1
|
Li L, Hashemi L, Eid J, Tao W, Campoverde L, Yu A, Farooqi AA, Al-Ali H, D'Amato G, Hornicek F, Duan Z, Lohse I, Trent J. High-Throughput Drug Screening in Chondrosarcoma Cells Identifies Effective Antineoplastic Agents Independent of IDH Mutation. Int J Mol Sci 2024; 25:13003. [PMID: 39684713 DOI: 10.3390/ijms252313003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The term chondrosarcoma refers to a rare and heterogeneous group of malignant cartilaginous tumors that are typically resistant to chemotherapy and radiotherapy. Metastatic chondrosarcoma has a poor prognosis, and effective systemic therapies are lacking. Isocitrate dehydrogenase (IDH) mutations represent a potential therapeutic target, but IDH inhibitors alone have shown limited clinical efficacy to date. Although the role of conventional chemotherapy is still subject to debate, some evidence suggests it may provide therapeutic benefits in advanced cases. In this study, we aimed to identify effective compounds for combination therapy in chondrosarcoma. Using high-throughput screening, we evaluated a panel of anticancer agents in IDH1-mutant chondrosarcoma cell lines and their mutant IDH1 knockout derivatives. The top 20 most potent compounds were identified across all cell lines, irrespective of IDH mutation status. Representative drugs selected for further investigation included docetaxel, methotrexate, panobinostat, idarubicin, camptothecin, and pevonedistat. These drugs inhibited colony formation, induced apoptosis and cell cycle arrest, and exhibited synergistic antitumor activity in two-drug combinations. In conclusion, we identified several highly effective agents with potent anti-tumor activity in chondrosarcoma cells, independent of IDH mutation status. These agents represent promising candidates for chondrosarcoma therapy and warrant further preclinical investigation and potential inclusion in clinical trials.
Collapse
Affiliation(s)
- Luyuan Li
- Department of Medicine, Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL 33136, USA
| | - Lily Hashemi
- College of Science, Northeastern University, Boston, MA 02115, USA
| | - Josiane Eid
- Department of Medicine, Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL 33136, USA
| | - Wensi Tao
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL 33136, USA
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Leticia Campoverde
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amy Yu
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | - Hassan Al-Ali
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL 33136, USA
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Frost Institute for Data Science and Computing, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gina D'Amato
- Department of Medicine, Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL 33136, USA
| | - Francis Hornicek
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL 33136, USA
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zhenfeng Duan
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL 33136, USA
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ines Lohse
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jonathan Trent
- Department of Medicine, Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL 33136, USA
| |
Collapse
|
2
|
Therapeutic strategies for non-small cell lung cancer: Experimental models and emerging biomarkers to monitor drug efficacies. Pharmacol Ther 2023; 242:108347. [PMID: 36642389 DOI: 10.1016/j.pharmthera.2023.108347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
While new targeted therapies have considerably changed the treatment and prognosis of non-small cell lung cancer (NSCLC), they are frequently unsuccessful due to primary or acquired resistances. Chemoresistance is a complex process that combines cancer cell intrinsic mechanisms including molecular and genetic abnormalities, aberrant interactions within the tumor microenvironment, and the pharmacokinetic characteristics of each molecule. From a pharmacological point of view, two levers could improve the response to treatment: (i) developing tools to predict the response to chemo- and targeted therapies and (ii) gaining a better understanding of the influence of the tumor microenvironment. Both personalized medicine approaches require the identification of relevant experimental models and biomarkers to understand and fight against chemoresistance mechanisms. After describing the main therapies in NSCLC, the scope of this review will be to identify and to discuss relevant in vitro and ex vivo experimental models that are able to mimic tumors. In addition, the interests of these models in the predictive responses to proposed therapies will be discussed. Finally, this review will evaluate the involvement of novel secreted biomarkers such as tumor DNA or micro RNA in predicting responses to anti-tumor therapies.
Collapse
|
3
|
Khalafi S, Zhu S, Khurana R, Lohse I, Giordano S, Corso S, Al-Ali H, Brothers SP, Wahlestedt C, Schürer S, El-Rifai W. A novel strategy for combination of clofarabine and pictilisib is synergistic in gastric cancer. Transl Oncol 2021; 15:101260. [PMID: 34735897 PMCID: PMC8571525 DOI: 10.1016/j.tranon.2021.101260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/08/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Drug sensitivity testing identified novel drugs like clofarabine effective in treating gastric cancer. mRNA sequencing can be used to identify agents with synergistic activity to a reference compound. Pictilisib sensitizes gastric cancer to clofarabine treatment through AKT inhibition. The combination of clofarabine and pictilisib inhibits tumor growth in cell lines and PDX models.
Gastric cancer (GC) is frequently characterized by resistance to standard chemotherapeutic regimens and poor clinical outcomes. We aimed to identify a novel therapeutic approach using drug sensitivity testing (DST) and our computational SynerySeq pipeline. DST of GC cell lines was performed with a library of 215 Federal Drug Administration (FDA) approved compounds and identified clofarabine as a potential therapeutic agent. RNA-sequencing (RNAseq) of clofarabine treated GC cells was analyzed according to our SynergySeq pipeline and identified pictilisib as a potential synergistic agent. Clonogenic survival and Annexin V assays demonstrated increased cell death with clofarabine and pictilisib combination treatment (P<0.01). The combination induced double strand breaks (DSB) as indicated by phosphorylated H2A histone family member X (γH2AX) immunofluorescence and western blot analysis (P<0.01). Pictilisib treatment inhibited the protein kinase B (AKT) cell survival pathway and promoted a pro-apoptotic phenotype as evidenced by quantitative real time polymerase chain reaction (qRT-PCR) analysis of the B-cell lymphoma 2 (BCL2) protein family members (P<0.01). Patient derived xenograft (PDX) data confirmed that the combination is more effective in abrogating tumor growth with prolonged survival than single-agent treatment (P<0.01). The novel combination of clofarabine and pictilisib in GC promotes DNA damage and inhibits key cell survival pathways to induce cell death beyond single-agent treatment.
Collapse
Affiliation(s)
- Shayan Khalafi
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Medical Science Bldg, 1600 NW 10th Ave, Room 4007, Miami, FL 33136-1015, United States
| | - Shoumin Zhu
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Medical Science Bldg, 1600 NW 10th Ave, Room 4007, Miami, FL 33136-1015, United States; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Rimpi Khurana
- Department of Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Ines Lohse
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Molecular Therapeutics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, FL 33136, United States
| | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo 10060, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy
| | - Simona Corso
- Department of Oncology, University of Torino, Candiolo 10060, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy
| | - Hassan Al-Ali
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Peggy and Harold Katz Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Shaun P Brothers
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Stephan Schürer
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Institute for Data Science and Computing, University of Miami, Miami, FL 33136, United States
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Medical Science Bldg, 1600 NW 10th Ave, Room 4007, Miami, FL 33136-1015, United States; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Veterans Affairs, Miami Healthcare System, Miami, FL 33136, United States.
| |
Collapse
|
4
|
Pickering OJ, Breininger SP, Underwood TJ, Walters ZS. Histone Modifying Enzymes as Targets for Therapeutic Intervention in Oesophageal Adenocarcinoma. Cancers (Basel) 2021; 13:4084. [PMID: 34439236 PMCID: PMC8392153 DOI: 10.3390/cancers13164084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
Oesophageal adenocarcinoma (OAC) has a dismal prognosis, where curable disease occurs in less than 40% of patients, and many of those with incurable disease survive for less than a year from diagnosis. Despite the widespread use of systematic chemotherapy in OAC treatment, many patients receive no benefit. New treatments are urgently needed for OAC patients. There is an emerging interest in epigenetic regulators in cancer pathogenesis, which are now translating into novel cancer therapeutic strategies. Histone-modifying enzymes (HMEs) are key epigenetic regulators responsible for dynamic covalent histone modifications that play roles in both normal and dysregulated cellular processes including tumorigenesis. Several HME inhibitors are in clinical use for haematological malignancies and sarcomas, with numerous on-going clinical trials for their use in solid tumours. This review discusses the current literature surrounding HMEs in OAC pathogenesis and their potential use in targeted therapies for this disease.
Collapse
Affiliation(s)
| | | | | | - Zoë S. Walters
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (O.J.P.); (S.P.B.); (T.J.U.)
| |
Collapse
|
5
|
Nunes M, Henriques Abreu M, Bartosch C, Ricardo S. Recycling the Purpose of Old Drugs to Treat Ovarian Cancer. Int J Mol Sci 2020; 21:ijms21207768. [PMID: 33092251 PMCID: PMC7656306 DOI: 10.3390/ijms21207768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
The main challenge in ovarian cancer treatment is the management of recurrences. Facing this scenario, therapy selection is based on multiple factors to define the best treatment sequence. Target therapies, such as bevacizumab and polymerase (PARP) inhibitors, improved patient survival. However, despite their achievements, ovarian cancer survival remains poor; these therapeutic options are highly costly and can be associated with potential side effects. Recently, it has been shown that the combination of repurposed, conventional, chemotherapeutic drugs could be an alternative, presenting good patient outcomes with few side effects and low costs for healthcare institutions. The main aim of this review is to strengthen the importance of repurposed drugs as therapeutic alternatives, and to propose an in vitro model to assess the therapeutic value. Herein, we compiled the current knowledge on the most promising non-oncological drugs for ovarian cancer treatment, focusing on statins, metformin, bisphosphonates, ivermectin, itraconazole, and ritonavir. We discuss the primary drug use, anticancer mechanisms, and applicability in ovarian cancer. Finally, we propose the use of these therapies to perform drug efficacy tests in ovarian cancer ex vivo cultures. This personalized testing approach could be crucial to validate the existing evidences supporting the use of repurposed drugs for ovarian cancer treatment.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal;
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), 4200-162 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-162 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center—Portuguese Oncology Institute of Porto (CI-IPOP), 4200-162 Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal;
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal
- Correspondence: ; Tel.: +351-225-570-700
| |
Collapse
|
6
|
April-Monn SL, Wiedmer T, Skowronska M, Maire R, Schiavo Lena M, Trippel M, Di Domenico A, Muffatti F, Andreasi V, Capurso G, Doglioni C, Kim-Fuchs C, Gloor B, Zatelli MC, Partelli S, Falconi M, Perren A, Marinoni I. Three-Dimensional Primary Cell Culture: A Novel Preclinical Model for Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2020; 111:273-287. [PMID: 32241015 DOI: 10.1159/000507669] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/02/2020] [Indexed: 11/19/2022]
Abstract
Molecular mechanisms underlying the development and progression of pancreatic neuroendocrine tumors (PanNETs) are still insufficiently understood. Efficacy of currently approved PanNET therapies is limited. While novel treatment options are being developed, patient stratification permitting more personalized treatment selection in PanNET is yet not feasible since no predictive markers are established. The lack of representative in vitro and in vivo models as well as the rarity and heterogeneity of PanNET are prevailing reasons for this. In this study, we describe an in vitro 3-dimensional (3-D) human primary PanNET culture system as a novel preclinical model for more personalized therapy selection. We present a screening platform allowing multicenter sample collection and drug screening in 3-D cultures of human primary PanNET cells. We demonstrate that primary cells isolated from PanNET patients and cultured in vitro form islet-like tumoroids. Islet-like tumoroids retain a neuroendocrine phenotype and are viable for at least 2 weeks in culture with a high success rate (86%). Viability can be monitored continuously allowing for a per-well normalization. In a proof-of-concept study, islet-like tumoroids were screened with three clinically approved therapies for PanNET: sunitinib, everolimus and temozolomide. Islet-like tumoroids display varying in vitro response profiles to distinct therapeutic regimes. Treatment response of islet-like tumoroids differs also between patient samples. We believe that the presented human PanNET screening platform is suitable for personalized drug testing in a larger patient cohort, and a broader application will help in identifying novel markers predicting treatment response and in refining PanNET therapy.
Collapse
Affiliation(s)
- Simon Leonhard April-Monn
- Institute of Pathology, University of Bern, Bern, Switzerland
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Tabea Wiedmer
- Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Renaud Maire
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Mafalda Trippel
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Annunziata Di Domenico
- Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Francesca Muffatti
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Andreasi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Gabriele Capurso
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Unit of Pathology, San Raffaele Scientific Institute, Milan, Italy
- Università Vita e Salute, Milan, Italy
| | | | - Beat Gloor
- Inselspital, University of Bern, Bern, Switzerland
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Stefano Partelli
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Università Vita e Salute, Milan, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Università Vita e Salute, Milan, Italy
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ilaria Marinoni
- Institute of Pathology, University of Bern, Bern, Switzerland,
| |
Collapse
|