1
|
Bu Y, Zhang X, Xiong Z, Li K, Zhang S, Lin M, Zhao G, Zheng N, Wang J, Zhao S. Effect of red clover isoflavones on ruminal microbial composition and fermentation in dairy cows. Appl Microbiol Biotechnol 2025; 109:107. [PMID: 40304791 PMCID: PMC12043791 DOI: 10.1007/s00253-025-13497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Red clover isoflavones, particularly biochanin A and formononetin, are known for their benefits in enhancing feed efficiency and nitrogen utilization in ruminants. However, their specific effects on rumen fermentation and microbial diversity remain insufficiently explored. This study investigated the impacts of red clover isoflavones on rumen function and bacterial diversity in dairy cows, utilizing both in vivo and in vitro methodologies. In the in vivo study, 40 Holstein dairy cows were allocated to four groups, each receiving red clover isoflavones at doses of 0, 0.4, 0.8, and 1.6 g/kg. Rumen fluid was collected for analysis of fermentation parameters, enzyme activity, and microbial composition through shotgun metagenomic sequencing. Concurrently, an in vitro rumen fermentation trial was conducted to evaluate the effects of biochanin A and formononetin on urea hydrolysis. Results from the in vivo experiments showed that red clover isoflavones significantly decreased ammonia nitrogen (NH₃-N) concentrations and urease activity in the rumen (P < 0.05). Species level metagenomic analysis indicated a reduced abundance of proteolytic and ureolytic bacteria, such as Prevotella sp002317355 and Treponema_D bryantii_C, with a corresponding increase in cellulolytic bacteria, including Ruminococcus_D sp900319075 and Ruminococcus_C sp000433635 (P < 0.05). The in vitro trial further demonstrated that biochanin A and formononetin significantly reduced urea decomposition rates (P < 0.05), with biochanin A exerting a more pronounced effect. These findings align with the observed reduction in ureolytic and proteolytic bacteria, along with an increase in cellulolytic bacteria across both trials. In conclusion, biochanin A emerged as the primary active component of red clover isoflavones, modulating urea nitrogen hydrolysis and rumen fermentation. This study substantiates previous findings and highlights the potential of red clover isoflavones for enhancing rumen microbial fermentation, offering a promising strategy for future dairy industry applications. KEY POINTS: • Red clover isoflavones inhibit urease activity to decrease the abundance of urealytic bacteria. • Biochanin A reduces ammonia nitrogen and urease activity, promoting protein efficiency. • Red clover isoflavones may improve dairy cow rumen health and nitrogen utilization.
Collapse
Affiliation(s)
- Ying Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoyin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhanbo Xiong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kexin Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shiqi Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Miao Lin
- Yangzhou University, Yangzhou, 225000, China
| | - Guoqi Zhao
- Yangzhou University, Yangzhou, 225000, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
Ge J, Shelby SL, Wang Y, Morse PD, Coffey K, Li J, Geng T, Huang Y. Cardioprotective properties of quercetin in fescue toxicosis-induced cardiotoxicity via heart-gut axis in lambs (Ovis Aries). JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131843. [PMID: 37379607 DOI: 10.1016/j.jhazmat.2023.131843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 06/30/2023]
Abstract
The present study investigated whether quercetin mitigated fescue toxicosis-induced cardiovascular injury via the heart-gut axis. Twenty-four commercial Dorper lambs were stratified by body weight and assigned randomly to diets in one of four groups: endophyte-free without quercetin (E-,Q-), endophyte-positive without quercetin (E+,Q-), endophyte-positive plus 4 g/kg quercetin (E+,Q+) or endophyte-free plus 4 g/kg quercetin (E-,Q+) for 42 days. Body weight and average daily feed intake (ADFI) of lambs fed the endophyte-positive diets showed significant decreases. However, in the groups treated with quercetin, there were significant alterations of cardiac enzymes. Furthermore, reduced fescue toxicosis-induced histopathological lesions of heart and aorta were demonstrated in the E+,Q+ lambs. Results also suggested quercetin eased cardiovascular oxidative injury by inhibiting the increase of oxidative metabolites, and enhancing the levels of antioxidases. Quercetin reduced the inflammation response through suppressing NF-κB signaling pathway activation. Additionally, quercetin ameliorated fescue toxicosis-induced mitochondria dysfunction and improved mitochondrial quality control through enhancing PGC-1α-mediated mitochondrial biogenesis, maintaining the mitochondrial dynamics, and relieving aberrant Parkin/PINK-mediated mitophagy. Quercetin enhanced gastrointestinal microbial alpha and beta diversity, alleviated gut microbiota and microbiome derived metabolites-SCFAs dysbiosis by fescue toxicosis. These findings signified that quercetin may play a cardio-protective role via regulating the heart-gut microbiome axis.
Collapse
Affiliation(s)
- Jing Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States
| | - Sarah Layne Shelby
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States
| | - Yongjie Wang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States
| | - Palika Dias Morse
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States
| | - Ken Coffey
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States
| | - Jinlong Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China, Northeast Agricultural University, Harbin 150030, PR China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou 225009, PR China.
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
3
|
Xu Q, Li Y, Du W, Zheng N, Wang J, Zhao S. Effect of dietary biochanin A on lactation performance, antioxidant capacity, rumen fermentation and rumen microbiome of dairy goat. Front Microbiol 2023; 14:1101849. [PMID: 36814572 PMCID: PMC9939525 DOI: 10.3389/fmicb.2023.1101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Biochanin A (BCA), an isoflavone phytoestrogen, is a secondary metabolite produced mainly in leguminous plants. The objective of this study was to evaluate the effect of BCA on lactation performance, nitrogen metabolism, and the health of dairy goat. Thirty mid-lactation Saanen dairy goats were divided into three groups randomly: control, 2 g/d BCA group, and 6 g/d BCA group. After 36 days of feeding, 30 dairy goats were transferred to individual metabolic cages. Subsequently, milk yield, feed intake, total feces, and urine excretion were recorded and samples were collected continuously for 3 days. Blood and ruminal fluid samples were collected over the subsequent 4 days. Milk yield, milk protein, fat content, and the feed conversion ratio of dairy goat were significantly increased by the BCA treatment. The levels of serum 17β-estradiol, growth hormone, insulin-like growth factor 1, glutathione peroxidase activity, and total antioxidant capacity were also increased significantly by BCA, indicating that BCA enhanced the antioxidant capacity of dairy goat. Amino acid degradation was significantly inhibited, while the ammonia nitrogen content was reduced significantly by BCA. Total volatile fatty acids was significantly increased by BCA supplementation. In addition, the relative abundance of Verrucomicrobiota was decreased significantly. However, the growth of nitrogen metabolism and cellulolytic bacteria was significantly increased under BCA treatment, including Prevotella sp., Treponema sp., Ruminococcus flavefaciens, and Ruminobacter amylophilus. In conclusion, supplementation with BCA improved the milk production performance, nitrogen metabolism, rumen fermentation and antioxidant capacity, and regulated the rumen microbiome of dairy goat.
Collapse
Affiliation(s)
- Qingbiao Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China,MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanjun Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenjuan Du
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Jiaqi Wang,
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,Shengguo Zhao,
| |
Collapse
|
4
|
Integrative interactomics applied to bovine fescue toxicosis. Sci Rep 2022; 12:4899. [PMID: 35318361 PMCID: PMC8941056 DOI: 10.1038/s41598-022-08540-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Bovine fescue toxicosis (FT) is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue. Endophyte’s effects on the animal’s microbiota and metabolism were investigated recently, but its effects in planta or on the plant–animal interactions have not been considered. We examined multi-compartment microbiota–metabolome perturbations using multi-‘omics (16S and ITS2 sequencing, plus untargeted metabolomics) in Angus steers grazing non-toxic (Max-Q) or toxic (E+) tall fescue for 28 days and in E+ plants. E+ altered the plant/animal microbiota, decreasing most ruminal fungi, with mixed effects on rumen bacteria and fecal microbiota. Metabolic perturbations occurred in all matrices, with some plant-animal overlap (e.g., Vitamin B6 metabolism). Integrative interactomics revealed unique E+ network constituents. Only E+ had ruminal solids OTUs within the network and fecal fungal OTUs in E+ had unique taxa (e.g., Anaeromyces). Three E+-unique urinary metabolites that could be potential biomarkers of FT and targeted therapeutically were identified.
Collapse
|
5
|
Khairunisa BH, Susanti D, Loganathan U, Teutsch CD, Campbell BT, Fiske D, Wilkinson CA, Aylward FO, Mukhopadhyay B. Dominant remodelling of cattle rumen microbiome by Schedonorus arundinaceus (tall fescue) KY-31 carrying a fungal endophyte. Access Microbiol 2022; 4:000322. [PMID: 35355877 PMCID: PMC8941964 DOI: 10.1099/acmi.0.000322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Tall fescue KY-31 is an important primary forage for beef cattle. It carries a fungal endophyte that produces ergovaline, the main cause of tall fescue toxicosis that leads to major revenue loss for livestock producers. The MaxQ, an engineered cultivar, hosts an ergovaline nonproducing strain of the fungus and consequently is nontoxic. However, it is less attractive economically. It is not known how rumen microbiome processes these two forages towards nutrient generation and ergovaline transformation. We have analysed the rumen microbiome compositions of cattle that grazed MaxQ with an intervening KY-31 grazing period using the 16S rRNA-V4 element as an identifier and found that KY-31 remodelled the microbiome substantially, encompassing both cellulolytic and saccharolytic functions. The effect was not evident at the whole microbiome levels but was identified by analysing the sessile and planktonic fractions separately. A move from MaxQ to KY-31 lowered the Firmicutes abundance in the sessile fraction and increased it in planktonic part and caused an opposite effect for Bacteroidetes, although the total abundances of these dominant rumen organisms remained unchanged. The abundances of Fibrobacter , which degrades less degradable fibres, and certain cellulolytic Firmicutes such as Pseudobutyrivibrio and Butyrivibrio 2, dropped in the sessile fraction, and these losses were apparently compensated by increased occurrences of Eubacterium and specific Ruminococcaceae and Lachnospiraceae . A return to MaxQ restored the original Firmicutes and Bacteroidetes distributions. However, several KY-31 induced changes, such as the low abundance of Fibrobacter and Butyrivibrio two remained in place, and their substitutes maintained significant presence. The rumen microbiome was distinct from previously reported faecal microbiomes. In summary, KY-31 and MaxQ were digested in the cattle rumen with distinct consortia and the KY-31-specific features were dominant. The study also identified candidate ergovaline transforming bacteria. It highlighted the importance of analysing sessile and planktonic fractions separately.
Collapse
Affiliation(s)
- Bela Haifa Khairunisa
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Dwi Susanti
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Present address: Elanco Animal Health, Greenfield, IN, USA
| | - Usha Loganathan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Christopher D Teutsch
- Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, Blackstone, VA 23824, USA
- Present address: University of Kentucky Research and Education Center, Princeton, KY, USA
| | - Brian T Campbell
- Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, Blackstone, VA 23824, USA
- Present address: Archer Daniels Midland Company, Decatur, IL, USA
| | - David Fiske
- Shennandoah Valley Agricultural Research and Extension Center, Virginia Tech, Raphine, VA, 24472, USA
| | - Carol A Wilkinson
- Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, Blackstone, VA 23824, USA
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
6
|
Chai J, Alrashedi S, Coffey K, Burke JM, Feye K, Ricke SC, Park SH, Edwards JL, Zhao J. Endophyte-Infected Tall Fescue Affects Rumen Microbiota in Grazing Ewes at Gestation and Lactation. Front Vet Sci 2020; 7:544707. [PMID: 33173791 PMCID: PMC7591458 DOI: 10.3389/fvets.2020.544707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022] Open
Abstract
Tall fescue (Schedonorus arundinaceus) is a cool-season perennial grass that is widely used as a forage for many livestock species including sheep. An endophyte (Neotyphodium coenophialum) in tall fescue produces ergot alkaloids that enhance plant survival but produce toxicosis in animals. The objective of this study was to investigate the rumen microbiota from gestation and lactation in ewes grazing tall fescue pastures with high (HA) or moderate (MA) levels of endophyte infection, and their relationship with serum parameters. Data were collected at the beginning of the study (d1), the week before initiation of lambing (d51), and at the end of the trial (d115). The rumen microbiota was evaluated using 16S rRNA gene sequencing. Ewes grazing HA had greater serum non-esterified fatty acid (NEFA) (P = 0.024) levels compared with ewes in MA pasture at d115. Both the number of observed OTUs and Shannon diversity index tended (P = 0.08, P = 0.06) to be greater for HA than for MA on d115. At the genus level, Prevotella relative abundance increased with time in both MA and HA (on d1, d51, and d115: 15.17, 25.59, and 24.78% in MA; 14.17, 18.10, and 19.41% in HA). Taxa unclassified at the genus level including (unclassified) Lachnospiraceae, Coriobacteriaceae, and Veillonellaceae exhibited higher abundances in HA at d51 (3.72, 2.07, and 11.22%) compared with MA (2.06, 1.28, and 7.42%). The predictor microbiota for HA and MA were identified by a random forest classification model. The HA predictors included bacteria associated with unclassified Coriobacteriaceae and Ruminococcaceae. Other OTUs classified as Prevotella and Clostridiales could be microbial predictors for MA. The OTUs classified as Prevotella and Lachnospiraceae were negatively correlated with serum concentration of prolactin. Negative correlations with NEFA were observed in the microbiota such as species affiliated to unclassified Clostridiales and Prevotella. OTUs classified as Bacteroidetes and Coriobacteriaceae exhibited a positive correlation with NEFA. Our study confirmed that the rumen microbiota populations were affected by high levels of toxins in endophyte-infected tall fescue and were associated with host hormone and energy metabolism.
Collapse
Affiliation(s)
- Jianmin Chai
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Saleh Alrashedi
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Ken Coffey
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Joan M Burke
- United States Department of Agriculture, Agricultural Research Service, Booneville, AR, United States
| | - Kristina Feye
- Department of Food Science and Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Steven C Ricke
- Department of Food Science and Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - J Lannett Edwards
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
7
|
Mote RS, Filipov NM. Use of Integrative Interactomics for Improvement of Farm Animal Health and Welfare: An Example with Fescue Toxicosis. Toxins (Basel) 2020; 12:toxins12100633. [PMID: 33019560 PMCID: PMC7600642 DOI: 10.3390/toxins12100633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Rapid scientific advances are increasing our understanding of the way complex biological interactions integrate to maintain homeostatic balance and how seemingly small, localized perturbations can lead to systemic effects. The ‘omics movement, alongside increased throughput resulting from statistical and computational advances, has transformed our understanding of disease mechanisms and the multi-dimensional interaction between environmental stressors and host physiology through data integration into multi-dimensional analyses, i.e., integrative interactomics. This review focuses on the use of high-throughput technologies in farm animal research, including health- and toxicology-related papers. Although limited, we highlight recent animal agriculture-centered reports from the integrative multi-‘omics movement. We provide an example with fescue toxicosis, an economically costly disease affecting grazing livestock, and describe how integrative interactomics can be applied to a disease with a complex pathophysiology in the pursuit of novel treatment and management approaches. We outline how ‘omics techniques have been used thus far to understand fescue toxicosis pathophysiology, lay out a framework for the fescue toxicosis integrome, identify some challenges we foresee, and offer possible means for addressing these challenges. Finally, we briefly discuss how the example with fescue toxicosis could be used for other agriculturally important animal health and welfare problems.
Collapse
|
8
|
Dadáková K, Trnková A, Kašparovská J, Křížová L, Lochman J, Kašparovský T. In vitro metabolism of red clover isoflavones in rumen fluid. J Anim Physiol Anim Nutr (Berl) 2020; 104:1647-1654. [PMID: 32542765 DOI: 10.1111/jpn.13402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/11/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
The degradation of red clover isoflavones was studied in vitro using a rumen fluid buffer system. Various amounts of red clover extract (5-75 mg) together with hay or concentrate-rich diet were added to 40 ml of rumen fluid obtained from non-lactating and lactating dairy cows, respectively, and incubated for 0, 3, 6, 12 or 24 hr. Following incubation, concentrations of daidzein, genistein, formononetin, biochanin A and equol were determined in the samples. After 3 hr of incubation, isoflavone metabolism and equol production could be observed. The results obtained indicate that hay diet provides better conditions for isoflavone metabolism, as concentrations of daidzein, formononetin and biochanin A were higher in incubations based on the concentrate-rich diet and the production of equol was higher in incubations based on the hay diet. Furthermore, in incubations with higher amounts of added clover extract, a decrease in equol production was observed. Further studies are needed to clarify the role of adaptation of rumen microflora on isoflavone degradation kinetics and to clarify the interrelationship between various dietary factors, rumen microbiota and isoflavones. The knowledge of isoflavone metabolism kinetics in dependence on studied factors will be useful for the optimization of feeding dose.
Collapse
Affiliation(s)
- Kateřina Dadáková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Andrea Trnková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jitka Kašparovská
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ludmila Křížová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Kašparovský
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Mote RS, Hill NS, Skarlupka JH, Tran VT, Walker DI, Turner ZB, Sanders ZP, Jones DP, Suen G, Filipov NM. Toxic tall fescue grazing increases susceptibility of the Angus steer fecal microbiota and plasma/urine metabolome to environmental effects. Sci Rep 2020; 10:2497. [PMID: 32051515 PMCID: PMC7016188 DOI: 10.1038/s41598-020-59104-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
Impaired thermoregulation and lowered average daily gains (ADG) result when livestock graze toxic endophyte (Epichloë coenophialum)-infected tall fescue (E+) and are hallmark signs of fescue toxicosis (FT), a disease exacerbated by increased temperature and humidity (+temperature-humidity index; +THI). We previously reported FT is associated with metabolic and microbiota perturbations under thermoneutral conditions; here, we assessed the influence of E+ grazing and +THI on the microbiota:metabolome interactions. Using high-resolution metabolomics and 16S rRNA gene sequencing, plasma/urine metabolomes and the fecal microbiota of Angus steers grazing non-toxic or E+ tall fescue were evaluated in the context of +THI. E+ grazing affected the fecal microbiota profile; +THI conditions modulated the microbiota only in E+ steers. E+ also perturbed many metabolic pathways, namely amino acid and inflammation-related metabolism; +THI affected these pathways only in E+ steers. Integrative analyses revealed the E+ microbiota correlated and co-varied with the metabolomes in a THI-dependent manner. Operational taxonomic units in the families Peptococcaceae, Clostridiaceae, and Ruminococcaceae correlated with production parameters (e.g., ADG) and with multiple plasma/urine metabolic features, providing putative FT biomarkers and/or targets for the development of FT therapeutics. Overall, this study suggests that E+ grazing increases Angus steer susceptibility to +THI, and offers possible targets for FT interventions.
Collapse
Affiliation(s)
- Ryan S Mote
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Nicholas S Hill
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Joseph H Skarlupka
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | - ViLinh T Tran
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, GA, USA
| | - Douglas I Walker
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, GA, USA
| | - Zachary B Turner
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Zachary P Sanders
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Dean P Jones
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, GA, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | - Nikolay M Filipov
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA.
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
10
|
Melchior EA, Smith JK, Schneider LG, Mulliniks JT, Bates GE, Flythe MD, Klotz JL, Ji H, Goodman JP, Lee AR, Caldwell JM, Myer PR. Effects of endophyte-infected tall fescue seed and red clover isoflavones on rumen microbial populations and physiological parameters of beef cattle. Transl Anim Sci 2018; 3:315-328. [PMID: 32704802 PMCID: PMC7252513 DOI: 10.1093/tas/txy147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 11/13/2022] Open
Abstract
Lolium arundinaceum [(Darbyshire) tall fescue] toxicosis is responsible for substantial beef production losses in the United States, due to its negative effects on reproduction, growth, and feed efficiency. These effects are consequences of toxic alkaloids within tall fescue. Interseeding legumes, such as Trifolium pratense (red clover), into pastures has been shown to mitigate a portion of these effects. Clovers contain isoflavones, which may play a role in tall fescue toxicosis mitigation. The present study utilized 36 Angus steers to determine the effects of daily supplementation with a red clover-isolated isoflavone feed additive on physiological symptoms of tall fescue toxicosis and the rumen microbial environment over a 21-d period. Angus steers were initially stratified based upon their single nucleotide polymorphism genotype at the DRD2 receptor. Treatments were then randomly assigned in a 2 × 2 factorial arrangement within a completely randomized design, where treatment factors consisted of tall fescue seed type (endophyte-infected tall fescue seed vs. endophyte-free tall fescue seed) supplemented with and without the isoflavone additive. Steers that consumed endophyte-infected tall fescue seed had lower serum prolactin concentrations (P = 0.0007), average daily gain (ADG; P = 0.003), final body weight (BW; P = 0.004), and feed efficiency (P = 0.018) when compared with steers that consumed endophyte-free tall fescue seed. Serum insulin-like growth factor-1 (IGF-1) tended to be reduced with supplementation of isoflavones (P = 0.06) but was unaffected by seed type (P ≥ 0.10) and seed by treatment interaction (P ≥ 0.10). Isoflavones reduced serum glucose levels (P = 0.023), but neither seed type, isoflavones, or their interaction affected serum urea nitrogen (SUN), nonesterified fatty acids (NEFA), or insulin (P ≥ 0.10). Volatile fatty acid concentrations, dry matter intake (DMI), ruminal pH, and overall feeding behaviors were also unaffected by seed type or isoflavone treatments (P ≥ 0.10). Twenty-eight ruminal bacteria taxa shifted as a result of seed type or isoflavone treatment (P < 0.05). In this experiment, feeding isoflavones to Angus cattle did not completely mitigate all symptoms of fescue toxicosis. However, dose–response trials may aid future research to determine if dietary supplementation with isoflavones alleviates fescue toxicosis symptoms and promotes livestock growth and performance.
Collapse
Affiliation(s)
- Emily A Melchior
- Department of Animal Science, University of Tennessee, Knoxville, TN.,Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Jason K Smith
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | | | | | - Gary E Bates
- Department of Plant Sciences, University of Tennessee, Knoxville, TN
| | | | - James L Klotz
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY
| | - Huihua Ji
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY
| | - Jack P Goodman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY
| | - Amanda R Lee
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - J Marc Caldwell
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN
| | - Phillip R Myer
- Department of Animal Science, University of Tennessee, Knoxville, TN
| |
Collapse
|