1
|
Ma R, Pao P, Zhang K, Liu J, Zhang L. Ultrasound-guided puncture into newborn rat brain. IBRAIN 2023; 9:359-368. [PMID: 38680504 PMCID: PMC11045190 DOI: 10.1002/ibra.12103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2024]
Abstract
Since the brain structure of neonatal rats was not fully formed during the first 4 days, it cannot be detected using ultrasound. The objective of this study was to investigate the use of ultrasound to guide puncture in the normal coronal brain structure and determine the puncture depth of the location of the cortex, hippocampus, lateral ventricle, and striatum of newborn rats of 5-15 days. The animal was placed in a prone position. The specific positions of the cortex, hippocampus, lateral ventricle, and striatum were measured under ultrasound. Then, the rats were punctured with a stereotaxic instrument, and dye was injected. Finally, the brains of rats were taken to make frozen sections to observe the puncture results. By ultrasound, the image of the cortex, hippocampus, lateral ventricle, and striatum of the rat can be obtained and the puncture depth of the cortex (8 days: 1.02 ± 0.12, 10 days: 1.02 ± 0.08, 13 days: 1.43 ± 0.05), hippocampus (8 days: 2.63 ± 0.07, 10 days: 2.77 ± 0.14, 13 days: 2.82 ± 0.09), lateral ventricle (8 days: 2.08 ± 0.04, 10 days: 2.26 ± 0.03, 13 days: 2.40 ± 0.06), and corpus striatum (8 days: 4.57 ± 0.09, 10 days: 4.94 ± 0.31, 13 days: 5.13 ± 0.10) can be accurately measured. The rat brain structure and puncture depth changed with the age of the rats. Ultrasound technology can not only clarify the brain structure characteristics of 5-15-day-old rats but also guide the puncture and injection of the rat brain structure. The results of this study laid the foundation for the future use of ultrasound in experimental animal models of neurological diseases.
Collapse
Affiliation(s)
- Rui‐Fang Ma
- Institute of NeuroscienceKunming Medical UniversityKunmingYunnanChina
| | - Ping‐Chieh Pao
- Picower Institute for Learning and Memory, Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Kun Zhang
- Institute of UltrasoundShantou Ultrasonic Instrument Research Institute Co. Ltd.ShantouGuangdongChina
| | - Jin‐Xiang Liu
- Institute of NeuroscienceKunming Medical UniversityKunmingYunnanChina
| | - Lin Zhang
- Department of Obstetrics, The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
2
|
Kim CK, Won JS, An JY, Lee HJ, Nam AJ, Nam H, Lee JY, Lee KH, Lee SH, Joo KM. Significant Therapeutic Effects of Adult Human Neural Stem Cells for Spinal Cord Injury Are Mediated by Monocyte Chemoattractant Protein-1 (MCP-1). Int J Mol Sci 2022; 23:ijms23084267. [PMID: 35457084 PMCID: PMC9029183 DOI: 10.3390/ijms23084267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
The limited capability of regeneration in the human central nervous system leads to severe and permanent disabilities following spinal cord injury (SCI) while patients suffer from no viable treatment option. Adult human neural stem cells (ahNSCs) are unique cells derived from the adult human brain, which have the essential characteristics of NSCs. The objective of this study was to characterize the therapeutic effects of ahNSCs isolated from the temporal lobes of focal cortical dysplasia type IIIa for SCI and to elucidate their treatment mechanisms. Results showed that the recovery of motor functions was significantly improved in groups transplanted with ahNSCs, where, in damaged regions of spinal cords, the numbers of both spread and regenerated nerve fibers were observed to be higher than the vehicle group. In addition, the distance between neuronal nuclei in damaged spinal cord tissue was significantly closer in treatment groups than the vehicle group. Based on an immunohistochemistry analysis, those neuroprotective effects of ahNSCs in SCI were found to be mediated by inhibiting apoptosis of spinal cord neurons. Moreover, the analysis of the conditioned medium (CM) of ahNSCs revealed that such neuroprotective effects were mediated by paracrine effects with various types of cytokines released from ahNSCs, where monocyte chemoattractant protein-1 (MCP-1, also known as CCL2) was identified as a key paracrine mediator. These results of ahNSCs could be utilized further in the preclinical and clinical development of effective and safe cell therapeutics for SCI, with no available therapeutic options at present.
Collapse
Affiliation(s)
- Chung Kwon Kim
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea; (C.K.K.); (J.-S.W.); (H.N.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| | - Jeong-Seob Won
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea; (C.K.K.); (J.-S.W.); (H.N.)
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.J.L.); (K.-H.L.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Jae Yeol An
- Department of Anatomy, Seoul National University College of Medicine, Seoul 03880, Korea; (J.Y.A.); (J.Y.L.)
- Healthcare Division, Partners Investment Co., Ltd., Seoul 06152, Korea
| | - Ho Jin Lee
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.J.L.); (K.-H.L.)
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Ah-Jin Nam
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Hyun Nam
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea; (C.K.K.); (J.-S.W.); (H.N.)
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.J.L.); (K.-H.L.)
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Ji Yeoun Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul 03880, Korea; (J.Y.A.); (J.Y.L.)
- Division of Pediatric Neurosurgery, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Kyung-Hoon Lee
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.J.L.); (K.-H.L.)
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Sun-Ho Lee
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (S.-H.L.); (K.M.J.); Tel.: +82-2-3410-2457 (S.-H.L.); +82-31-299-6073 (K.M.J.); Fax: +82-2-3410-0048 (S.-H.L.); +82-31-299-6029 (K.M.J.)
| | - Kyeung Min Joo
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea; (C.K.K.); (J.-S.W.); (H.N.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.J.L.); (K.-H.L.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
- Correspondence: (S.-H.L.); (K.M.J.); Tel.: +82-2-3410-2457 (S.-H.L.); +82-31-299-6073 (K.M.J.); Fax: +82-2-3410-0048 (S.-H.L.); +82-31-299-6029 (K.M.J.)
| |
Collapse
|
3
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
4
|
Won JS, Yeon JY, Pyeon HJ, Noh YJ, Hwang JY, Kim CK, Nam H, Lee KH, Lee SH, Joo KM. Optimal Preclinical Conditions for Using Adult Human Multipotent Neural Cells in the Treatment of Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms22052579. [PMID: 33806636 PMCID: PMC7961778 DOI: 10.3390/ijms22052579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 01/29/2023] Open
Abstract
Stem cell-based therapeutics are amongst the most promising next-generation therapeutic approaches for the treatment of spinal cord injury (SCI), as they may promote the repair or regeneration of damaged spinal cord tissues. However, preclinical optimization should be performed before clinical application to guarantee safety and therapeutic effect. Here, we investigated the optimal injection route and dose for adult human multipotent neural cells (ahMNCs) from patients with hemorrhagic stroke using an SCI animal model. ahMNCs demonstrate several characteristics associated with neural stem cells (NSCs), including the expression of NSC-specific markers, self-renewal, and multi neural cell lineage differentiation potential. When ahMNCs were transplanted into the lateral ventricle of the SCI animal model, they specifically migrated within 24 h of injection to the damaged spinal cord, where they survived for at least 5 weeks after injection. Although ahMNC transplantation promoted significant locomotor recovery, the injection dose was shown to influence treatment outcomes, with a 1 × 106 (medium) dose of ahMNCs producing significantly better functional recovery than a 3 × 105 (low) dose. There was no significant gain in effect with the 3 × 106 ahMNCs dose. Histological analysis suggested that ahMNCs exert their effects by modulating glial scar formation, neuroprotection, and/or angiogenesis. These data indicate that ahMNCs from patients with hemorrhagic stroke could be used to develop stem cell therapies for SCI and that the indirect injection route could be clinically relevant. Moreover, the optimal transplantation dose of ahMNCs defined in this preclinical study might be helpful in calculating its optimal injection dose for patients with SCI in the future.
Collapse
Affiliation(s)
- Jeong-Seob Won
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea;
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (C.K.K.); (H.N.); (K.-H.L.)
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea;
| | - Je Young Yeon
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea;
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Hee-Jang Pyeon
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.-J.P.); (Y.-J.N.); (J.-Y.H.)
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea
| | - Yu-Jeong Noh
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.-J.P.); (Y.-J.N.); (J.-Y.H.)
| | - Ji-Yoon Hwang
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.-J.P.); (Y.-J.N.); (J.-Y.H.)
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea
| | - Chung Kwon Kim
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (C.K.K.); (H.N.); (K.-H.L.)
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.-J.P.); (Y.-J.N.); (J.-Y.H.)
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Hyun Nam
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (C.K.K.); (H.N.); (K.-H.L.)
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea;
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.-J.P.); (Y.-J.N.); (J.-Y.H.)
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea
| | - Kyung-Hoon Lee
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (C.K.K.); (H.N.); (K.-H.L.)
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.-J.P.); (Y.-J.N.); (J.-Y.H.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Sun-Ho Lee
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea;
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (S.-H.L.); (K.M.J.); Tel.: +82-2-3410-2457 (S.-H.L.); +82-2-2148-9779 (K.M.J.); Fax: +82-2-3410-0048 (S.-H.L.); +82-2-2148-9829 (K.M.J.)
| | - Kyeung Min Joo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea;
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (C.K.K.); (H.N.); (K.-H.L.)
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea;
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Correspondence: (S.-H.L.); (K.M.J.); Tel.: +82-2-3410-2457 (S.-H.L.); +82-2-2148-9779 (K.M.J.); Fax: +82-2-3410-0048 (S.-H.L.); +82-2-2148-9829 (K.M.J.)
| |
Collapse
|
5
|
Kim H, Na DL, Lee NK, Kim AR, Lee S, Jang H. Intrathecal Injection in A Rat Model: A Potential Route to Deliver Human Wharton's Jelly-Derived Mesenchymal Stem Cells into the Brain. Int J Mol Sci 2020; 21:ijms21041272. [PMID: 32070050 PMCID: PMC7072951 DOI: 10.3390/ijms21041272] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered as promising therapeutic agents for neurodegenerative disorders because they can reduce underlying pathology and also repair damaged tissues. Regarding the delivery of MSCs into the brain, intravenous and intra-arterial routes may be less feasible than intraparenchymal and intracerebroventricular routes due to the blood–brain barrier. Compared to the intraparenchymal or intracerebroventricular routes, however, the intrathecal route may have advantages: this route can deliver MSCs throughout the entire neuraxis and it is less invasive since brain surgery is not required. The objective of this study was to investigate the distribution of human Wharton’s jelly-derived MSCs (WJ-MSCs) injected via the intrathecal route in a rat model. WJ-MSCs (1 × 106) were intrathecally injected via the L2-3 intervertebral space in 6-week-old Sprague Dawley rats. These rats were then sacrificed at varying time points: 0, 6, and 12 h following injection. At 12 h, a significant number of MSCs were detected in the brain but not in other organs. Furthermore, with a 10-fold higher dose of WJ-MSCs, there was a substantial increase in the number of cells migrating to the brain. These results suggest that the intrathecal route can be a promising route for the performance of stem cell therapy for CNS diseases.
Collapse
Affiliation(s)
- Hyeongseop Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.)
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Duk L. Na
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.)
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Na Kyung Lee
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- College of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - A Ran Kim
- Animal Research and Molecular Imaging Center Samsung Biomedical Research Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Seunghoon Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Correspondence: (S.L.); (H.J.); Tel.: +82-2-3410-3498 (S.L.); +82-2-3410-1426 (H.J.)
| | - Hyemin Jang
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Correspondence: (S.L.); (H.J.); Tel.: +82-2-3410-3498 (S.L.); +82-2-3410-1426 (H.J.)
| |
Collapse
|