1
|
Wachowski MR, Majos M, Milewska-Jędrzejczak M, Głąbiński A, Majos A. Brain neuroplasticity in multiple sclerosis patients in functional magnetic resonance imaging. Part 1: Comparison with healthy volunteers. Pol J Radiol 2024; 89:e308-e315. [PMID: 39040563 PMCID: PMC11262016 DOI: 10.5114/pjr/188633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose The aim of this study was to assess the activity of motor cortical areas and the resting brain activity in a group of multiple sclerosis (MS) patients compared to a group of healthy individuals according to task-based functional magnetic resonance imaging (t-fMRI), resting state functional MRI (rs-fMRI), and volumetric MRI studies. Material and methods The study enrolled 28 MS patients and 20 healthy volunteers who underwent MRI examinations. Primary motor cortex (M1), premotor area (PMA), supplementary motor area, as well as resting state networks (RSN's) and volumes of selected brain structures were subjected to a detailed analysis. Results In MS patients, a motor task more often resulted in the activation of ipsilateral M1 cortex (observed in 39% of the studied group) as well as the PMA cortex (observed in 32% of MS patients). No differences in resting brain activity were found between the studied groups. Significant differences were observed in volumetric parameters of the total brain volume (healthy volunteers vs. MS patients, respectively): (1197 cm³ vs. 1150 cm³) and volumes of the grey matter (517 cm³ vs. 481 cm³), cerebellum (150 cm³ vs. 136 cm³), thalamus (16.3 cm³ vs. 12.6 cm³), putamen (8.9 cm³ vs. 7.7 cm³), and globus pallidus (4.57 cm³ vs. 3.57 cm³). Conclusions In the MS patients, the motor task required significantly more frequent activation of the primary and secondary ipsilateral motor cortex compared to the group of healthy volunteers. The rs-fMRI study showed no differences in activity patterns within the RSN's. Differences in the total cerebral volume and the volume of the grey matter, cerebellum, thalamus, putamen, and globus pallidus were observed.
Collapse
Affiliation(s)
| | - Marcin Majos
- II Department of Radiology and Diagnostic Imaging, Medical University of Lodz, Lodz, Poland
| | | | - Andrzej Głąbiński
- Department of Neurology and Stroke, Medical University of Lodz, Lodz, Poland
| | - Agata Majos
- II Department of Radiology and Diagnostic Imaging, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Kampaite A, Gustafsson R, York EN, Foley P, MacDougall NJJ, Bastin ME, Chandran S, Waldman AD, Meijboom R. Brain connectivity changes underlying depression and fatigue in relapsing-remitting multiple sclerosis: A systematic review. PLoS One 2024; 19:e0299634. [PMID: 38551913 PMCID: PMC10980255 DOI: 10.1371/journal.pone.0299634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/13/2024] [Indexed: 04/01/2024] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune disease affecting the central nervous system, characterised by neuroinflammation and neurodegeneration. Fatigue and depression are common, debilitating, and intertwined symptoms in people with relapsing-remitting MS (pwRRMS). An increased understanding of brain changes and mechanisms underlying fatigue and depression in RRMS could lead to more effective interventions and enhancement of quality of life. To elucidate the relationship between depression and fatigue and brain connectivity in pwRRMS we conducted a systematic review. Searched databases were PubMed, Web-of-Science and Scopus. Inclusion criteria were: studied participants with RRMS (n ≥ 20; ≥ 18 years old) and differentiated between MS subtypes; published between 2001-01-01 and 2023-01-18; used fatigue and depression assessments validated for MS; included brain structural, functional magnetic resonance imaging (fMRI) or diffusion MRI (dMRI). Sixty studies met the criteria: 18 dMRI (15 fatigue, 5 depression) and 22 fMRI (20 fatigue, 5 depression) studies. The literature was heterogeneous; half of studies reported no correlation between brain connectivity measures and fatigue or depression. Positive findings showed that abnormal cortico-limbic structural and functional connectivity was associated with depression. Fatigue was linked to connectivity measures in cortico-thalamic-basal-ganglial networks. Additionally, both depression and fatigue were related to altered cingulum structural connectivity, and functional connectivity involving thalamus, cerebellum, frontal lobe, ventral tegmental area, striatum, default mode and attention networks, and supramarginal, precentral, and postcentral gyri. Qualitative analysis suggests structural and functional connectivity changes, possibly due to axonal and/or myelin loss, in the cortico-thalamic-basal-ganglial and cortico-limbic network may underlie fatigue and depression in pwRRMS, respectively, but the overall results were inconclusive, possibly explained by heterogeneity and limited number of studies. This highlights the need for further studies including advanced MRI to detect more subtle brain changes in association with depression and fatigue. Future studies using optimised imaging protocols and validated depression and fatigue measures are required to clarify the substrates underlying these symptoms in pwRRMS.
Collapse
Affiliation(s)
- Agniete Kampaite
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecka Gustafsson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Elizabeth N. York
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Foley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Niall J. J. MacDougall
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Mark E. Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam D. Waldman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Rozanna Meijboom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Mapping grip-force related brain activity after a fatiguing motor task in multiple sclerosis. Neuroimage Clin 2022; 36:103147. [PMID: 36030719 PMCID: PMC9434128 DOI: 10.1016/j.nicl.2022.103147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Motor fatigue is common in multiple sclerosis (MS), but its pathophysiology is still poorly understood. Here we used functional magnetic resonance imaging (fMRI) to delineate how the acute induction of motor fatigue alters functional activity of the motor system and how these activity changes are related to motor fatigue. METHOD Forty-four right-handed mildly disabled patients with relapsing-remitting MS and 25 healthy controls performed a maximal tonic precision grip with their right hand until they developed motor fatigue. Before and after the fatiguing task, participants performed a non-fatiguing tonic grip force task, producing 15-20% of their maximum grip force based on visual feedback. Task related brain activity was mapped with blood-oxygen level dependent fMRI at 3 T. Statistical parametric mapping was used to identify relative changes in task-related activation from the pre-fatigue to the recovery MRI session. RESULTS Following fatigue induction, task performance was perturbed in both groups, and task-related activation increased in the right (ipsilateral) primary motor hand area. In patients with MS, task-related activity increased bilaterally during the recovery phase in the ventrolateral portion of the middle putamen and lateral prefrontal cortex relative to controls. The more patients increased task-related activity in left dorsal premotor cortex after the fatiguing task, the less they experienced motor fatigue during daily life. CONCLUSION Patients with MS show enhanced functional engagement of the associative cortico-basal ganglia loop following acute induction of motor fatigue in the contralateral hand. This may reflect increased mental effort to generate movements in the recovery phase after fatigue induction. The ability to recruit the contralateral dorsal premotor cortex after fatigue induction may constitute a protective mechanism against experiencing motor fatigue in everyday life.
Collapse
|
4
|
Brain Structural and Functional Alterations in Multiple Sclerosis-Related Fatigue: A Systematic Review. Neurol Int 2022; 14:506-535. [PMID: 35736623 PMCID: PMC9228847 DOI: 10.3390/neurolint14020042] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
Fatigue is one of the most disabling symptoms of multiple sclerosis (MS); it influences patients’ quality of life. The etiology of fatigue is complex, and its pathogenesis is still unclear and debated. The objective of this review was to describe potential brain structural and functional dysfunctions underlying fatigue symptoms in patients with MS. To reach this purpose, a systematic review was conducted of published studies comparing functional brain activation and structural brain in MS patients with and without fatigue. Electronic databases were searched until 24 February 2021. The structural and functional outcomes were extracted from eligible studies and tabulated. Fifty studies were included: 32 reported structural brain differences between patients with and without fatigue; 14 studies described functional alterations in patients with fatigue compared to patients without it; and four studies showed structural and functional brain alterations in patients. The results revealed structural and functional abnormalities that could correlate to the symptom of fatigue in patients with MS. Several studies reported the differences between patients with fatigue and patients without fatigue in terms of conventional magnetic resonance imaging (MRI) outcomes and brain atrophy, specifically in the thalamus. Functional studies showed abnormal activation in the thalamus and in some regions of the sensorimotor network in patients with fatigue compared to patients without it. Patients with fatigue present more structural and functional alterations compared to patients without fatigue. Specifically, abnormal activation and atrophy of the thalamus and some regions of the sensorimotor network seem linked to fatigue.
Collapse
|
5
|
Rocca MA, Schoonheim MM, Valsasina P, Geurts JJG, Filippi M. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin 2022; 35:103076. [PMID: 35691253 PMCID: PMC9194954 DOI: 10.1016/j.nicl.2022.103076] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 01/12/2023]
Abstract
Functional MRI is able to detect adaptive and maladaptive abnormalities at different MS stages. Increased fMRI activity is a feature of early MS, while progressive exhaustion of adaptive mechanisms is detected later on in the disease. Collapse of long-range connections and impaired hub integration characterize MS network reorganization. Time-varying connectivity analysis provides useful and complementary pieces of information to static functional connectivity. New perspectives might be the use of multimodal MRI and artificial intelligence.
Multiple sclerosis (MS) is a neurological disorder affecting the central nervous system and features extensive functional brain changes that are poorly understood but relate strongly to clinical impairments. Functional magnetic resonance imaging (fMRI) is a non-invasive, powerful technique able to map activity of brain regions and to assess how such regions interact for an efficient brain network. FMRI has been widely applied to study functional brain changes in MS, allowing to investigate functional plasticity consequent to disease-related structural injury. The first studies in MS using active fMRI tasks mainly aimed to study such plastic changes by identifying abnormal activity in salient brain regions (or systems) involved by the task. In later studies the focus shifted towards resting state (RS) functional connectivity (FC) studies, which aimed to map large-scale functional networks of the brain and to establish how MS pathology impairs functional integration, eventually leading to the hypothesized network collapse as patients clinically progress. This review provides a summary of the main findings from studies using task-based and RS fMRI and illustrates how functional brain alterations relate to clinical disability and cognitive deficits in this condition. We also give an overview of longitudinal studies that used task-based and RS fMRI to monitor disease evolution and effects of motor and cognitive rehabilitation. In addition, we discuss the results of studies using newer technologies involving time-varying FC to investigate abnormal dynamism and flexibility of network configurations in MS. Finally, we show some preliminary results from two recent topics (i.e., multimodal MRI analysis and artificial intelligence) that are receiving increasing attention. Together, these functional studies could provide new (conceptual) insights into disease stage-specific mechanisms underlying progression in MS, with recommendations for future research.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
6
|
Bauer C, Dyrby TB, Sellebjerg F, Madsen KS, Svolgaard O, Blinkenberg M, Siebner HR, Andersen KW. Motor fatigue is associated with asymmetric connectivity properties of the corticospinal tract in multiple sclerosis. Neuroimage Clin 2020; 28:102393. [PMID: 32916467 PMCID: PMC7490847 DOI: 10.1016/j.nicl.2020.102393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Multiple Sclerosis (MS) is characterized by demyelination and neurodegeneration of the central nervous system and causes excessive fatigue in more than 80% of the patients. The pathophysiologic mechanisms causing fatigue are still largely unknown. In 46 right-handed patients with relapsing-remitting MS and 25 right-handed controls, we performed diffusion MRI and applied streamline based probabilistic tractography to derive unilateral anatomical connectivity maps for the white matter of the right and left hemispheres. The maps provide an indication how often a streamline has passed through a given voxel. Since tractography based anatomical connectivity mapping (ACM) is sensitive to disease-induced changes in anatomical connectivity, we used ACM to test whether motor fatigue is associated with altered ipsi-hemispherical anatomical connectivity in the major motor output pathway, the corticospinal tract (CST). Patients had higher mean ACM values in the CST than healthy controls. This indicated that a higher number of streamlines, starting from voxels in the same hemisphere, travelled through the CST and may reflect an accumulated disease-induced disintegration of CST. The motor subscale of the Fatigue Scale for Motor and Cognitive functions (FSMCMOTOR) was used to define sub-groups with (n = 29, FSMCMOTOR score ≥ 27) and without motor fatigue (n = 17, FSMSMOTOR score ≤ 26). Patients without fatigue only showed higher ACM values in right CST, while mean ACM values were unaltered in left CST. The higher the mean ACM values in the left relative to the right CST, the more patients reported motor fatigue. Left-right asymmetry in anatomical connectivity outside the CST did not scale with individual motor fatigue. Our results link lateralized changes of tractography-based microstructural properties in the CST with motor fatigue in relapsing-remitting MS.
Collapse
Affiliation(s)
- Christian Bauer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Radiography, Department of Technology, University College Copenhagen, Copenhagen, Denmark
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Finn Sellebjerg
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Danish Multiple Sclerosis Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Radiography, Department of Technology, University College Copenhagen, Copenhagen, Denmark
| | - Olivia Svolgaard
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Morten Blinkenberg
- Danish Multiple Sclerosis Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Kasper Winther Andersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| |
Collapse
|
7
|
Ruiu E, Dubbioso R, Madsen KH, Svolgaard O, Raffin E, Andersen KW, Karabanov AN, Siebner HR. Probing Context-Dependent Modulations of Ipsilateral Premotor-Motor Connectivity in Relapsing-Remitting Multiple Sclerosis. Front Neurol 2020; 11:193. [PMID: 32431655 PMCID: PMC7214689 DOI: 10.3389/fneur.2020.00193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Objective: We employed dual-site TMS to test whether ipsilateral functional premotor-motor connectivity is altered in relapsing-remitting Multiple Sclerosis (RR-MS) and is related to central fatigue. Methods: Twelve patients with RR-MS and 12 healthy controls performed a visually cued Pinch-NoPinch task with their right hand. During the reaction time (RT) period of Pinch and No-Pinch trials, single-site TMS was applied to the left primary motor cortex (M1) or dual-site TMS was applied to the ipsilateral dorsal premotor cortex (PMd) and to M1. We traced context-dependent changes of corticospinal excitability and premotor–motor connectivity by measuring Motor-Evoked Potentials (MEPs) in the right first dorsal interosseus muscle. Central fatigue was evaluated with the Fatigue Scale for Motor and Cognitive Functions (FSMS). Results: In both groups, single-pulse TMS revealed a consistent increase in mean MEP amplitude during the Reaction Time (RT) period relative to a resting condition. Task-related corticospinal facilitation increased toward the end of the RT period in Pinch trials, while it decreased in No-Pinch trials. Again, this modulation of MEP facilitation by trial type was comparable in patients and controls. Dual-site TMS showed no significant effect of a conditioning PMd pulse on ipsilateral corticospinal excitability during the RT period in either group. However, patients showed a trend toward a relative attenuation in functional PMd-M1 connectivity at the end of the RT period in No-Pinch trials, which correlated positively with the severity of motor fatigue (r = 0.69; p = 0.007). Conclusions: Dynamic regulation of corticospinal excitability and ipsilateral PMd-M1 connectivity is preserved in patients with RR-MS. MS-related fatigue scales positively with an attenuation of premotor-to-motor functional connectivity during cued motor inhibition. Significance: The temporal, context-dependent modulation of ipsilateral premotor-motor connectivity, as revealed by dual-site TMS of ipsilateral PMd and M1, constitutes a promising neurophysiological marker of fatigue in MS.
Collapse
Affiliation(s)
- Elisa Ruiu
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Department of Neurology, University Hospital of Sassari, Sassari, Italy
| | - Raffaele Dubbioso
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Naples, Italy
| | - Kristoffer Hougaard Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Olivia Svolgaard
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark
| | - Estelle Raffin
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Brain Mind Institute and Centre of Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Kasper Winther Andersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark
| | - Anke Ninija Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.,Faculty of Medical and Health Sciences, Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|