1
|
Strang BL. Toward inhibition of human cytomegalovirus replication with compounds targeting cellular proteins. J Gen Virol 2022; 103. [PMID: 36215160 DOI: 10.1099/jgv.0.001795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antiviral therapy for human cytomegalovirus (HCMV) currently relies upon direct-acting antiviral drugs. However, it is now well known that these drugs have shortcomings, which limit their use. Here I review the identification and investigation of compounds targeting cellular proteins that have anti-HCMV activity and could supersede those anti-HCMV drugs currently in use. This includes discussion of drug repurposing, for example the use of artemisinin compounds, and discussion of new directions to identify compounds that target cellular factors in HCMV-infected cells, for example screening of kinase inhibitors. In addition, I highlight developing areas such as the use of machine learning and emphasize how interaction with fields outside virology will be critical for development of anti-HCMV compounds.
Collapse
Affiliation(s)
- Blair L Strang
- Institute for Infection & Immunity, St George's, University of London, London, UK
| |
Collapse
|
2
|
Abstract
Human herpesviruses are large double-stranded DNA viruses belonging to the Herpesviridae family. The main characteristics of these viruses are their ability to establish a lifelong latency into the host with a potential to reactivate periodically. Primary infections and reactivations with herpesviruses are responsible for a large spectrum of diseases and may result in severe complications in immunocompromised patients. The viral DNA polymerase is a key enzyme in the replicative cycle of herpesviruses, and the target of most antiviral agents (i.e., nucleoside, nucleotide and pyrophosphate analogs). However, long-term prophylaxis and treatment with these antivirals may lead to the emergence of drug-resistant isolates harboring mutations in genes encoding viral enzymes that phosphorylate drugs (nucleoside analogs) and/or DNA polymerases, with potential cross-resistance between the different analogs. Drug resistance mutations mainly arise in conserved regions of the polymerase and exonuclease functional domains of these enzymes. In the polymerase domain, mutations associated with resistance to nucleoside/nucleotide analogs may directly or indirectly affect drug binding or incorporation into the primer strand, or increase the rate of extension of DNA to overcome chain termination. In the exonuclease domain, mutations conferring resistance to nucleoside/nucleotide analogs may reduce the rate of excision of incorporated drug, or continue DNA elongation after drug incorporation without excision. Mutations associated with resistance to pyrophosphate analogs may alter drug binding or the conformational changes of the polymerase domain required for an efficient activity of the enzyme. Novel herpesvirus inhibitors with a potent antiviral activity against drug-resistant isolates are thus needed urgently.
Collapse
Affiliation(s)
| | - Guy Boivin
- CHU de Québec-Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
3
|
Kalogirou AS, East MP, Laitinen T, Torrice CD, Maffuid KA, Drewry DH, Koutentis PA, Johnson GL, Crona DJ, Asquith CRM. Synthesis and Evaluation of Novel 1,2,6-Thiadiazinone Kinase Inhibitors as Potent Inhibitors of Solid Tumors. Molecules 2021; 26:molecules26195911. [PMID: 34641454 PMCID: PMC8513058 DOI: 10.3390/molecules26195911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
A focused series of substituted 4H-1,2,6-thiadiazin-4-ones was designed and synthesized to probe the anti-cancer properties of this scaffold. Insights from previous kinase inhibitor programs were used to carefully select several different substitution patterns. Compounds were tested on bladder, prostate, pancreatic, breast, chordoma, and lung cancer cell lines with an additional skin fibroblast cell line as a toxicity control. This resulted in the identification of several low single digit micro molar compounds with promising therapeutic windows, particularly for bladder and prostate cancer. A number of key structural features of the 4H-1,2,6-thiadiazin-4-one scaffold are discussed that show promising scope for future improvement.
Collapse
Affiliation(s)
- Andreas S. Kalogirou
- Department of Life Sciences, School of Sciences, European University Cyprus, 6 Diogenis Str., Engomi, P.O. Box 22006, Nicosia 1516, Cyprus
- Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus;
- Correspondence: (A.S.K.); (C.R.M.A.); Tel.: +357-22-559655 (A.S.K.); +1-919-491-3177 (C.R.M.A.)
| | - Michael P. East
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (M.P.E.); (G.L.J.)
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Chad D. Torrice
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (C.D.T.); (K.A.M.); (D.J.C.)
| | - Kaitlyn A. Maffuid
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (C.D.T.); (K.A.M.); (D.J.C.)
| | - David H. Drewry
- Structural Genomics Consortium, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA;
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Gary L. Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (M.P.E.); (G.L.J.)
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel J. Crona
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (C.D.T.); (K.A.M.); (D.J.C.)
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher R. M. Asquith
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (M.P.E.); (G.L.J.)
- Correspondence: (A.S.K.); (C.R.M.A.); Tel.: +357-22-559655 (A.S.K.); +1-919-491-3177 (C.R.M.A.)
| |
Collapse
|
4
|
Piret J, Boivin G. Antiviral Drugs Against Herpesviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:1-30. [PMID: 34258735 DOI: 10.1007/978-981-16-0267-2_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of the nucleoside analogue, acyclovir, represented a milestone in the management of infections caused by herpes simplex virus and varicella-zoster virus. Ganciclovir, another nucleoside analogue, was then used for the management of systemic and organ-specific human cytomegalovirus diseases. The pyrophosphate analogue, foscarnet, and the nucleotide analogue, cidofovir, have been approved subsequently and constitute the second-line antiviral drugs. However, the viral DNA polymerase is the ultimate target of all these antiviral agents with a possible emergence of cross-resistance between these drugs. Recently, letermovir that targets the viral terminase complex was approved for the prophylaxis of human cytomegalovirus infections in hematopoietic stem cell transplant recipients. Other viral targets such as the protein kinase and the helicase-primase complex are also evaluated for the development of novel potent inhibitors against herpesviruses.
Collapse
Affiliation(s)
| | - Guy Boivin
- CHU de Québec-Laval University, Quebec City, QC, Canada.
| |
Collapse
|