1
|
Inoue Y, Kumagai K, Ishikawa K, Kato I, Kusaba Y, Naka T, Nagashima K, Choe H, Ike H, Kobayashi N, Inaba Y. Increased Wnt5a/ROR2 signaling is associated with chondrogenesis in meniscal degeneration. J Orthop Res 2024; 42:1880-1889. [PMID: 38440852 DOI: 10.1002/jor.25825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
The aim of the present study was to investigate the association between chondrogenic differentiation and Wnt signal expression in the degenerative process of the human meniscus. Menisci were obtained from patients with and without knee osteoarthritis (OA), and degeneration was histologically assessed using a grading system. Immunohistochemistry, real-time polymerase chain reaction (PCR), and Western blot analysis were performed to examine the expressions of chondrogenic markers and of the components of Wnt signaling. Histological analyses showed that meniscal degeneration involved a transition from a fibroblastic to a chondrogenic phenotype with the upregulation of SOX9, collagen type II, collagen type XI, and aggrecan, which were associated with increased Wnt5a and ROR2 and decreased TCF7 expressions. OA menisci showed significantly higher expressions of Wnt5a and ROR2 and significantly lower expressions of AXIN2 and TCF7 than non-OA menisci on real-time PCR and Western blot analysis. These results potentially demonstrated that increased expression of Wnt5a/ROR2 signaling promoted chondrogenesis with decreased expression in downstream Wnt/β-catenin signaling. This study provides insights into the role of Wnt signaling in the process of meniscal degeneration, shifting to a chondrogenic phenotype. The findings suggested that the increased expression of Wnt5a/ROR2 and decreased expression of the downstream target of Wnt/β-catenin signaling are associated with chondrogenesis in meniscal degeneration.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ken Kumagai
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kimi Ishikawa
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Youhei Kusaba
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takuma Naka
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kiyotaka Nagashima
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hyonmin Choe
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiroyuki Ike
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naomi Kobayashi
- Department of Orthopaedic Surgery, Yokohama City University Medical Center, Yokohama, Japan
| | - Yutaka Inaba
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
2
|
Yambe S, Yoshimoto Y, Ikeda K, Maki K, Takimoto A, Tokuyama A, Higuchi S, Yu X, Uchibe K, Miura S, Watanabe H, Sakuma T, Yamamoto T, Tanimoto K, Kondoh G, Kasahara M, Mizoguchi T, Docheva D, Adachi T, Shukunami C. Sclerostin modulates mineralization degree and stiffness profile in the fibrocartilaginous enthesis for mechanical tissue integrity. Front Cell Dev Biol 2024; 12:1360041. [PMID: 38895158 PMCID: PMC11183276 DOI: 10.3389/fcell.2024.1360041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 06/21/2024] Open
Abstract
Fibrocartilaginous entheses consist of tendons, unmineralized and mineralized fibrocartilage, and subchondral bone, each exhibiting varying stiffness. Here we examined the functional role of sclerostin, expressed in mature mineralized fibrochondrocytes. Following rapid mineralization of unmineralized fibrocartilage and concurrent replacement of epiphyseal hyaline cartilage by bone, unmineralized fibrocartilage reexpanded after a decline in alkaline phosphatase activity at the mineralization front. Sclerostin was co-expressed with osteocalcin at the base of mineralized fibrocartilage adjacent to subchondral bone. In Scx-deficient mice with less mechanical loading due to defects of the Achilles tendon, sclerostin+ fibrochondrocyte count significantly decreased in the defective enthesis where chondrocyte maturation was markedly impaired in both fibrocartilage and hyaline cartilage. Loss of the Sost gene, encoding sclerostin, elevated mineral density in mineralized zones of fibrocartilaginous entheses. Atomic force microscopy analysis revealed increased fibrocartilage stiffness. These lines of evidence suggest that sclerostin in mature mineralized fibrochondrocytes acts as a modulator for mechanical tissue integrity of fibrocartilaginous entheses.
Collapse
Affiliation(s)
- Shinsei Yambe
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazutaka Ikeda
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Orthodontics and Craniofacial Developmental Biology, Applied Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koichiro Maki
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Aki Takimoto
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Shinnosuke Higuchi
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Xinyi Yu
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenta Uchibe
- Department of Maxillofacial Anatomy and Neuroscience, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigenori Miura
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Applied Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Tsuboi E, Asakawa Y, Hirose N, Yanoshita M, Sumi C, Takano M, Onishi A, Nishiyama S, Kubo N, Kita D, Tanimoto K. The role of semaphorin 3A on chondrogenic differentiation. In Vitro Cell Dev Biol Anim 2024; 60:609-615. [PMID: 38727898 PMCID: PMC11286676 DOI: 10.1007/s11626-024-00909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/03/2024] [Indexed: 07/31/2024]
Abstract
Osteoblast-derived semaphorin3A (Sema3A) has been reported to be involved in bone protection, and Sema3A knockout mice have been reported to exhibit chondrodysplasia. From these reports, Sema3A is considered to be involved in chondrogenic differentiation and skeletal formation, but there are many unclear points about its function and mechanism in chondrogenic differentiation. This study investigated the pharmacological effects of Sema3A in chondrogenic differentiation. The amount of Sema3A secreted into the culture supernatant was measured using an enzyme-linked immunosorbent assay. The expression of chondrogenic differentiation-related factors, such as Type II collagen (COL2A1), Aggrecan (ACAN), hyaluronan synthase 2 (HAS2), SRY-box transcription factor 9 (Sox9), Runt-related transcription factor 2 (Runx2), and Type X collagen (COL10A1) in ATDC5 cells treated with Sema3A (1,10 and 100 ng/mL) was examined using real-time reverse transcription polymerase chain reaction. Further, to assess the deposition of total glycosaminoglycans during chondrogenic differentiation, ATDC5 cells were stained with Alcian Blue. Moreover, the amount of hyaluronan in the culture supernatant was measured by enzyme-linked immunosorbent assay. The addition of Sema3A to cultured ATDC5 cells increased the expression of Sox9, Runx2, COL2A1, ACAN, HAS2, and COL10A1 during chondrogenic differentiation. Moreover, it enhanced total proteoglycan and hyaluronan synthesis. Further, Sema3A was upregulated in the early stages of chondrogenic differentiation, and its secretion decreased later. Sema3A increases extracellular matrix production and promotes chondrogenic differentiation. To the best of our knowledge, this is the first study to demonstrate the role of Sema3A on chondrogenic differentiation.
Collapse
Affiliation(s)
- Eri Tsuboi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Yuki Asakawa
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Naoto Hirose
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
| | - Makoto Yanoshita
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Chikako Sumi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Mami Takano
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Azusa Onishi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Sayuri Nishiyama
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Naoki Kubo
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Daiki Kita
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
4
|
O'Donohue AK, Xiao Y, Lee LR, Schofield T, Cheng TL, Munns CF, Baldock PA, Schindeler A. Targeted postnatal knockout of Sclerostin using a bone-targeted adeno-associated viral vector increases bone anabolism and decreases canalicular density. Bone 2023; 167:116636. [PMID: 36462771 DOI: 10.1016/j.bone.2022.116636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE The creation of murine gene knockout models to study bone gene functions often requires the resource intensive crossbreeding of Cre transgenic and gene-floxed strains. The developmental versus postnatal roles of genes can be difficult to discern in such models. For example, embryonic deletion of the Sclerostin (Sost) gene establishes a high-bone mass phenotype in neonatal mice that may impact on future bone growth. To generate a postnatal skeletal knockout of Sost in adult mice, this study used a single injection of a bone-targeted recombinant adeno-associated virus (rAAV) vector. METHODS 8-week-old Sostflox/flox mice were injected with saline (control) or a single injection containing 5 × 1011 vg AAV8-Sp7-Cre vector. Ai9 fluorescent Cre reporter mice were dosed in parallel to confirm targeting efficiency. After 6 weeks, detailed bone analysis was performed via microCT, biomechanical testing, and bone histology on vertebral and long bone specimens. RESULTS The AAV8-Sp7-Cre vector induced widespread persistent recombination in the bone compartment. Regional microCT analyses revealed significant increases in bone with vector treatment. In the L3 vertebrae, Sostflox/flox:AAV-Cre showed a 22 % increase in bone volume and 21 % in trabecular bone fraction compared to controls; this translated to a 17 % increase in compressive strength. In the tibiae, Sostflox/flox:AAV-Cre led to small but statistically significant increases in cortical bone volume and thickness. These were consistent with a 25 % increase in mineral apposition rate, but this did not translate into increased four-point bending strength. Ploton silver nitrate stain on histological sections revealed an unexpected increase in canalicular density associated with Sost ablation. CONCLUSION This report demonstrates a proof-of-concept that the AAV8-Sp7-Cre vector can efficiently produce postnatal skeletal knockout mice using gene-floxed strains. This technology has the potential for broad utility in the bone field with existing conditional lines. These data also confirm an important postnatal role for Sost in regulating bone homeostasis, consistent with prior studies using neutralizing Sclerostin antibodies, and highlights a novel role of Sost in canalicular remodeling.
Collapse
Affiliation(s)
- Alexandra K O'Donohue
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Westmead, NSW, Australia; The Children's Hospital at Westmead Clinical School, The University of Sydney, Camperdown, NSW, Australia
| | - Ya Xiao
- Bone Division, Garvan Institute for Medical Research, Darlinghurst, NSW, Australia
| | - Lucinda R Lee
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Westmead, NSW, Australia; The Children's Hospital at Westmead Clinical School, The University of Sydney, Camperdown, NSW, Australia
| | - Timothy Schofield
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Westmead, NSW, Australia; The Children's Hospital at Westmead Clinical School, The University of Sydney, Camperdown, NSW, Australia
| | - Tegan L Cheng
- University of Sydney School of Health Sciences, University of Sydney, Camperdown, NSW, Australia; Engineering Prototypes & Implants for Children (EPIC) Lab, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Craig F Munns
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, Brisbane, QLD, Australia; Child Health Research Centre and Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul A Baldock
- Bone Division, Garvan Institute for Medical Research, Darlinghurst, NSW, Australia
| | - Aaron Schindeler
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Westmead, NSW, Australia; The Children's Hospital at Westmead Clinical School, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
5
|
Sotozawa M, Kumagai K, Ishikawa K, Yamada S, Inoue Y, Inaba Y. Bevacizumab suppressed degenerative changes in articular cartilage explants from patients with osteoarthritis of the knee. J Orthop Surg Res 2023; 18:25. [PMID: 36627659 PMCID: PMC9832671 DOI: 10.1186/s13018-023-03512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND This study was designed to test the hypothesis that blockade of vascular endothelial growth factor (VEGF) suppresses degenerative changes in articular cartilage from patients with osteoarthritis (OA). METHODS Articular cartilage from eight OA patients was subjected to explant culture for 2 days in the presence or absence of 10 ng/ml recombinant interleukin (IL)-1β. The blocking effect of VEGF was examined by the addition of 10 or 100 ng/ml of bevacizumab. The culture media were harvested, and markers for cartilage degradation were measured by sandwich enzyme-linked immunoassay. Total RNA was isolated from cartilage tissues, and gene expressions associated with the anabolic response were examined by the quantitative real-time polymerase chain reaction. RESULTS Bevacizumab significantly reduced concentrations of matrix metalloproteinase (MMP)-2, MMP-3, and cartilage oligomeric matrix protein in the culture media with and without IL-1β. Significant suppressive effects of bevacizumab on MMP-9 and MMP-13 were shown only in the presence of IL-1β. Gene expression of Col2a1 was significantly increased by the addition of bevacizumab in the absence of IL-1β. CONCLUSION Bevacizumab inhibits catabolic reactions and stimulates anabolic function in articular cartilage derived from OA patients directly, suggesting a protective effect on articular cartilage from OA progression.
Collapse
Affiliation(s)
- Masaichi Sotozawa
- grid.268441.d0000 0001 1033 6139Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Ken Kumagai
- grid.268441.d0000 0001 1033 6139Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Kimi Ishikawa
- grid.268441.d0000 0001 1033 6139Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Shunsuke Yamada
- grid.268441.d0000 0001 1033 6139Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Yusuke Inoue
- grid.268441.d0000 0001 1033 6139Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Yutaka Inaba
- grid.268441.d0000 0001 1033 6139Department of Orthopaedic Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| |
Collapse
|
6
|
Osteocyte Dysfunction in Joint Homeostasis and Osteoarthritis. Int J Mol Sci 2021; 22:ijms22126522. [PMID: 34204587 PMCID: PMC8233862 DOI: 10.3390/ijms22126522] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 01/29/2023] Open
Abstract
Structural disturbances of the subchondral bone are a hallmark of osteoarthritis (OA), including sclerotic changes, cystic lesions, and osteophyte formation. Osteocytes act as mechanosensory units for the micro-cracks in response to mechanical loading. Once stimulated, osteocytes initiate the reparative process by recruiting bone-resorbing cells and bone-forming cells to maintain bone homeostasis. Osteocyte-expressed sclerostin is known as a negative regulator of bone formation through Wnt signaling and the RANKL pathway. In this review, we will summarize current understandings of osteocytes at the crossroad of allometry and mechanobiology to exploit the relationship between osteocyte morphology and function in the context of joint aging and osteoarthritis. We also aimed to summarize the osteocyte dysfunction and its link with structural and functional disturbances of the osteoarthritic subchondral bone at the molecular level. Compared with normal bones, the osteoarthritic subchondral bone is characterized by a higher bone volume fraction, a larger trabecular bone number in the load-bearing region, and an increase in thickness of pre-existing trabeculae. This may relate to the aberrant expressions of sclerostin, periostin, dentin matrix protein 1, matrix extracellular phosphoglycoprotein, insulin-like growth factor 1, and transforming growth factor-beta, among others. The number of osteocyte lacunae embedded in OA bone is also significantly higher, yet the volume of individual lacuna is relatively smaller, which could suggest abnormal metabolism in association with allometry. The remarkably lower percentage of sclerostin-positive osteocytes, together with clustering of Runx-2 positive pre-osteoblasts, may suggest altered regulation of osteoblast differentiation and osteoblast-osteocyte transformation affected by both signaling molecules and the extracellular matrix. Aberrant osteocyte morphology and function, along with anomalies in molecular signaling mechanisms, might explain in part, if not all, the pre-osteoblast clustering and the uncoupled bone remodeling in OA subchondral bone.
Collapse
|
7
|
Miyatake K, Kumagai K, Imai S, Yamaguchi Y, Inaba Y. Sclerostin inhibits interleukin-1β-induced late stage chondrogenic differentiation through downregulation of Wnt/β-catenin signaling pathway. PLoS One 2020; 15:e0239651. [PMID: 32976505 PMCID: PMC7518574 DOI: 10.1371/journal.pone.0239651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 09/11/2020] [Indexed: 11/19/2022] Open
Abstract
It is known that Wnt/β-catenin signaling induces endochondral ossification and plays a significant role in the pathophysiology of osteoarthritis (OA). Sclerostin is a potent inhibitor of the Wnt/β-catenin signaling pathway. This study investigated the role of sclerostin in the endochondral differentiation under an OA-like condition induced by proinflammatory cytokines. ATDC5 cells were used to investigate chondrogenic differentiation and terminal calcification, and 10 ng/ml IL-1β and/or 200 ng/ml sclerostin were added to the culture medium. IL-1β impaired early chondrogenesis from undifferentiated state into proliferative chondrocytes, and it was not altered by sclerostin. IL-1β induced progression of chondrogenic differentiation in the late stage and promoted terminal calcification. These processes were inhibited by sclerostin and chondrogenic phenotype was restored. In addition, sclerostin restored IL-1β-induced upregulation of Wnt/β-catenin signaling in the late stage. This study provides insights into the possible role of sclerostin in the chondrogenic differentiation under the IL-1β-induced OA-like environment. Suppression of Wnt signaling by an antagonist may play a key role in the maintenance of articular homeostasis and has a potential to prevent the progression of OA. Thus, sclerostin is a candidate treatment option for OA.
Collapse
Affiliation(s)
- Kazuma Miyatake
- Department of Orthopaedic Surgery and Musculoskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ken Kumagai
- Department of Orthopaedic Surgery and Musculoskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- * E-mail:
| | - Sosuke Imai
- Department of Orthopaedic Surgery and Musculoskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yasuteru Yamaguchi
- Department of Orthopaedic Surgery and Musculoskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yutaka Inaba
- Department of Orthopaedic Surgery and Musculoskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
8
|
Mann V, Grimm D, Corydon TJ, Krüger M, Wehland M, Riwaldt S, Sahana J, Kopp S, Bauer J, Reseland JE, Infanger M, Mari Lian A, Okoro E, Sundaresan A. Changes in Human Foetal Osteoblasts Exposed to the Random Positioning Machine and Bone Construct Tissue Engineering. Int J Mol Sci 2019; 20:ijms20061357. [PMID: 30889841 PMCID: PMC6471706 DOI: 10.3390/ijms20061357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Human cells, when exposed to both real and simulated microgravity (s-µg), form 3D tissue constructs mirroring in vivo architectures (e.g., cartilage, intima constructs, cancer spheroids and others). In this study, we exposed human foetal osteoblast (hFOB 1.19) cells to a Random Positioning Machine (RPM) for 7 days and 14 days, with the purpose of investigating the effects of s-µg on biological processes and to engineer 3D bone constructs. RPM exposure of the hFOB 1.19 cells induces alterations in the cytoskeleton, cell adhesion, extra cellular matrix (ECM) and the 3D multicellular spheroid (MCS) formation. In addition, after 7 days, it influences the morphological appearance of these cells, as it forces adherent cells to detach from the surface and assemble into 3D structures. The RPM-exposed hFOB 1.19 cells exhibited a differential gene expression of the following genes: transforming growth factor beta 1 (TGFB1, bone morphogenic protein 2 (BMP2), SRY-Box 9 (SOX9), actin beta (ACTB), beta tubulin (TUBB), vimentin (VIM), laminin subunit alpha 1 (LAMA1), collagen type 1 alpha 1 (COL1A1), phosphoprotein 1 (SPP1) and fibronectin 1 (FN1). RPM exposure also induced a significantly altered release of the cytokines and bone biomarkers sclerostin (SOST), osteocalcin (OC), osteoprotegerin (OPG), osteopontin (OPN), interleukin 1 beta (IL-1β) and tumour necrosis factor 1 alpha (TNF-1α). After the two-week RPM exposure, the spheroids presented a bone-specific morphology. In conclusion, culturing cells in s-µg under gravitational unloading represents a novel technology for tissue-engineering of bone constructs and it can be used for investigating the mechanisms behind spaceflight-related bone loss as well as bone diseases such as osteonecrosis or bone injuries.
Collapse
Affiliation(s)
- Vivek Mann
- Osteoimmunology and Integrative Physiology Laboratory, Department of Biology, Texas Southern University, Cleburne, Houston, TX 77004, USA.
| | - Daniela Grimm
- Department for Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Thomas J Corydon
- Department for Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark.
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Stefan Riwaldt
- Department for Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Jayashree Sahana
- Department for Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Johann Bauer
- Max Planck Institute of Biochemistry, Martinsried, Am Klopferspitz 18, 82152 Planegg, Germany.
| | - Janne E Reseland
- Clinical Oral Research Laboratory, Institute of Clinical Dentistry, UiO, University of Oslo, Geitmyrsveien 71 0455 Oslo, Norway.
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Aina Mari Lian
- Clinical Oral Research Laboratory, Institute of Clinical Dentistry, UiO, University of Oslo, Geitmyrsveien 71 0455 Oslo, Norway.
| | - Elvis Okoro
- Osteoimmunology and Integrative Physiology Laboratory, Department of Biology, Texas Southern University, Cleburne, Houston, TX 77004, USA.
| | - Alamelu Sundaresan
- Osteoimmunology and Integrative Physiology Laboratory, Department of Biology, Texas Southern University, Cleburne, Houston, TX 77004, USA.
| |
Collapse
|