1
|
Bashirova N, Butenschön E, Poppitz D, Gaß H, Halik M, Dentel D, Tegenkamp C, Matysik J, Alia A. Magnetic Resonance Imaging-Based Monitoring of the Accumulation of Polyethylene Terephthalate Nanoplastics. Molecules 2024; 29:4380. [PMID: 39339374 PMCID: PMC11434537 DOI: 10.3390/molecules29184380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Polyethylene terephthalate (PET) is one of the most produced plastic materials in the world. The emergence of microplastics and nanoplastics (MPs/NPs) as a significant environmental contaminant has become a matter of increasing concern. While the toxicological effects of PET NPs have been widely researched, there is a lack of methodologies for studying their accumulation. The present study introduces a novel method to monitor the distribution of PET NPs in germinating wheat (Triticum aestivum L.) seeds. This involves the functionalization of superparamagnetic iron oxide nanoparticles (SPIONs) with PET NPs (PET-fSPIONs) coupled with magnetic resonance microimaging (µMRI) to provide insight into their distribution within the seed. The present study has demonstrated that PET-fSPIONs accumulate in specific regions of germinating wheat seeds, including the shoot apical meristem, the radicle, the coleoptile, the plumule, and the scutellum. Furthermore, the accumulation of PET-fSPIONs has been shown to exert a discernible effect on spin-spin relaxation (T2), as observed via MRI and quantitative T2 relaxation time analysis. The accumulation of PET NPs in embryo regions was also confirmed by SEM. Diffusion-weighted magnetic resonance imaging (DW-MRI) and non-invasive chemical shift imaging analyses demonstrated that PET NPs resulted in restricted diffusion within the highlighted areas, as well as an impact on lipid content. Our study reveals that using µMRI with fSPIONs provides a non-invasive method to monitor the biodistribution of PET nanoparticles in wheat seeds. Additionally, it offers valuable insights into the microstructural interactions of PET.
Collapse
Affiliation(s)
- Narmin Bashirova
- Institute of Medical Physics and Biophysics, Leipzig University, D-04107 Leipzig, Germany;
- Institute of Analytical Chemistry, Leipzig University, D-04103 Leipzig, Germany; (E.B.); (J.M.)
| | - Erik Butenschön
- Institute of Analytical Chemistry, Leipzig University, D-04103 Leipzig, Germany; (E.B.); (J.M.)
| | - David Poppitz
- Institute of Chemical Technology, Leipzig University, D-04103 Leipzig, Germany;
| | - Henrik Gaß
- Organic Materials & Devices Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nürnberg, D-91058 Erlangen, Germany; (H.G.); (M.H.)
| | - Marcus Halik
- Organic Materials & Devices Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nürnberg, D-91058 Erlangen, Germany; (H.G.); (M.H.)
| | - Doreen Dentel
- Institut of Physics, Technical Chemnitz University, D-09126 Chemnitz, Germany; (D.D.); (C.T.)
| | - Christoph Tegenkamp
- Institut of Physics, Technical Chemnitz University, D-09126 Chemnitz, Germany; (D.D.); (C.T.)
| | - Joerg Matysik
- Institute of Analytical Chemistry, Leipzig University, D-04103 Leipzig, Germany; (E.B.); (J.M.)
| | - A. Alia
- Institute of Medical Physics and Biophysics, Leipzig University, D-04107 Leipzig, Germany;
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
2
|
Kirkland CM, Krug JR, Vergeldt FJ, van den Berg L, Velders AH, Seymour JD, Codd SL, Van As H, de Kreuk MK. Characterizing the structure of aerobic granular sludge using ultra-high field magnetic resonance. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:627-639. [PMID: 32970616 DOI: 10.2166/wst.2020.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite aerobic granular sludge wastewater treatment plants operating around the world, our understanding of internal granule structure and its relation to treatment efficiency remains limited. This can be attributed in part to the drawbacks of time-consuming, labor-intensive, and invasive microscopy protocols which effectively restrict samples sizes and may introduce artefacts. Time-domain nuclear magnetic resonance (NMR) allows non-invasive measurements which describe internal structural features of opaque, complex materials like biofilms. NMR was used to image aerobic granules collected from five full-scale wastewater treatment plants in the Netherlands and United States, as well as laboratory granules and control beads. T1 and T2 relaxation-weighted images reveal heterogeneous structures that include high- and low-density biofilm regions, water-like voids, and solid-like inclusions. Channels larger than approximately 50 μm and connected to the bulk fluid were not visible. Both cluster and ring-like structures were observed with each granule source having a characteristic structural type. These structures, and their NMR relaxation behavior, were stable over several months of storage. These observations reveal the complex structures within aerobic granules from a range of sources and highlight the need for non-invasive characterization methods like NMR to be applied in the ongoing effort to correlate structure and function.
Collapse
Affiliation(s)
- Catherine M Kirkland
- Department of Civil Engineering, Montana State University, 205 Cobleigh, Bozeman, Montana, 59717, USA E-mail: ; Center for Biofilm Engineering, Montana State University, 366 Barnard, Bozeman, Montana, 59717, USA
| | - Julia R Krug
- Laboratory of BioNanoTechnology, Wageningen University and Research, Axis building, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands; Laboratory of Biophysics and MAGNEtic Resonance Research FacilitY (MAGNEFY), Wageningen University and Research, Helix building, Stippeneng 4, 6708 WG, Wageningen, The Netherlands
| | - Frank J Vergeldt
- Laboratory of Biophysics and MAGNEtic Resonance Research FacilitY (MAGNEFY), Wageningen University and Research, Helix building, Stippeneng 4, 6708 WG, Wageningen, The Netherlands
| | - Lenno van den Berg
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| | - Aldrik H Velders
- Laboratory of BioNanoTechnology, Wageningen University and Research, Axis building, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Joseph D Seymour
- Center for Biofilm Engineering, Montana State University, 366 Barnard, Bozeman, Montana, 59717, USA; Department of Chemical and Biological Engineering, Montana State University, 306 Cobleigh, Bozeman, Montana, 59717, USA
| | - Sarah L Codd
- Department of Mechanical and Industrial Engineering, Montana State University, 220 Roberts, Bozeman, Montana, 59717, USA
| | - Henk Van As
- Laboratory of Biophysics and MAGNEtic Resonance Research FacilitY (MAGNEFY), Wageningen University and Research, Helix building, Stippeneng 4, 6708 WG, Wageningen, The Netherlands
| | - Merle K de Kreuk
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| |
Collapse
|
3
|
van den Berg TE, Chukhutsina VU, van Amerongen H, Croce R, van Oort B. Light Acclimation of the Colonial Green Alga Botryococcus braunii Strain Showa. PLANT PHYSIOLOGY 2019; 179:1132-1143. [PMID: 30651303 PMCID: PMC6393799 DOI: 10.1104/pp.18.01499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 05/03/2023]
Abstract
In contrast to single cellular species, detailed information is lacking on the processes of photosynthetic acclimation for colonial algae, although these algae are important for biofuel production, ecosystem biodiversity, and wastewater treatment. To investigate differences between single cellular and colonial species, we studied the regulation of photosynthesis and photoprotection during photoacclimation for the colonial green alga Botryococcus braunii and made a comparison with the properties of the single cellular species Chlamydomonas reinhardtii We show that B. braunii shares some high-light (HL) photoacclimation strategies with C. reinhardtii and other frequently studied green algae: decreased chlorophyll content, increased free carotenoid content, and increased nonphotochemical quenching (NPQ). Additionally, B. braunii has unique HL photoacclimation strategies, related to its colonial form: strong internal shading by an increase of the colony size and the accumulation of extracellular echinenone (a ketocarotenoid). HL colonies are larger and more spatially heterogenous than low-light colonies. Compared with surface cells, cells deeper inside the colony have increased pigmentation and larger photosystem II antenna size. The core of the largest of the HL colonies does not contain living cells. In contrast with C. reinhardtii, but similar to other biofilm-forming algae, NPQ capacity is substantial in low light. In HL, NPQ amplitude increases, but kinetics are unchanged. We discuss possible causes of the different acclimation responses of C. reinhardtii and B. braunii Knowledge of the specific photoacclimation processes for this colonial green alga further extends the view of the diversity of photoacclimation strategies in photosynthetic organisms.
Collapse
Affiliation(s)
- Tomas E van den Berg
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Volha U Chukhutsina
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Bart van Oort
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|