1
|
Wen X, Wang Y. Reverse Chromatin Immunoprecipitation (R-ChIP). Methods Mol Biol 2024; 2846:123-132. [PMID: 39141233 DOI: 10.1007/978-1-0716-4071-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
DNA-protein interactions play fundamental roles in diverse biological functions. The gene-centered method is used to identify the upstream regulators of defined genes. In this study, we developed a novel method for capturing the proteins that bind to certain chromatin fragments or DNA sequences, which is called reverse chromatin immunoprecipitation (R-ChIP). This technology uses a set of specific DNA probes labeled with biotin to isolate chromatin or DNA fragments, and the DNA-associated proteins are then analyzed using mass spectrometry. This method can capture DNA-associated proteins with sufficient quantity and purity for identification.
Collapse
Affiliation(s)
- Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yucheng Wang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
- College of Forestry, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
2
|
Wang Z, He Z, Wang J, Wang C, Gao C, Wang Y. A DNA-binding protein capture technology that purifies proteins by directly isolating the target DNA. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111796. [PMID: 37467789 DOI: 10.1016/j.plantsci.2023.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
DNA-protein interactions are critical to almost all cellular functions, and identification of the proteins that bind to an DNA site of interest (gene-centered approach) is an important investigation area. However, gene-centered methods are mainly based on DNA hybridization to isolate target proteins, which is complex and inefficient. Here, we built a gene-centered approach involving direct isolation of target DNA, termed protein capture based on biolistic transformation (PCaB). The target DNA was labeled with biotin and cyanine 3 (Cy3) at its 5' and 3' DNA ends, respectively, and introduced into the host plants through biolistic transformation. The DNA and its binding proteins were crosslinked using formaldehyde. The labeled DNAs were obtained using gel excision and biotin-Streptavidin affinity according to the indication of Cy3 fluorescence, which make harvest of target DNA with a low background. The DNA-binding proteins were identified using mass spectrometry analysis. The PCaB method allowed us to identify and confirm 16 putative upstream regulators of the BpERF3 gene from Betula platyphylla. Theoretically, PCaB could be adapted to all plant species that can be transformed using biolistic bombardment, and captures DNA-binding proteins quickly with a low background. Therefore, PCaB will provide a powerful tool to discover DNA-protein interactions.
Collapse
Affiliation(s)
- Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Zihang He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jingxin Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Forestry, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
MacKenzie TMG, Cisneros R, Maynard RD, Snyder MP. Reverse-ChIP Techniques for Identifying Locus-Specific Proteomes: A Key Tool in Unlocking the Cancer Regulome. Cells 2023; 12:1860. [PMID: 37508524 PMCID: PMC10377898 DOI: 10.3390/cells12141860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
A phenotypic hallmark of cancer is aberrant transcriptional regulation. Transcriptional regulation is controlled by a complicated array of molecular factors, including the presence of transcription factors, the deposition of histone post-translational modifications, and long-range DNA interactions. Determining the molecular identity and function of these various factors is necessary to understand specific aspects of cancer biology and reveal potential therapeutic targets. Regulation of the genome by specific factors is typically studied using chromatin immunoprecipitation followed by sequencing (ChIP-Seq) that identifies genome-wide binding interactions through the use of factor-specific antibodies. A long-standing goal in many laboratories has been the development of a 'reverse-ChIP' approach to identify unknown binding partners at loci of interest. A variety of strategies have been employed to enable the selective biochemical purification of sequence-defined chromatin regions, including single-copy loci, and the subsequent analytical detection of associated proteins. This review covers mass spectrometry techniques that enable quantitative proteomics before providing a survey of approaches toward the development of strategies for the purification of sequence-specific chromatin as a 'reverse-ChIP' technique. A fully realized reverse-ChIP technique holds great potential for identifying cancer-specific targets and the development of personalized therapeutic regimens.
Collapse
Affiliation(s)
| | - Rocío Cisneros
- Sarafan ChEM-H/IMA Postbaccalaureate Fellow in Target Discovery, Stanford University, Stanford, CA 94305, USA
| | - Rajan D Maynard
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Marwarha G, Slagsvold KH, Høydal MA. NF-κB Transcriptional Activity Indispensably Mediates Hypoxia–Reoxygenation Stress-Induced microRNA-210 Expression. Int J Mol Sci 2023; 24:ijms24076618. [PMID: 37047592 PMCID: PMC10095479 DOI: 10.3390/ijms24076618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Ischemia–reperfusion (I-R) injury is a cardinal pathophysiological hallmark of ischemic heart disease (IHD). Despite significant advances in the understanding of what causes I-R injury and hypoxia–reoxygenation (H-R) stress, viable molecular strategies that could be targeted for the treatment of the deleterious biochemical pathways activated during I-R remain elusive. The master hypoxamiR, microRNA-210 (miR-210), is a major determinant of protective cellular adaptation to hypoxia stress but exacerbates apoptotic cell death during cellular reoxygenation. While the hypoxia-induced transcriptional up-regulation of miR-210 is well delineated, the cellular mechanisms and molecular entities that regulate the transcriptional induction of miR-210 during the cellular reoxygenation phase have not been elucidated yet. Herein, in immortalized AC-16 cardiomyocytes, we delineated the indispensable role of the ubiquitously expressed transcription factor, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) in H-R-induced miR-210 expression during cellular reoxygenation. Using dominant negative and dominant active expression vectors encoding kinases to competitively inhibit NF-κB activation, we elucidated NF-κB activation as a significant mediator of H-R-induced miR-210 expression. Ensuing molecular assays revealed a direct NF-κB-mediated transcriptional up-regulation of miR-210 expression in response to the H-R challenge that is characterized by the NF-κB-mediated reorchestration of the entire repertoire of histone modification changes that are a signatory of a permissive actively transcribed miR-210 promoter. Our study confers a novel insight identifying NF-κB as a potential novel molecular target to combat H-R-elicited miR-210 expression that fosters augmented cardiomyocyte cell death.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Katrine Hordnes Slagsvold
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Department of Cardiothoracic Surgery, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Morten Andre Høydal
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| |
Collapse
|
5
|
Cozzolino F, Iacobucci I, Monaco V, Monti M. Protein-DNA/RNA Interactions: An Overview of Investigation Methods in the -Omics Era. J Proteome Res 2021; 20:3018-3030. [PMID: 33961438 PMCID: PMC8280749 DOI: 10.1021/acs.jproteome.1c00074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
The fields of application
of functional proteomics are not limited
to the study of protein–protein interactions; they also extend
to those involving protein complexes that bind DNA or RNA. These interactions
affect fundamental processes such as replication, transcription, and
repair in the case of DNA, as well as transport, translation, splicing,
and silencing in the case of RNA. Analytical or preparative experimental
approaches, both in vivo and in vitro, have been developed to isolate and identify DNA/RNA binding proteins
by exploiting the advantage of the affinity shown by these proteins
toward a specific oligonucleotide sequence. The present review proposes
an overview of the approaches most commonly employed in proteomics
applications for the identification of nucleic acid-binding proteins,
such as affinity purification (AP) protocols, EMSA, chromatin purification
methods, and CRISPR-based chromatin affinity purification, which are
generally associated with mass spectrometry methodologies for the
unbiased protein identification.
Collapse
Affiliation(s)
- Flora Cozzolino
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Vittoria Monaco
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy.,Interuniversity Consortium National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro, 305-00136 Rome, Italy
| | - Maria Monti
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| |
Collapse
|
6
|
Reverse Chromatin Immunoprecipitation (R-ChIP) enables investigation of the upstream regulators of plant genes. Commun Biol 2020; 3:770. [PMID: 33318632 PMCID: PMC7736860 DOI: 10.1038/s42003-020-01500-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 11/13/2020] [Indexed: 02/02/2023] Open
Abstract
DNA binding proteins carry out important and diverse functions in the cell, including gene regulation, but identifying these proteins is technically challenging. In the present study, we developed a technique to capture DNA-associated proteins called reverse chromatin immunoprecipitation (R-ChIP). This technology uses a set of specific DNA probes labeled with biotin to isolate chromatin, and the DNA-associated proteins are then identified using mass spectrometry. Using R-ChIP, we identified 439 proteins that potentially bind to the promoter of the Arabidopsis thaliana gene AtCAT3 (AT1G20620). According to functional annotation, we randomly selected 5 transcription factors from these candidates, including bZIP1664, TEM1, bHLH106, BTF3, and HAT1, to verify whether they in fact bind to the AtCAT3 promoter. The binding of these 5 transcription factors was confirmed using chromatin immunoprecipitation quantitative real-time PCR and electrophoretic mobility shift assays. In addition, we improved the R-ChIP method using plants in which the DNA of interest had been transiently introduced, which does not require the T-DNA integration, and showed that this substantially improved the protein capture efficiency. These results together demonstrate that R-ChIP has a wide application to characterize chromatin composition and isolate upstream regulators of a specific gene.
Collapse
|
7
|
Murarka P, Keshav A, Meena BK, Srivastava P. Functional characterization of the transcription regulator WhiB1 from Gordonia sp. IITR100. MICROBIOLOGY-SGM 2020; 166:1181-1190. [PMID: 33215983 DOI: 10.1099/mic.0.000985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
WhiB is a transcription regulator which has been reported to be involved in the regulation of cell morphogenesis, cell division, antibiotic resistance, stress, etc., in several members of the family Actinomycetes. The present study describes functional characterization of a WhiB family protein, WhiB1 (protein ID: WP_065632651.1), from Gordonia sp. IITR100. We demonstrate that WhiB1 affects chromosome segregation and cell morphology in recombinant Escherichia coli, Gordonia sp. IITR100 as well as in Rhodococcus erythropolis. Multiple sequence alignment suggests that WhiB1 is a conserved protein among members of the family Actinomycetes. It has been reported that overexpression of WhiB1 leads to repression of the biodesulfurization operon in recombinant E. coli, Gordonia sp. IITR100 and R. erythropolis. A WhiB1-mut containing a point mutation Q116A in the DNA binding domain of WhiB1 led to partial alleviation of repression of the biodesulfurization operon. We show for the first time that the WhiB family protein WhiB1 is also involved in repression of the biodesulfurization operon by directly binding to the dsz promoter DNA.
Collapse
Affiliation(s)
- Pooja Murarka
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aditi Keshav
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bintu Kumar Meena
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
8
|
Kriel NL, Heunis T, Sampson SL, Gey van Pittius NC, Williams MJ, Warren RM. Identifying nucleic acid-associated proteins in Mycobacterium smegmatis by mass spectrometry-based proteomics. BMC Mol Cell Biol 2020; 21:19. [PMID: 32293251 PMCID: PMC7092591 DOI: 10.1186/s12860-020-00261-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcriptional responses required to maintain cellular homeostasis or to adapt to environmental stress, is in part mediated by several nucleic-acid associated proteins. In this study, we sought to establish an affinity purification-mass spectrometry (AP-MS) approach that would enable the collective identification of nucleic acid-associated proteins in mycobacteria. We hypothesized that targeting the RNA polymerase complex through affinity purification would allow for the identification of RNA- and DNA-associated proteins that not only maintain the bacterial chromosome but also enable transcription and translation. RESULTS AP-MS analysis of the RNA polymerase β-subunit cross-linked to nucleic acids identified 275 putative nucleic acid-associated proteins in the model organism Mycobacterium smegmatis under standard culturing conditions. The AP-MS approach successfully identified proteins that are known to make up the RNA polymerase complex, as well as several other known RNA polymerase complex-associated proteins such as a DNA polymerase, sigma factors, transcriptional regulators, and helicases. Gene ontology enrichment analysis of the identified proteins revealed that this approach selected for proteins with GO terms associated with nucleic acids and cellular metabolism. Importantly, we identified several proteins of unknown function not previously known to be associated with nucleic acids. Validation of several candidate nucleic acid-associated proteins demonstrated for the first time DNA association of ectopically expressed MSMEG_1060, MSMEG_2695 and MSMEG_4306 through affinity purification. CONCLUSIONS Effective identification of nucleic acid-associated proteins, which make up the RNA polymerase complex as well as other DNA- and RNA-associated proteins, was facilitated by affinity purification of the RNA polymerase β-subunit in M. smegmatis. The successful identification of several transcriptional regulators suggest that our approach could be sensitive enough to investigate the nucleic acid-associated proteins that maintain cellular functions and mediate transcriptional and translational change in response to environmental stress.
Collapse
Affiliation(s)
- Nastassja L Kriel
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa.
| | - Tiaan Heunis
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Samantha L Sampson
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa
| | - Nico C Gey van Pittius
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa
| | - Monique J Williams
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa
- Present address: Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Robin M Warren
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg, Cape Town, 7505, South Africa
| |
Collapse
|
9
|
Ariel F, Lucero L, Christ A, Mammarella MF, Jegu T, Veluchamy A, Mariappan K, Latrasse D, Blein T, Liu C, Benhamed M, Crespi M. R-Loop Mediated trans Action of the APOLO Long Noncoding RNA. Mol Cell 2020; 77:1055-1065.e4. [DOI: 10.1016/j.molcel.2019.12.015] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/30/2019] [Accepted: 12/18/2019] [Indexed: 11/25/2022]
|
10
|
Welker M, Van Belkum A, Girard V, Charrier JP, Pincus D. An update on the routine application of MALDI-TOF MS in clinical microbiology. Expert Rev Proteomics 2019; 16:695-710. [PMID: 31315000 DOI: 10.1080/14789450.2019.1645603] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has entered clinical diagnostics and is today a generally accepted and integral part of the workflow for microbial identification. MALDI-TOF MS identification systems received approval from national and international institutions, such as the USA-FDA, and are continuously improved and adopted to other fields like veterinary and industrial microbiology. The question is whether MALDI-TOF MS also has the potential to replace other conventional and molecular techniques operated in routine diagnostic laboratories. Areas covered: We give an overview of new advancements of mass spectral analysis in the context of microbial diagnostics. In particular, the expansion of databases to increase the range of readily identifiable bacteria and fungi, the refined discrimination of species complexes, subspecies, and types, the testing for antibiotic resistance or susceptibility, progress in sample preparation including automation, and applications of other mass spectrometry techniques are discussed. Expert opinion: Although many new approaches of MALDI-TOF MS are still in the stage of proof of principle, it is expectable that MALDI-TOF MS will expand its role in the clinical microbiology laboratory of the future. New databases, instruments and analytical software modules will continue to be developed to further improve diagnostic efficacy.
Collapse
Affiliation(s)
- Martin Welker
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | - Alex Van Belkum
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | - Victoria Girard
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | | | - David Pincus
- bioMérieux, Microbiology Innovation , Hazelwood , MO , USA
| |
Collapse
|
11
|
Murarka P, Bagga T, Singh P, Rangra S, Srivastava P. Isolation and identification of a TetR family protein that regulates the biodesulfurization operon. AMB Express 2019; 9:71. [PMID: 31127394 PMCID: PMC6534649 DOI: 10.1186/s13568-019-0801-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 11/10/2022] Open
Abstract
Biodesulfurization helps in removal of sulfur from organosulfur present in petroleum fractions. All microorganisms isolated to date harbor a desulfurization operon consisting of three genes dszA, -B and -C which encode for monooxygenases (DszA & C) and desulfinase (DszB). Most of the studies have been carried out using dibenzothiophene as the model organosulfur compound, which is converted into 2 hydroxybiphenyl by a 4S pathway which maintains the calorific value of fuel. There are few studies reported on the regulation of this operon. However, there are no reports on the proteins which can enhance the activity of the operon. In the present study, we used in vitro and in vivo methods to identify a novel TetR family transcriptional regulator from Gordonia sp. IITR100 which functions as an activator of the dsz operon. Activation by TetR family regulator resulted in enhanced levels of desulfurization enzymes in Gordonia sp. IITR100. Activation was observed only when the 385 bp full length promoter was used. Upstream sequences between - 385 and - 315 were found to be responsible for activation. We provide evidence that the TetR family transcription regulator serves as an activator in other biodesulfurizing microorganisms such as Rhodococcus erythropolis IGTS8 and heterologous host Escherichia coli. This is the first report on the isolation of a possible transcriptional regulator that activates the desulfurization operon resulting in improved biodesulfurization.
Collapse
|