cells, patient-derived tumor organoid (PDO), and xenograft (PDX). 3PO treatment of colorectal cancer cells increased radiation-induced cell death and reduced cancer cell invasion. Moreover, gene set enrichment analysis shows that 3PO is able to alter the metabolic status of PDOs toward oxidative phosphorylation. Additionally, in vivo neoadjuvant treatment with 3PO induced TVN, alleviated tumor hypoxia, and increased tumor necrosis. Our results support PFKFB3 inhibition as a possible future neoadjuvant addition for patients with RC. SIGNIFICANCE Novel therapies to better treat colorectal cancer are necessary to improve patient outcomes. Therefore, in this study, we evaluated the combination of a metabolic inhibitor (3PO) and standard radiotherapy in different experimental settings. We have observed that the addition of 3PO increased radiation effects, ultimately improving tumor cell response to therapy.
Collapse
Affiliation(s)
- Marcus Edelmann
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Shuang Fan
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Tina Goldhardt
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Dorothée Sartorius
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Teona Midelashvili
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Karly Conrads
- Department for Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany.
| | - Niels B. Paul
- Department for Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany.
| | - Tim Beißbarth
- Department for Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany.
| | - Johannes R. Fleischer
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Moritz L. Blume
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Hanibal Bohnenberger
- Institute for Pathology, University Medical Center Göttingen, Göttingen, Germany.
| | - Natasa Josipovic
- Institute for Pathology, University Medical Center Göttingen, Göttingen, Germany.
| | - Argyris Papantonis
- Institute for Pathology, University Medical Center Göttingen, Göttingen, Germany.
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University of Rostock, Rostock, Germany.
| | - Leif H. Dröge
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany.
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Stefan Rieken
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany.
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
2
|
Wiesinger AM, Bigger B, Giugliani R, Scarpa M, Moser T, Lampe C, Kampmann C, Lagler FB. The Inflammation in the Cytopathology of Patients With Mucopolysaccharidoses- Immunomodulatory Drugs as an Approach to Therapy. Front Pharmacol 2022; 13:863667. [PMID: 35645812 PMCID: PMC9136158 DOI: 10.3389/fphar.2022.863667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/31/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases (LSDs), characterized by the accumulation of glycosaminoglycans (GAGs). GAG storage-induced inflammatory processes are a driver of cytopathology in MPS and pharmacological immunomodulation can bring improvements in brain, cartilage and bone pathology in rodent models. This manuscript reviews current knowledge with regard to inflammation in MPS patients and provides hypotheses for the therapeutic use of immunomodulators in MPS. Thus, we aim to set the foundation for a rational repurposing of the discussed molecules to minimize the clinical unmet needs still remaining despite enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Anna-Maria Wiesinger
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- *Correspondence: Anna-Maria Wiesinger,
| | - Brian Bigger
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Roberto Giugliani
- Department of Genetics, Medical Genetics Service and Biodiscovery Laboratory, HCPA, UFRGS, Porto Alegre, Brazil
| | - Maurizio Scarpa
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Regional Coordinating Center for Rare Diseases, University Hospital Udine, Udine, Italy
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christina Lampe
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Department of Child and Adolescent Medicine, Center of Rare Diseases, University Hospitals Giessen/Marburg, Giessen, Germany
| | - Christoph Kampmann
- Department of Pediatric Cardiology, University Hospital Mainz, Mainz, Germany
| | - Florian B. Lagler
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
| |
Collapse
|
3
|
Ten Hoorn S, de Back TR, Sommeijer DW, Vermeulen L. Clinical Value of Consensus Molecular Subtypes in Colorectal Cancer: A Systematic Review and Meta-Analysis. J Natl Cancer Inst 2021; 114:503-516. [PMID: 34077519 PMCID: PMC9002278 DOI: 10.1093/jnci/djab106] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background The consensus molecular subtypes (CMSs) of colorectal cancer (CRC) capture tumor heterogeneity at the gene-expression level. Currently, a restricted number of molecular features are used to guide treatment for CRC. We summarize the evidence on the clinical value of the CMSs. Methods We systematically identified studies in Medline and Embase that evaluated the prognostic and predictive value of CMSs in CRC patients. A random-effect meta-analysis was performed on prognostic data. Predictive data were summarized. Results In local disease, CMS4 tumors were associated with worse overall survival (OS) compared with CMS1 (hazard ratio [HR] = 3.28, 95% confidence interval = 1.27 to 8.47) and CMS2 cancers (HR = 2.60, 95% confidence interval = 1.93 to 3.50). In metastatic disease, CMS1 consistently had worse survival than CMS2-4 (OS HR range = 0.33-0.55; progression-free survival HR range = 0.53-0.89). Adjuvant chemotherapy in stage II and III CRC was most beneficial for OS in CMS2 and CMS3 (HR range = 0.16-0.45) and not effective in CMS4 tumors. In metastatic CMS4 cancers, an irinotecan-based regimen improved outcome compared with oxaliplatin (HR range = 0.31-0.72). The addition of bevacizumab seemed beneficial in CMS1, and anti-epidermal growth factor receptor therapy improved outcome for KRAS wild-type CMS2 patients. Conclusions The CMS classification holds clear potential for clinical use in predicting both prognosis and response to systemic therapy, which seems to be independent of the classifier used. Prospective studies are warranted to support implementation of the CMS taxonomy in clinical practice.
Collapse
Affiliation(s)
- Sanne Ten Hoorn
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, Amsterdam, The Netherlands
| | - Tim R de Back
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, Amsterdam, The Netherlands
| | - Dirkje W Sommeijer
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Flevohospital, Department of Internal Medicine, Hospitaalweg 1, 1315 RA, Almere, The Netherlands
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
4
|
De Oliveira T, Goldhardt T, Edelmann M, Rogge T, Rauch K, Kyuchukov ND, Menck K, Bleckmann A, Kalucka J, Khan S, Gaedcke J, Haubrock M, Beissbarth T, Bohnenberger H, Planque M, Fendt SM, Ackermann L, Ghadimi M, Conradi LC. Effects of the Novel PFKFB3 Inhibitor KAN0438757 on Colorectal Cancer Cells and Its Systemic Toxicity Evaluation In Vivo. Cancers (Basel) 2021; 13:1011. [PMID: 33671096 PMCID: PMC7957803 DOI: 10.3390/cancers13051011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite substantial progress made in the last decades in colorectal cancer (CRC) research, new treatment approaches are still needed to improve patients' long-term survival. To date, the promising strategy to target tumor angiogenesis metabolically together with a sensitization of CRC to chemo- and/or radiotherapy by PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3) inhibition has never been tested. Therefore, initial evaluation and validation of newly developed compounds such as KAN0438757 and their effects on CRC cells are crucial steps preceding to in vivo preclinical studies, which in turn may consolidate new therapeutic targets. MATERIALS AND METHODS The efficiency of KAN0438757 to block PFKFB3 expression and translation in human CRC cells was evaluated by immunoblotting and real-time PCR. Functional in vitro assays assessed the effects of KAN0438757 on cell viability, proliferation, survival, adhesion, migration and invasion. Additionally, we evaluated the effects of KAN0438757 on matched patient-derived normal and tumor organoids and its systemic toxicity in vivo in C57BL6/N mice. RESULTS High PFKFB3 expression is correlated with a worse survival in CRC patients. KAN0438757 reduces PFKFB3 protein expression without affecting its transcriptional regulation. Additionally, a concentration-dependent anti-proliferative effect was observed. The migration and invasion capacity of cancer cells were significantly reduced, independent of the anti-proliferative effect. When treating colonic patient-derived organoids with KAN0438757 an impressive effect on tumor organoids growth was apparent, surprisingly sparing normal colonic organoids. No high-grade toxicity was observed in vivo. CONCLUSION The PFKFB3 inhibitor KAN0438757 significantly reduced CRC cell migration, invasion and survival. Moreover, on patient-derived cancer organoids KAN0438757 showed significant effects on growth, without being overly toxic in normal colon organoids and healthy mice. Our findings strongly encourage further translational studies to evaluate KAN0438757 in CRC therapy.
Collapse
Affiliation(s)
- Tiago De Oliveira
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (T.D.O.); (T.G.); (M.E.); (N.D.K.); (J.G.); (M.G.)
| | - Tina Goldhardt
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (T.D.O.); (T.G.); (M.E.); (N.D.K.); (J.G.); (M.G.)
| | - Marcus Edelmann
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (T.D.O.); (T.G.); (M.E.); (N.D.K.); (J.G.); (M.G.)
| | - Torben Rogge
- Institute of Organic and Biomolecular Chemistry, Tammannstraβe 2, 37077 Göttingen, Germany; (T.R.); (K.R.); (L.A.)
| | - Karsten Rauch
- Institute of Organic and Biomolecular Chemistry, Tammannstraβe 2, 37077 Göttingen, Germany; (T.R.); (K.R.); (L.A.)
| | - Nikola Dobrinov Kyuchukov
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (T.D.O.); (T.G.); (M.E.); (N.D.K.); (J.G.); (M.G.)
| | - Kerstin Menck
- Clinic of Hematology and Medical Oncology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany; (K.M.); (A.B.)
- Department of Medicine Medical Clinic A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Annalen Bleckmann
- Clinic of Hematology and Medical Oncology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany; (K.M.); (A.B.)
- Department of Medicine Medical Clinic A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-Aarhus C, 8000 Aarhus, Denmark;
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus, Denmark
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark;
| | - Jochen Gaedcke
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (T.D.O.); (T.G.); (M.E.); (N.D.K.); (J.G.); (M.G.)
| | - Martin Haubrock
- Institute of Medical Bioinformatics, University Medical Center Göttingen, Goldschmidtstraße 1, 37077 Göttingen, Germany; (M.H.); (T.B.)
| | - Tim Beissbarth
- Institute of Medical Bioinformatics, University Medical Center Göttingen, Goldschmidtstraße 1, 37077 Göttingen, Germany; (M.H.); (T.B.)
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany;
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; (M.P.); (S.-M.F.)
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; (M.P.); (S.-M.F.)
| | - Lutz Ackermann
- Institute of Organic and Biomolecular Chemistry, Tammannstraβe 2, 37077 Göttingen, Germany; (T.R.); (K.R.); (L.A.)
| | - Michael Ghadimi
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (T.D.O.); (T.G.); (M.E.); (N.D.K.); (J.G.); (M.G.)
| | - Lena-Christin Conradi
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (T.D.O.); (T.G.); (M.E.); (N.D.K.); (J.G.); (M.G.)
| |
Collapse
|
5
|
Shahi Thakuri P, Lamichhane A, Singh S, Gupta M, Luker GD, Tavana H. Modeling Adaptive Resistance of KRAS Mutant Colorectal Cancer to MAPK Pathway Inhibitors with a Three-Dimensional Tumor Model. ACS Pharmacol Transl Sci 2020; 3:1176-1187. [PMID: 33344895 DOI: 10.1021/acsptsci.0c00115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Single-agent drug treatment of KRASmut colorectal cancers is often ineffective because the activation of compensatory signaling pathways leads to drug resistance. To mimic cyclic chemotherapy treatments of patients, we showed that intermittent treatments of 3D tumor spheroids of KRASmut colorectal cancer cells with inhibitors of mitogen-activated protein kinase (MAPK) signaling pathway temporarily suppressed growth of spheroids. However, the efficacy of successive single-agent treatments was significantly reduced. Molecular analysis showed compensatory activation of PI3K/AKT and STAT kinases and EGFR family proteins. To overcome the adaptation of cancer cells to MAPK pathway inhibitors, we treated tumor spheroids with a combination of MEK and EGFR inhibitors. This approach significantly blocked signaling of MAPK and PI3K/AKT pathways and prevented the growth of spheroids, but it was not effective against STAT signaling. Although the combination treatment blocked the matrix invasion of DLD1 cells, additional treatments with STAT inhibitors were necessary to prevent invasiveness of HCT116 cells. Overall, our drug resistance model elucidated the mechanisms of treatment-induced growth and invasiveness of cancer cells and allowed design-driven testing and identifying of effective treatments to suppress these phenotypes.
Collapse
Affiliation(s)
- Pradip Shahi Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Astha Lamichhane
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Sunil Singh
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Megha Gupta
- Department of Arts and Sciences, The University of Akron, Akron, Ohio 44325, United States
| | - Gary D Luker
- Department of Radiology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States.,Department of Radiology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States.,Department of Radiology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
6
|
Dienstmann R, Connor K, Byrne AT. Precision Therapy in RAS Mutant Colorectal Cancer. Gastroenterology 2020; 158:806-811. [PMID: 31972237 DOI: 10.1053/j.gastro.2019.12.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/18/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
| | - Kate Connor
- Royal College of Surgeons in Ireland, Dept of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Dublin 2, Ireland
| | - Annette T Byrne
- Royal College of Surgeons in Ireland, Dept of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Dublin 2, Ireland
| | | |
Collapse
|
7
|
Pharmacological Inhibition of TFF3 Enhances Sensitivity of CMS4 Colorectal Carcinoma to 5-Fluorouracil through Inhibition of p44/42 MAPK. Int J Mol Sci 2019; 20:ijms20246215. [PMID: 31835445 PMCID: PMC6940926 DOI: 10.3390/ijms20246215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
Increased expression of trefoil factor 3 (TFF3) has been reported in colorectal carcinoma (CRC), being correlated with distant metastasis and poor clinical outcomes. Amongst the CRC subtypes, mesenchymal (CMS4) CRC is associated with the worst survival outcome. Herein, the functional roles of TFF3 and the pharmacological inhibition of TFF3 by a novel specific small molecule TFF3 inhibitor—2-amino-4-(4-(6-fluoro-5-methylpyridin-3-yl)phenyl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carbonitrile (AMPC) in CMS4 CRC was explored. Forced expression of TFF3 in CMS4 CRC cells promoted cell proliferation, cell survival, foci formation, invasion, migration, cancer stem cell like behaviour and growth in 3D Matrigel. In contrast, siRNA-mediated depletion of TFF3 or AMPC inhibition of TFF3 in CMS4 CRC cells decreased oncogenic behaviour as indicated by the above cell function assays. AMPC also inhibited tumour growth in vivo. The TFF3-stimulated oncogenic behaviour of CMS4 CRC cells was dependent on TFF3 activation of the p44/42 MAPK (ERK1/2) pathway. Furthermore, the forced expression of TFF3 decreased the sensitivity of CMS4 CRC cells to 5-fluorouracil (5-FU); while depleted TFF3 expression enhanced 5-FU sensitivity in CMS4 CRC cells. 5-FU treatment induced TFF3 expression in CMS4 CRC cells. AMPC, when used in combination with 5-FU in CMS4 CRC cells exhibited a synergistic inhibitory effect. In summary, this study provides functional evidence for TFF3 as a therapeutic target in CMS4 CRC.
Collapse
|
8
|
Booth L, Poklepovic A, Dent P. Not the comfy chair! Cancer drugs that act against multiple active sites. Expert Opin Ther Targets 2019; 23:893-901. [PMID: 31709855 DOI: 10.1080/14728222.2019.1691526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Discoveries of novel signal transduction pathways in the 1990s stimulated drug companies to develop small molecule tyrosine kinase and serine / threonine kinase inhibitors which were based on catalytic site inhibition. All kinases bind ATP and catalyze phosphate transfer and, therefore, inhibitors that block ATP binding and its metabolism would be predicted to have a known on-target specificity but were also likely to have many unknown or unrecognized targets due to similarities in all ATP binding pockets. This on-target off-target biology of kinase inhibitors, which exhibit a "signal" in the clinic, means that therapeutically valuable agents are acting through unknown biological processes to mediate their anti-tumor effects.Areas covered: This perspective discusses drug therapies whose actions cannot be explained by their actions on the original targeted kinase; it concludes with a methodology to screen for changes in cell signaling via in-cell western immunoblotting.Expert opinion: Most malignancies do not depend on survival signaling from one specific mutated proto-oncogene, especially for previously treated malignancies where multiple clonal variants of the primary tumor have evolved. Hence, the concept of a highly "personalized medicine" approach fails because it is unlikely that a specific therapy will kill all clonal variants of the tumor.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|