1
|
Gładyś A, Mazurski A, Czekaj P. Potential Consequences of the Use of Adipose-Derived Stem Cells in the Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:7806. [PMID: 39063048 PMCID: PMC11277008 DOI: 10.3390/ijms25147806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks as the most prevalent of primary liver cancers and stands as the third leading cause of cancer-related deaths. Early-stage HCC can be effectively managed with available treatment modalities ranging from invasive techniques, such as liver resection and thermoablation, to systemic therapies primarily employing tyrosine kinase inhibitors. Unfortunately, these interventions take a significant toll on the body, either through physical trauma or the adverse effects of pharmacotherapy. Consequently, there is an understandable drive to develop novel HCC therapies. Adipose-derived stem cells (ADSCs) are a promising therapeutic tool. Their facile extraction process, coupled with the distinctive immunomodulatory capabilities of their secretome, make them an intriguing subject for investigation in both oncology and regenerative medicine. The factors they produce are both enzymes affecting the extracellular matrix (specifically, metalloproteinases and their inhibitors) as well as cytokines and growth factors affecting cell proliferation and invasiveness. So far, the interactions observed with various cancer cell types have not led to clear conclusions. The evidence shows both inhibitory and stimulatory effects on tumor growth. Notably, these effects appear to be dependent on the tumor type, prompting speculation regarding their potential inhibitory impact on HCC. This review briefly synthesizes findings from preclinical and clinical studies examining the effects of ADSCs on cancers, with a specific focus on HCC, and emphasizes the need for further research.
Collapse
Affiliation(s)
- Aleksandra Gładyś
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| | - Adam Mazurski
- Students Scientific Society, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| |
Collapse
|
2
|
Waqar MA, Zaman M, Khan R, Shafeeq Ur Rahman M, Majeed I. Navigating the tumor microenvironment: mesenchymal stem cell-mediated delivery of anticancer agents. J Drug Target 2024; 32:624-634. [PMID: 38652480 DOI: 10.1080/1061186x.2024.2347356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
Scientific knowledge of cancer has advanced greatly throughout the years, with most recent studies findings includes many hallmarks that capture disease's multifaceted character. One of the novel approach utilised for the delivery of anti-cancer agents includes mesenchymal stem cell mediated drug delivery. Mesenchymal stem cells (MSCs) are non-haematopoietic progenitor cells that may be extracted from bone marrow, tooth pulp, adipose tissue and placenta/umbilical cord blood dealing with adult stem cells. MSCs are mostly involved in regeneration of tissue, they have also been shown to preferentially migrate to location of several types of tumour in-vivo. Usage of MSCs ought to improve both effectiveness and safety of anti-cancer drugs by enhancing delivery efficiency of anti-cancer therapies to tumour site. Numerous researches has demonstrated that various drugs, when delivered via mesenchymal stem cell mediated delivery can elicit anti-tumour effect of cells in cancers of breast cells and thyroid cells. MSCs have minimal immunogenicity because to lack of co-stimulatory molecule expression, which means there is no requirement for immunosuppression after allogenic transplantation. This current review elaborates recent advancements of mesenchyma stem cell mediated drug delivery of anti-cancer agents along with its mechanism and previously reported studies of drugs manufactured via this drug delivery system.
Collapse
Affiliation(s)
- Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Rabeel Khan
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | | | - Imtiaz Majeed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
3
|
Valente DS, Ely PB, Kieling L, Konzen AT, Steffen LP, Lazzaretti GS, Zanella RK. Breast fat grafting and cancer: a systematic review of the science behind enhancements and concerns. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:14. [PMID: 38751673 PMCID: PMC11093078 DOI: 10.21037/tbcr-23-54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/28/2024] [Indexed: 05/18/2024]
Abstract
Background Autologous fat transfer (AFT) is gaining popularity in breast surgery, offering a natural-looking and minimally invasive approach for augmentation, reconstruction, and contouring. However, concerns about its impact on breast cancer necessitate an understanding of the interplay between transplanted adipose-derived stem cells (ADSCs) and the breast tissue microenvironment. Renowned for regeneration, ADSCs raise questions about their role in cancer promotion. This systematic review delves into the complex relationship between AFT and breast cancer, exploring how ADSCs may influence development, growth, and metastasis. Methods A systematic search of electronic databases, including PubMed, Embase, and BVS was conducted to identify relevant studies. The search strategy employed a combination of keywords, including "breast augmentation", "fat grafting", "breast enhancement", "mammoplasty", "cancer", "neoplasm" and related terms. Two reviewers independently screened titles and abstracts. Full-text articles were then retrieved for further evaluation based on their potential contribution to the review objectives. Results Two hundred and forty records were identified. Among these, 104 duplicates were removed, resulting in 136 reports available for title and abstract screening. Subsequently, 54 papers were deemed potentially eligible for inclusion, and all reports were retrieved. Conclusions In vitro studies reveal ADSCs dual role in breast cancer, influencing proliferation, migration, and drug resistance through complex signaling pathways. Animal studies highlight distinct ADSC subpopulations impacting tumor growth via direct interactions and extracellular vesicle cargo. In vivo, ADSC-enriched fat grafting is generally safe, showing no increased cancer recurrence risk compared to other methods. Notably, cases of invasive breast carcinoma warrant special attention. ADSC-enriched fat grafts exhibit potential benefits in graft retention and survival rates. Despite promising evidence, further studies are needed to comprehensively understand the intricate relationship between ADSCs and breast cancer for optimized clinical applications and potential therapeutic innovations.
Collapse
Affiliation(s)
- Denis Souto Valente
- Division of Surgical Clinics, Federal University of Medical Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Pedro Bins Ely
- Division of Surgical Clinics, Federal University of Medical Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Lucas Kieling
- School of Medicine, Federal University of Medical Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Ana Terezinha Konzen
- School of Medicine, Federal University of Medical Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Lucas Pastori Steffen
- Graduate Program in Health Sciences, Federal University of Medical Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Gloria Sulczinski Lazzaretti
- Graduate Program in Health Sciences, Federal University of Medical Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | | |
Collapse
|
4
|
Banche Niclot AGS, Marini E, Ferrero I, Barbero F, Rosso E, Fenoglio I, Barge A, Pessina A, Coccè V, Paino F, Mareschi K, Fagioli F. A New Paclitaxel Formulation Based on Secretome Isolated from Mesenchymal Stem Cells Shows a Significant Cytotoxic Effect on Osteosarcoma Cell Lines. Pharmaceutics 2023; 15:2340. [PMID: 37765308 PMCID: PMC10537652 DOI: 10.3390/pharmaceutics15092340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) represents a rare cancer with an unfavorable prognosis that needs innovative treatment. The aim was to isolate a secretome from mesenchymal stem cells (MSCs) that are treated with paclitaxel (PTX)-containing microvesicles as a drug delivery system and analyze its cytotoxic effects on OS cell lines (SJSA, MG63, and HOS). METHODS Three batches of secretome (SECR-1, SECR-2, and SECR-3) were produced from three bone marrow (BM) MSCs samples treated for 24 h with 15 µg/mL of PTX or with a standard medium. The viability of the OS cell lines after 5 days of exposure to SECR-1-2-3 (pure and diluted to 1:2 and 1:4) was analyzed with an MTT assay. The same SECR batches were analyzed with high-performance liquid chromatography (HPLC) and with a nanoparticle tracking assay (NTA). RESULTS A statistically significant decrease in the viability of all OS cell lines was observed after treatment with SECR-PTX 1-2-3 in a dose-response manner. The NTA analyses showed the presence of nanoparticles (NPs) with a mean size comparable to that of extracellular vesicles (EVs). The HPLC analyses detected the presence of PTX in minimal doses in all SECR batches. CONCLUSIONS This proof-of-concept study showed that the conditioned medium isolated from MSCs loaded with PTX had a strong cytotoxic effect on OS cell lines, due to the presence of EV and PTX.
Collapse
Affiliation(s)
| | - Elena Marini
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (A.G.S.B.N.); (E.M.); (F.F.)
| | - Ivana Ferrero
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy;
| | - Francesco Barbero
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (F.B.); (I.F.)
| | - Elena Rosso
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (E.R.); (A.B.)
| | - Ivana Fenoglio
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (F.B.); (I.F.)
| | - Alessandro Barge
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (E.R.); (A.B.)
| | - Augusto Pessina
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (A.P.); (V.C.); (F.P.)
| | - Valentina Coccè
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (A.P.); (V.C.); (F.P.)
| | - Francesca Paino
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (A.P.); (V.C.); (F.P.)
| | - Katia Mareschi
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (A.G.S.B.N.); (E.M.); (F.F.)
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy;
| | - Franca Fagioli
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (A.G.S.B.N.); (E.M.); (F.F.)
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy;
| |
Collapse
|
5
|
Cordani N, Lisini D, Coccè V, Paglia G, Meanti R, Cerrito MG, Tettamanti P, Bonaffini L, Paino F, Alessandri G, Marcianti A, Giannì A, Villa C, Mauri M, Mologni L, Torsello A, Pessina A, Cazzaniga ME. Conditioned Medium of Mesenchymal Stromal Cells Loaded with Paclitaxel Is Effective in Preclinical Models of Triple-Negative Breast Cancer (TNBC). Int J Mol Sci 2023; 24:ijms24065864. [PMID: 36982938 PMCID: PMC10058623 DOI: 10.3390/ijms24065864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a very aggressive disease even in its early stages and is characterized by a severe prognosis. Neoadjuvant chemotherapy is one of the milestones of treatment, and paclitaxel (PTX) is among the most active drugs used in this setting. However, despite its efficacy, peripheral neuropathy occurs in approximately 20-25% of cases and represents the dose-limiting toxicity of this drug. New deliverable strategies to ameliorate drug delivery and reduce side effects are keenly awaited to improve patients' outcomes. Mesenchymal stromal cells (MSCs) have recently been demonstrated as promising drug delivery vectors for cancer treatment. The aim of the present preclinical study is to explore the possibility of a cell therapy approach based on the use of MSCs loaded with PTX to treat TNBC-affected patients. For this purpose, we in vitro evaluated the viability, migration and colony formation of two TNBC cell lines, namely, MDA-MB-231 and BT549, treated with MSC-PTX conditioned medium (MSC-CM PTX) in comparison with both CM of MSCs not loaded with PTX (CTRL) and free PTX. We observed stronger inhibitory effects on survival, migration and tumorigenicity for MSC-CM PTX than for CTRL and free PTX in TNBC cell lines. Further studies will provide more information about activity and potentially open the possibility of using this new drug delivery vector in the context of a clinical study.
Collapse
Affiliation(s)
- Nicoletta Cordani
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Daniela Lisini
- Cell Therapy Production Unit-UPTC, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Valentina Coccè
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Giuseppe Paglia
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Ramona Meanti
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | | | - Pietro Tettamanti
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Luca Bonaffini
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Francesca Paino
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Giulio Alessandri
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Angela Marcianti
- Cell Therapy Production Unit-UPTC, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Aldo Giannì
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Maxillo-Facial and Dental Unit, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Chiara Villa
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Mario Mauri
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Luca Mologni
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Augusto Pessina
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Marina Elena Cazzaniga
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
- Phase 1 Research Centre, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
| |
Collapse
|
6
|
Alimardani V, Rahiminezhad Z, DehghanKhold M, Farahavar G, Jafari M, Abedi M, Moradi L, Niroumand U, Ashfaq M, Abolmaali SS, Yousefi G. Nanotechnology-based cell-mediated delivery systems for cancer therapy and diagnosis. Drug Deliv Transl Res 2023; 13:189-221. [PMID: 36074253 DOI: 10.1007/s13346-022-01211-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
The global prevalence of cancer is increasing, necessitating new additions to traditional treatments and diagnoses to address shortcomings such as ineffectiveness, complications, and high cost. In this context, nano and microparticulate carriers stand out due to their unique properties such as controlled release, higher bioavailability, and lower toxicity. Despite their popularity, they face several challenges including rapid liver uptake, low chemical stability in blood circulation, immunogenicity concerns, and acute adverse effects. Cell-mediated delivery systems are important topics to research because of their biocompatibility, biodegradability, prolonged delivery, high loading capacity, and targeted drug delivery capabilities. To date, a variety of cells including blood, immune, cancer, and stem cells, sperm, and bacteria have been combined with nanoparticles to develop efficient targeted cancer delivery or diagnosis systems. The review paper aimed to provide an overview of the potential applications of cell-based delivery systems in cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Vahid Alimardani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rahiminezhad
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahvash DehghanKhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghazal Farahavar
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Jafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Moradi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Uranous Niroumand
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ashfaq
- University Centre for Research & Development (UCRD), Chandigarh University, Gharaun, Mohali, 140413, Punjab, India. .,Department of Biotechnology, Chandigarh University, Gharaun, Mohali, 140413, Punjab, India.
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Drug Delivery in Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Drug Delivery in Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Liu T, Gao C, Gu D, Tang H. Cell-based carrier for targeted hitchhiking delivery. Drug Deliv Transl Res 2022; 12:2634-2648. [PMID: 35499717 DOI: 10.1007/s13346-022-01149-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Drug delivery systems aim at improving drug transport efficiency and therapeutic efficacy by rational design, and current research on conventional delivery systems brings new developments for disease treatment. Recently, studies on cell-based drug delivery systems are rapidly emerging, which shows great advantages in comparison to conventional drug delivery system. The system uses cells as carriers to delivery conventional drugs or nanomedicines and shows good biocompatibility and enhanced targeting efficiency, beneficial from self component and its physiological function. The construction methodology of cell-based carrier determines the effect on the physiological functions of transporting cell and affects its clinical application. There are different strategies to prepare cell-based carrier, such as direct internalization or surface conjugation of drugs or drug loaded materials. Thus, it is necessary to fully understand the advantages and disadvantages of different strategies for constructing cell-based carrier and then to seek the appropriate construction methodology for achieving better therapeutic results based on disease characterization. We here summarize the application of different types of cell-based carriers reported in recent years and further discuss their applications in disease therapy and the dilemmas faced in clinical translation. We hope that this summary can accelerate the process of clinical translation by promoting the technology development of cell-based carrier.
Collapse
Affiliation(s)
- Tonggong Liu
- Department of Preventive Medicine, School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, China.,Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Cheng Gao
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Huanwen Tang
- Department of Preventive Medicine, School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
8
|
Ritter A, Kreis NN, Hoock SC, Solbach C, Louwen F, Yuan J. Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells, Obesity and the Tumor Microenvironment of Breast Cancer. Cancers (Basel) 2022; 14:3908. [PMID: 36010901 PMCID: PMC9405791 DOI: 10.3390/cancers14163908] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and a common cause of cancer-related death in women. It is well recognized that obesity is associated with an enhanced risk of more aggressive breast cancer as well as reduced patient survival. Adipose tissue is the major microenvironment of breast cancer. Obesity changes the composition, structure, and function of adipose tissue, which is associated with inflammation and metabolic dysfunction. Interestingly, adipose tissue is rich in ASCs/MSCs, and obesity alters the properties and functions of these cells. As a key component of the mammary stroma, ASCs play essential roles in the breast cancer microenvironment. The crosstalk between ASCs and breast cancer cells is multilateral and can occur both directly through cell-cell contact and indirectly via the secretome released by ASC/MSC, which is considered to be the main effector of their supportive, angiogenic, and immunomodulatory functions. In this narrative review, we aim to address the impact of obesity on ASCs/MSCs, summarize the current knowledge regarding the potential pathological roles of ASCs/MSCs in the development of breast cancer, discuss related molecular mechanisms, underline the possible clinical significance, and highlight related research perspectives. In particular, we underscore the roles of ASCs/MSCs in breast cancer cell progression, including proliferation and survival, angiogenesis, migration and invasion, the epithelial-mesenchymal transition, cancer stem cell development, immune evasion, therapy resistance, and the potential impact of breast cancer cells on ASCS/MSCs by educating them to become cancer-associated fibroblasts. We conclude that ASCs/MSCs, especially obese ASCs/MSCs, may be key players in the breast cancer microenvironment. Targeting these cells may provide a new path of effective breast cancer treatment.
Collapse
Affiliation(s)
- Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | | | | | | | | | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
9
|
Scioli MG, Terriaca S, Fiorelli E, Storti G, Fabbri G, Cervelli V, Orlandi A. Extracellular Vesicles and Cancer Stem Cells in Tumor Progression: New Therapeutic Perspectives. Int J Mol Sci 2021; 22:10572. [PMID: 34638913 PMCID: PMC8508599 DOI: 10.3390/ijms221910572] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor burden is a complex microenvironment where different cell populations coexist and have intense cross-talk. Among them, a heterogeneous population of tumor cells with staminal features are grouped under the definition of cancer stem cells (CSCs). CSCs are also considered responsible for tumor progression, drug resistance, and disease relapse. Furthermore, CSCs secrete a wide variety of extracellular vesicles (EVs) with different cargos, including proteins, lipids, ssDNA, dsDNA, mRNA, siRNA, or miRNA. EVs are internalized by other cells, orienting the microenvironment toward a protumorigenic and prometastatic one. Given their importance in tumor growth and metastasis, EVs could be exploited as a new therapeutic target. The inhibition of biogenesis, release, or uptake of EVs could represent an efficacious strategy to impair the cross-talk between CSCs and other cells present in the tumor microenvironment. Moreover, natural or synthetic EVs could represent suitable carriers for drugs or bioactive molecules to target specific cell populations, including CSCs. This review will discuss the role of CSCs and EVs in tumor growth, progression, and metastasis and how they affect drug resistance and disease relapse. Furthermore, we will analyze the potential role of EVs as a target or vehicle of new therapies.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Sonia Terriaca
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Elena Fiorelli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy; (G.S.); (V.C.)
| | - Giulia Fabbri
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy; (G.S.); (V.C.)
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| |
Collapse
|
10
|
Storti G, Scioli MG, Kim BS, Terriaca S, Fiorelli E, Orlandi A, Cervelli V. Mesenchymal Stem Cells in Adipose Tissue and Extracellular Vesicles in Ovarian Cancer Patients: A Bridge toward Metastatic Diffusion or a New Therapeutic Opportunity? Cells 2021; 10:cells10082117. [PMID: 34440886 PMCID: PMC8392703 DOI: 10.3390/cells10082117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is one of the deadliest malignancies among women. Approximately 75% of the patients with ovarian cancer are diagnosed with advanced disease that already has metastasis, particularly to the omentum. The omentum constitutes the ideal soil for ovarian cancer metastasis due to a complex intraperitoneal milieu that favors and supports the whole metastatic process. Adipose-derived stem/stromal cells (ADSCs) are part of this microenvironment and foster tumor progression via sustained paracrine secretion, including extracellular vesicles (EVs). Nonetheless, the preferential relationship between ADSCs, ADSC-derived EVs, and ovarian cancer cells could be exploited to use ADSCs and EVs as a vehicle for anti-cancer therapies. This review will analyze the strict relations between tumor progression, metastatic disease, and adipose tissue with its staminal components. In addition, we will describe the crosstalk and biologic relationship between ADSCs and tumor cells, the role of EVs in intercellular communication, the establishment of drug resistance, metastatic capacity, and ovarian cancer progression. We will analyze the new therapeutic opportunities in treating ovarian cancer offered by ADSCs and EVs as a vehicle for therapeutic molecules to target precisely tumor cells and limit the systemic adverse effects. Finally, we will discuss the limitations of these therapeutic approaches.
Collapse
Affiliation(s)
- Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy;
- Correspondence: ; Tel.: +39-06-23188514; Fax: +39-06-23188466
| | - Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Sonia Terriaca
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Elena Fiorelli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy;
| |
Collapse
|
11
|
Scioli MG, Storti G, Bielli A, Sanchez M, Scimeca M, Gimble JM, Cervelli V, Orlandi A. CD146 expression regulates osteochondrogenic differentiation of human adipose-derived stem cells. J Cell Physiol 2021; 237:589-602. [PMID: 34287857 DOI: 10.1002/jcp.30506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/12/2023]
Abstract
Tissue engineering aims to develop innovative approaches to repair tissue defects. The use of adipose-derived stem cells (ASCs) in tissue regeneration was extensively investigated for osteochondrogenesis. Among the ASC population, ASCs expressing the CD146 were demonstrated to be multipotent and considered as perivascular stem cells, although the functional role of CD146 expression in these cells remains unclear. Herein, we investigated the influence of CD146 expression on osteochondrogenic differentiation of ASCs. Our results showed that, in two-dimensional culture systems, sorted CD146+ ASCs proliferated less and displayed higher adipogenic and chondrogenic potential than CD146- ASCs. The latter demonstrated a higher osteogenic capacity. Besides this, CD146+ ASCs in three-dimensional Matrigel/endothelial growth medium (EGM) cultures showed the highest angiogenic capability. When cultured in three-dimensional collagen scaffolds, CD146+ ASCs showed a spontaneous chondrogenic differentiation, further enhanced by the EGM medium's addition. Finally, CD146- ASCs seeded on hexafluoroisopropanol silk scaffolds displayed a greater spontaneous osteogenetic capacity. Altogether, these findings demonstrated a functional and relevant influence of CD146 expression in ASC properties and osteochondrogenic commitment. Exploiting the combination of specific differentiation properties of ASC subpopulations and appropriate culture systems could represent a promising strategy to improve the efficacy of new regenerative therapies.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Alessandra Bielli
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Sanchez
- Major Equipments and Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Manuel Scimeca
- Anatomic Pathology, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Jeffrey M Gimble
- Department of Pharmacology, Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
12
|
Hassanzadeh A, Altajer AH, Rahman HS, Saleh MM, Bokov DO, Abdelbasset WK, Marofi F, Zamani M, Yaghoubi Y, Yazdanifar M, Pathak Y, Chartrand MS, Jarahian M. Mesenchymal Stem/Stromal Cell-Based Delivery: A Rapidly Evolving Strategy for Cancer Therapy. Front Cell Dev Biol 2021; 9:686453. [PMID: 34322483 PMCID: PMC8311597 DOI: 10.3389/fcell.2021.686453] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapy has become an attractive and advanced scientific research area in the context of cancer therapy. This interest is closely linked to the MSC-marked tropism for tumors, suggesting them as a rational and effective vehicle for drug delivery for both hematological and solid malignancies. Nonetheless, the therapeutic application of the MSCs in human tumors is still controversial because of the induction of several signaling pathways largely contributing to tumor progression and metastasis. In spite of some evidence supporting that MSCs may sustain cancer pathogenesis, increasing proofs have indicated the suppressive influences of MSCs on tumor cells. During the last years, a myriad of preclinical and some clinical studies have been carried out or are ongoing to address the safety and efficacy of the MSC-based delivery of therapeutic agents in diverse types of malignancies. A large number of studies have focused on the MSC application as delivery vehicles for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), chemotherapeutic drug such as gemcitabine (GCB), paclitaxel (PTX), and doxorubicin (DOX), prodrugs such as 5-fluorocytosine (5-FC) and ganciclovir (GCV), and immune cell-activating cytokines along with oncolytic virus. In the current review, we evaluate the latest findings rendering the potential of MSCs to be employed as potent gene/drug delivery vehicle for inducing tumor regression with a special focus on the in vivo reports performed during the last two decades.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
| | - Dmitry O. Bokov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- Adjunct Professor, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
13
|
Human Adipose-Derived Stem/Stromal Cells Promote Proliferation and Migration in Head and Neck Cancer Cells. Cancers (Basel) 2021; 13:cancers13112751. [PMID: 34206064 PMCID: PMC8199568 DOI: 10.3390/cancers13112751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Fat grafts obtained from a minimal invasive liposuction device contain multipotent stem cells termed adipose-derived stem/stromal cells (ASCs). ASCs can be used for their proposed wound healing relevant characteristics, including for tissue defects in cancer patients. For head and neck cancers, little is known about the effects of ASCs on tumor cells. Using supernatants of ASCs from five patients in different functional experiments, this study aimed to investigate how ASCs influence tumor growth, invasive properties, and neoangiogenesis. The data show that all mentioned characteristics are promoted by fat graft stem cells in vitro in head and neck cancer cell lines. Although clinical relevance of these in vitro findings is unclear, due to the lack of in vivo and clinical data, fat grafts should be used cautiously and complete removal of tumor should be ensured before augmentation in head and neck cancer patients is performed. Abstract Human adipose-derived stem/stromal cells (ASCs) are increasingly used as auto-transplants in regenerative medicine to restore tissue defects or induce wound healing, especially in cancer patients. The impact of ASCs on squamous cell carcinoma of the upper aerodigestive tract (UAT) including head and neck and esophageal squamous cell carcinoma (HNSCC and ESCC) is not yet fully understood. ASCs were cultured from subcutaneous, abdominal lipoaspirates of five patients, who received auto-transplants to the head and neck. Supernatants were tested for paracrine effects in functional in vitro assays of proliferation of HNSCC tumor cell line FaDu and ESCC cell line Kyse30, and their cell migration/invasion capacities in Boyden chambers, in addition to endothelial tube formation assay using human umbilical vein endothelial cells (HUVECs). All ASC-derived supernatants enhanced proliferation of FaDu cells, invasive migration, and tube formation by HUVECs, compared to controls. Of five patients’ lipoaspirates, ASC-derived supernatants of four patients increased proliferation and invasive migration in Kyse30 cells. The data suggests that ASCs can promote tumor cell proliferation, invasiveness, and neo-angiogenesis in these tumor cell lines of the UAT and HUVEC in a paracrine manner. Although clinical studies on the subject of oncological safety are still needed, these findings emphasize the importance of complete tumor removal before ASCs are used in the head and neck.
Collapse
|
14
|
Huang RY, Liu ZH, Weng WH, Chang CW. Magnetic nanocomplexes for gene delivery applications. J Mater Chem B 2021; 9:4267-4286. [PMID: 33942822 DOI: 10.1039/d0tb02713h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gene delivery is an indispensable technique for various biomedical applications such as gene therapy, stem cell engineering and gene editing. Recently, magnetic nanoparticles (MNPs) have received increasing attention for their use in promoting gene delivery efficiency. Under magnetic attraction, gene delivery efficiency using viral or nonviral gene carriers could be universally enhanced. Besides, magnetic nanoparticles could be utilized in magnetic resonance imaging or magnetic hyperthermia therapy, providing extra theranostic opportunities. In this review, recent research integrating MNPs with a viral or nonviral gene vector is summarized from both technical and application perspectives. Applications of MNPs in cutting-edge research technologies, such as biomimetic cell membrane nano-gene carriers, exosome-based gene delivery, cell-based drug delivery systems or CRISPR/Cas9 gene editing, are also discussed.
Collapse
Affiliation(s)
- Rih-Yang Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Taiwan.
| | - Wei-Han Weng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
15
|
Coccè V, Bonomi A, Cavicchini L, Sisto F, Giannì A, Farronato G, Alessandri G, Petrella F, Sordi V, Parati E, Bondiolotti G, Paino F, Pessina A. Paclitaxel Priming of TRAIL Expressing Mesenchymal Stromal Cells (MSCs-TRAIL) Increases Antitumor Efficacy of Their Secretome. Curr Cancer Drug Targets 2020; 21:CCDT-EPUB-111520. [PMID: 33200709 DOI: 10.2174/1568009620666201116112153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Adipose tissue derived MSCs engineered with the tumor necrosis factor-related apoptosis-inducing ligand protein (MSCs-TRAIL) have a significant anticancer activity. MSCs, without any genetic modifications, exposed to high doses of chemotherapeutic agents are able to uptake the drug and release it in amount affecting tumor proliferation. The purpose of this study was to verify the ability of MSCs-TRAIL to uptake and release paclitaxel (PTX) by providing an increased antitumor efficacy. METHODS MSCs and MSCs-TRAIL were tested for their sensitivity to Paclitaxel (PTX) by MTT assay and the cells were loaded with PTX according to a standardized procedure. The secretome was analysed by HPLC for the presence of PTX, microarray assay for soluble TRAIL (s-TRAIL) and tested for in vitro anticancer activity. RESULTS MSCs-TRAIL were resistant to PTX and able to incorporate and then release the drug. The secretion of s-TRAIL by PTX loaded MSCs-TRAIL was not inhibited and the PTX delivery together with s-TRAIL secretion resulted into an increased antitumor efficacy of cell secretoma as tested in vitro on human pancreatic carcinoma (CFPAC-1) and glioblastoma (U87-MG). CONCLUSIONS Our result is the first demonstration of the possible merging of two new MSCs therapy approaches based on genetic manipulation and drug delivery. If confirmed in vivo, this could potentiate the efficacy of MSCs-TRAIL and strongly contribute to reduce the toxicity due to the systemic treatment of PTX.
Collapse
Affiliation(s)
- Valentina Coccè
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Arianna Bonomi
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Loredana Cavicchini
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Francesca Sisto
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Aldo Giannì
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Giampietro Farronato
- Department of Biomedical, Surgical and Dental Sciences, Unit of Orthodontics and Paediatric Dentistry, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano. Italy
| | - Giulio Alessandri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan. Italy
| | - Francesco Petrella
- Department of Oncology and Hematology, University of Milan, Milan. Italy
| | - Valeria Sordi
- San Raffaele Diabetes Research Institute; San Raffaele Scientific Institute, Milan. Italy
| | - Eugenio Parati
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan. Italy
| | - Gianpietro Bondiolotti
- Department of Medical Biotechnology and Translational Medicine, University of Milan. Italy
| | - Francesca Paino
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Augusto Pessina
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| |
Collapse
|
16
|
Effect of Breast Cancer and Adjuvant Therapy on Adipose-Derived Stromal Cells: Implications for the Role of ADSCs in Regenerative Strategies for Breast Reconstruction. Stem Cell Rev Rep 2020; 17:523-538. [PMID: 32929604 DOI: 10.1007/s12015-020-10038-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Tissue engineering using Adipose Derived Stromal Cells (ADSCs) has emerged as a novel regenerative medicine approach to replace and reconstruct soft tissue damaged or lost as a result of disease process or therapeutic surgical resection. ADSCs are an attractive cell source for soft tissue regeneration due to the fact that they are easily accessible, multipotent, non-immunogenic and pro-angiogenic. ADSC based regenerative strategies have been successfully translated to the clinical setting for the treatment of Crohn's fistulae, musculoskeletal pathologies, wound healing, and cosmetic breast augmentation (fat grafting). ADSCs are particularly attractive as a source for adipose tissue engineering as they exhibit preferential differentiation to adipocytes and support maintenance of mature adipose graft volume. The potential for reconstruction with an autologous tissue sources and a natural appearance and texture is particularly appealing in the setting of breast cancer; up to 40% of patients require mastectomy for locoregional control and current approaches to post-mastectomy breast reconstruction (PMBR) are limited by the potential for complications at the donor and reconstruction sites. Despite their potential, the use of ADSCs in breast cancer patients is controversial due to concerns regarding oncological safety. These concerns relate to the regeneration of tissue at a site where a malignancy has been treated and the impact this may have on stimulating local disease recurrence or dissemination. Pre-clinical data suggest that ADSCs exhibit pro-oncogenic characteristics and are involved in stimulating progression, and growth of tumour cells. However, there have been conflicting reports on the oncologic outcome, in terms of locoregional recurrence, for breast cancer patients in whom ADSC enhanced fat grafting was utilised as an alternative to reconstruction for small volume defects. A further consideration which may impact the successful translation of ADSC based regenerative strategies for post cancer reconstruction is the potential effects of cancer therapy. This review aims to address the effect of malignant cells, adjuvant therapies and patient-specific factors that may influence the success of regenerative strategies using ADSCs for post cancer tissue regeneration.
Collapse
|
17
|
Wu X, Jia Y, Sun X, Wang J. Tissue engineering in female pelvic floor reconstruction. Eng Life Sci 2020; 20:275-286. [PMID: 32647506 PMCID: PMC7336160 DOI: 10.1002/elsc.202000003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/16/2022] Open
Abstract
Pelvic organ prolapse is a common and frequently occurring disease in middle-aged and elderly women. Mesh implantation is an ideal surgical treatment. The polypropylene mesh commonly used in clinical practice has good mechanical properties, but there are long-term complications. The application of tissue engineering technology in the treatment of pelvic organ prolapse disease can not only meet the mechanical requirements of pelvic floor support, but also be more biocompatible than traditional polypropylene mesh, and can promote tissue repair to a certain extent. In this paper, the progress of tissue engineering was summarized to understand the application of tissue engineering in the treatment of pelvic organ prolapse disease and will help in research.
Collapse
Affiliation(s)
- Xiaotong Wu
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| | - YuanYuan Jia
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| | - Xiuli Sun
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| | - Jianliu Wang
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| |
Collapse
|
18
|
Automated Large-Scale Production of Paclitaxel Loaded Mesenchymal Stromal Cells for Cell Therapy Applications. Pharmaceutics 2020; 12:pharmaceutics12050411. [PMID: 32365861 PMCID: PMC7284468 DOI: 10.3390/pharmaceutics12050411] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 01/20/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) prepared as advanced therapies medicinal products (ATMPs) have been widely used for the treatment of different diseases. The latest developments concern the possibility to use MSCs as carrier of molecules, including chemotherapeutic drugs. Taking advantage of their intrinsic homing feature, MSCs may improve drugs localization in the disease area. However, for cell therapy applications, a significant number of MSCs loaded with the drug is required. We here investigate the possibility to produce a large amount of Good Manufacturing Practice (GMP)-compliant MSCs loaded with the chemotherapeutic drug Paclitaxel (MSCs-PTX), using a closed bioreactor system. Cells were obtained starting from 13 adipose tissue lipoaspirates. All samples were characterized in terms of number/viability, morphology, growth kinetics, and immunophenotype. The ability of MSCs to internalize PTX as well as the antiproliferative activity of the MSCs-PTX in vitro was also assessed. The results demonstrate that our approach allows a large scale expansion of cells within a week; the MSCs-PTX, despite a different morphology from MSCs, displayed the typical features of MSCs in terms of viability, adhesion capacity, and phenotype. In addition, MSCs showed the ability to internalize PTX and finally to kill cancer cells, inhibiting the proliferation of tumor lines in vitro. In summary our results demonstrate for the first time that it is possible to obtain, in a short time, large amounts of MSCs loaded with PTX to be used in clinical trials for the treatment of patients with oncological diseases.
Collapse
|
19
|
Munteanu R, Onaciu A, Moldovan C, Zimta AA, Gulei D, Paradiso AV, Lazar V, Berindan-Neagoe I. Adipocyte-Based Cell Therapy in Oncology: The Role of Cancer-Associated Adipocytes and Their Reinterpretation as Delivery Platforms. Pharmaceutics 2020; 12:E402. [PMID: 32354024 PMCID: PMC7284545 DOI: 10.3390/pharmaceutics12050402] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated adipocytes have functional roles in tumor development through secreted adipocyte-derived factors and exosomes and also through metabolic symbiosis, where the malignant cells take up the lactate, fatty acids and glutamine produced by the neighboring adipocytes. Recent research has demonstrated the value of adipocytes as cell-based delivery platforms for drugs (or prodrugs), nucleic acids or loaded nanoparticles for cancer therapy. This strategy takes advantage of the biocompatibility of the delivery system, its ability to locate the tumor site and also the predisposition of cancer cells to come in functional contact with the adipocytes from the tumor microenvironment for metabolic sustenance. Also, their exosomal content can be used in the context of cancer stem cell reprogramming or as a delivery vehicle for different cargos, like non-coding nucleic acids. Moreover, the process of adipocytes isolation, processing and charging is quite straightforward, with minimal economical expenses. The present review comprehensively presents the role of adipocytes in cancer (in the context of obese and non-obese individuals), the main methods for isolation and characterization and also the current therapeutic applications of these cells as delivery platforms in the oncology sector.
Collapse
Affiliation(s)
- Raluca Munteanu
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Anca Onaciu
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Cristian Moldovan
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Angelo V. Paradiso
- Oncologia Sperimentale, Istituto Tumori G Paolo II, IRCCS, 70125 Bari, Italy
| | - Vladimir Lazar
- Worldwide Innovative Network for Personalized Cancer Therapy, 94800 Villejuif, France
| | - Ioana Berindan-Neagoe
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
20
|
Lenna S, Bellotti C, Duchi S, Martella E, Columbaro M, Dozza B, Ballestri M, Guerrini A, Sotgiu G, Frisoni T, Cevolani L, Varchi G, Ferrari M, Donati DM, Lucarelli E. Mesenchymal stromal cells mediated delivery of photoactive nanoparticles inhibits osteosarcoma growth in vitro and in a murine in vivo ectopic model. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:40. [PMID: 32087737 PMCID: PMC7036176 DOI: 10.1186/s13046-020-01548-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Background Osteosarcoma (OS) is an aggressive malignant neoplasm that still suffers from poor prognosis in the case of distal metastases or occurrence of multi-drug resistance. It is therefore crucial to find novel therapeutic options able to go beyond these limitations and improve patients’ survival. The objective of this study is to exploit the intrinsic properties of mesenchymal stromal cells (MSCs) to migrate and infiltrate the tumor stroma to specifically deliver therapeutic agents directly to cancer cells. In particular, we aimed to test the efficacy of the photoactivation of MSCs loaded with nanoparticles in vitro and in a murine in vivo ectopic osteosarcoma model. Methods AlPcS4@FNPs were produced by adding tetra-sulfonated aluminum phthalocyanine (AlPcS4) to an aqueous solution of positively charged poly-methyl methacrylate core-shell fluorescent nanoparticles (FNPs). The photodynamic therapy (PDT) effect is achieved by activation of the photosensitizer AlPcS4 in the near-infrared light with an LED source. Human MSCs were isolated from the bone marrow of five donors to account for inter-patients variability and used in this study after being evaluated for their clonogenicity, multipotency and immunophenotypic profile. MSC lines were then tested for the ability to internalize and retain the nanoparticles, along with their migratory properties in vitro. Photoactivation effect was evaluated both in a monolayer (2D) co-culture of AlPcS4@FNPs loaded MSCs with human OS cells (SaOS-2) and in tridimensional (3D) multicellular spheroids (AlPcS4@FNPs loaded MSCs with human OS cells, MG-63). Cell death was assessed by AnnexinV/PI and Live&Dead CalceinAM/EthD staining in 2D, while in the 3D co-culture, the cell killing effect was measured through ATP content, CalceinAM/EthD staining and TEM imaging. We also evaluated the effectiveness of AlPcS4@FNPs loaded MSCs as delivery systems and the ability of the photodynamic treatment to kill cancer cells in a subcutaneous mouse model of OS by bioluminescence imaging (BLI) and histology. Results MSCs internalized AlPcS4@FNPs without losing or altering their motility and viability in vitro. Photoactivation of AlPcS4@FNPs loaded MSCs induced high level of OS cells death in the 2D co-culture. Similarly, in the 3D co-culture (MSCs:OS ratios 1:1 or 1:3), a substantial decrease of both MSCs and OS cells viability was observed. Notably, when increasing the MSCs:OS ratio to 1:7, photoactivation still caused more than 40% cells death. When tested in an in vivo ectopic OS model, AlPcS4@FNPs loaded MSCs were able to decrease OS growth by 68% after two cycles of photoactivation. Conclusions Our findings demonstrate that MSCs can deliver functional photosensitizer-decorated nanoparticles in vitro and in vivo and inhibit OS tumor growth. MSCs may be an effective platform for the targeted delivery of therapeutic nanodrugs in a clinical scenario, alone or in combination with other osteosarcoma treatment modalities.
Collapse
Affiliation(s)
- Stefania Lenna
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.,Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Chiara Bellotti
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Serena Duchi
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Elisa Martella
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Marta Columbaro
- Laboratory of Musculoskeletal Cell Biology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
| | - Barbara Dozza
- Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via di Barbiano 1/10, 40123, Bologna, Italy
| | - Marco Ballestri
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Andrea Guerrini
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Giovanna Sotgiu
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Tommaso Frisoni
- Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via di Barbiano 1/10, 40123, Bologna, Italy.,3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Luca Cevolani
- 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129, Bologna, Italy
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA.,Present Address: Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Davide Maria Donati
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.,Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via di Barbiano 1/10, 40123, Bologna, Italy.,3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
| |
Collapse
|
21
|
Cancer Stem Cells: Powerful Targets to Improve Current Anticancer Therapeutics. Stem Cells Int 2019; 2019:9618065. [PMID: 31781251 PMCID: PMC6874936 DOI: 10.1155/2019/9618065] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
A frequent observation in several malignancies is the development of resistance to therapy that results in frequent tumor relapse and metastasis. Much of the tumor resistance phenotype comes from its heterogeneity that halts the ability of therapeutic agents to eliminate all cancer cells effectively. Tumor heterogeneity is, in part, controlled by cancer stem cells (CSC). CSC may be considered the reservoir of cancer cells as they exhibit properties of self-renewal and plasticity and the capability of reestablishing a heterogeneous tumor cell population. The endowed resistance mechanisms of CSC are mainly attributed to several factors including cellular quiescence, accumulation of ABC transporters, disruption of apoptosis, epigenetic reprogramming, and metabolism. There is a current need to develop new therapeutic drugs capable of targeting CSC to overcome tumor resistance. Emerging in vitro and in vivo studies strongly support the potential benefits of combination therapies capable of targeting cancer stem cell-targeting agents. Clinical trials are still underway to address the pharmacokinetics, safety, and efficacy of combination treatment. This review will address the main characteristics, therapeutic implications, and perspectives of targeting CSC to improve current anticancer therapeutics.
Collapse
|
22
|
Comparative study on protective effect of hydrogen rich saline and adipose-derived stem cells on hepatic ischemia-reperfusion and hepatectomy injury in swine. Biomed Pharmacother 2019; 120:109453. [PMID: 31561069 DOI: 10.1016/j.biopha.2019.109453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/25/2023] Open
Abstract
AIM To compare and evaluate the hepatoprotective effect of liver parenchyma injection of ADSCs and portal vein injection of HRS in laparoscopic hepatic ischemia reperfusion combined with hepatectomy injury in miniature pigs. METHODS Eighteen miniature pigs were randomly assigned to IRI group, HRS group and ADSCs group. HRS was injected through the portal vein 10 min before reperfusion, 1 d, 2 d, and 3 d after surgery. ADSCs were injected into liver parenchyma after hepatectomy. The serum and liver tissue samples were collected at different time points (preoperative, and postoperative at 1 d, 3 d and 7 d). RESULTS Compared with the IRI group, both ADSCs and HRS groups can promote liver function recovery, reduce oxidative stress, reduce inflammation, and promote liver regeneration. Compared with HRS, ALT and TBIL in ADSCs group were significantly decreased at 3 d, and AST was significantly reduced at 1 d. The activities of SOD and GSH-Px in ADSCs group were significantly higher than that in HRS group, but the MDA level in HRS group was markedly lower than that in ADSCs group at 1 d. IL-1β was significantly lower in the ADSCs group than in the HRS group at 1 day after operation. The expressions of HGF and PCNA were significantly higher than that in the HRS group at 3 day after surgery. CONCLUSION Our study has demonstrated that HRS and ADSCs have significant hepatoprotective effects in miniature pigs after HIRI and hepatectomy injury. However, liver parenchyma injection of ADSCs is more beneficial to the recovery of liver function than portal vein injection of HRS.
Collapse
|
23
|
Maguire G. The Safe and Efficacious Use of Secretome From Fibroblasts and Adipose-derived (but not Bone Marrow-derived) Mesenchymal Stem Cells for Skin Therapeutics. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2019; 12:E57-E69. [PMID: 31531174 PMCID: PMC6715117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stem cell-based products are rapidly emerging in the marketplace as topical skin care and wound care products. Confusion is prevalent among healthcare providers and end-users about these products. Adipose-derived stem cells, fibroblasts, platelets, and bone marrow-derived stem cells are the most common cells used for stem cell therapeutic development, medical procedures, and skin care products. In this review, the significant advantages of adipose-derived stem cells and fibroblasts in terms of safety and efficacy are highlighted and compared to relatively risky platelets and bone marrow stem cells.
Collapse
Affiliation(s)
- Greg Maguire
- Dr. Maguire is with NeoGenesis, Inc. in San Diego, California
| |
Collapse
|
24
|
Cleversey C, Robinson M, Willerth SM. 3D Printing Breast Tissue Models: A Review of Past Work and Directions for Future Work. MICROMACHINES 2019; 10:E501. [PMID: 31357657 PMCID: PMC6723606 DOI: 10.3390/mi10080501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer often results in the removal of the breast, creating a need for replacement tissue. Tissue engineering offers the promise of generating such replacements by combining cells with biomaterial scaffolds and serves as an attractive potential alternative to current surgical repair methods. Such engineered tissues can also serve as important tools for drug screening and provide in vitro models for analysis. 3D bioprinting serves as an exciting technology with significant implications and applications in the field of tissue engineering. Here we review the work that has been undertaken in hopes of generating the recognized in-demand replacement breast tissue using different types of bioprinting. We then offer suggestions for future work needed to advance this field for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Chantell Cleversey
- Doctor of Medicine (MD), Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Meghan Robinson
- Department of Urological Sciences, Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Mechanical Engineering and Division of Medical Science, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Stephanie M Willerth
- Department of Urological Sciences, Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada.
- Department of Mechanical Engineering and Division of Medical Science, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| |
Collapse
|
25
|
Scioli MG, Storti G, D'Amico F, Gentile P, Fabbri G, Cervelli V, Orlandi A. The Role of Breast Cancer Stem Cells as a Prognostic Marker and a Target to Improve the Efficacy of Breast Cancer Therapy. Cancers (Basel) 2019; 11:1021. [PMID: 31330794 PMCID: PMC6678191 DOI: 10.3390/cancers11071021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common form of tumor in women and the leading cause of cancer-related mortality. Even though the major cellular burden in breast cancer is constituted by the so-called bulk tumor cells, another cell subpopulation named cancer stem cells (CSCs) has been identified. The latter have stem features, a self-renewal capacity, and the ability to regenerate the bulk tumor cells. CSCs have been described in several cancer types but breast cancer stem cells (BCSCs) were among the first to be identified and characterized. Therefore, many efforts have been put into the phenotypic characterization of BCSCs and the study of their potential as prognostic indicators and therapeutic targets. Many dysregulated pathways in BCSCs are involved in the epithelial-mesenchymal transition (EMT) and are found up-regulated in circulating tumor cells (CTCs), another important cancer cell subpopulation, that shed into the vasculature and disseminate along the body to give metastases. Conventional therapies fail at eliminating BCSCs because of their quiescent state that gives them therapy resistance. Based on this evidence, preclinical studies and clinical trials have tried to establish novel therapeutic regimens aiming to eradicate BCSCs. Markers useful for BCSC identification could also be possible therapeutic methods against BCSCs. New approaches in drug delivery combined with gene targeting, immunomodulatory, and cell-based therapies could be promising tools for developing effective CSC-targeted drugs against breast cancer.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Federico D'Amico
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Pietro Gentile
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Giulia Fabbri
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Augusto Orlandi
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy.
| |
Collapse
|
26
|
Scioli MG, Storti G, D'Amico F, Gentile P, Kim BS, Cervelli V, Orlandi A. Adipose-Derived Stem Cells in Cancer Progression: New Perspectives and Opportunities. Int J Mol Sci 2019; 20:3296. [PMID: 31277510 PMCID: PMC6651808 DOI: 10.3390/ijms20133296] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Growing importance has been attributed to interactions between tumors, the stromal microenvironment and adult mesenchymal stem cells. Adipose-derived stem cells (ASCs) are routinely employed in regenerative medicine and in autologous fat transfer procedures. To date, clinical trials have failed to demonstrate the potential pro-oncogenic role of ASC enrichment. Nevertheless, some pre-clinical studies from in vitro and in vivo models have suggested that ASCs act as a potential tumor promoter for different cancer cell types, and support tumor progression and invasiveness through the activation of several intracellular signals. Interaction with the tumor microenvironment and extracellular matrix remodeling, the exosomal release of pro-oncogenic factors as well as the induction of epithelial-mesenchymal transitions are the most investigated mechanisms. Moreover, ASCs have also demonstrated an elective tumor homing capacity and this tumor-targeting capacity makes them a suitable carrier for anti-cancer drug delivery. New genetic and applied nanotechnologies may help to design promising anti-cancer cell-based approaches through the release of loaded intracellular nanoparticles. These new anti-cancer therapies can more effectively target tumor cells, reaching higher local concentrations even in pharmacological sanctuaries, and thus minimizing systemic adverse drug effects. The potential interplay between ASCs and tumors and potential ASCs-based therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Federico D'Amico
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Pietro Gentile
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Bong-Sung Kim
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
| |
Collapse
|
27
|
Yamazaki T, Kishimoto T, Leszczyński P, Sadakane K, Kenmotsu T, Watanabe H, Kazama T, Matsumoto T, Yoshikawa K, Taniguchi H. Construction of 3D Cellular Composites with Stem Cells Derived from Adipose Tissue and Endothelial Cells by Use of Optical Tweezers in a Natural Polymer Solution. MATERIALS 2019; 12:ma12111759. [PMID: 31151204 PMCID: PMC6601048 DOI: 10.3390/ma12111759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
Abstract
To better understand the regulation and function of cellular interactions, three-dimensional (3D) assemblies of single cells and subsequent functional analysis are gaining popularity in many research fields. While we have developed strategies to build stable cellular structures using optical tweezers in a minimally invasive state, methods for manipulating a wide range of cell types have yet to be established. To mimic organ-like structures, the construction of 3D cellular assemblies with variety of cell types is essential. Our recent studies have shown that the presence of nonspecific soluble polymers in aqueous solution is the key to creating stable 3D cellular assemblies efficiently. The present study further expands on the construction of 3D single cell assemblies using two different cell types. We have successfully generated 3D cellular assemblies, using GFP-labeled adipose tissue-derived stem cells and endothelial cells by using optical tweezers. Our findings will support the development of future applications to further characterize cellular interactions in tissue regeneration.
Collapse
Affiliation(s)
- Takehiro Yamazaki
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan.
| | - Toshifumi Kishimoto
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan.
| | - Paweł Leszczyński
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland.
| | - Koichiro Sadakane
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan.
| | - Takahiro Kenmotsu
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan.
| | - Hirofumi Watanabe
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Tomohiko Kazama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan.
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland.
| |
Collapse
|
28
|
Alessandri G, Coccè V, Pastorino F, Paroni R, Dei Cas M, Restelli F, Pollo B, Gatti L, Tremolada C, Berenzi A, Parati E, Brini AT, Bondiolotti G, Ponzoni M, Pessina A. Microfragmented human fat tissue is a natural scaffold for drug delivery: Potential application in cancer chemotherapy. J Control Release 2019; 302:2-18. [DOI: 10.1016/j.jconrel.2019.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/10/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
|
29
|
Trivisonno A, Cohen SR, Magalon G, Magalon J, Sterodimas A, Pascali M, Cervelli V, Toietta G, Colaprietra A, Calcagni F, Orlandi A, Scioli MG, Gentile P. Fluid Cartilage as New Autologous Biomaterial in the Treatment of Minor Nose Defects: Clinical and Microscopic Difference Amongst Diced, Crushed, and Fluid Cartilage. MATERIALS (BASEL, SWITZERLAND) 2019; 12:1062. [PMID: 30935163 PMCID: PMC6479609 DOI: 10.3390/ma12071062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022]
Abstract
Developing cartilage constructs with injectability, appropriate matrix composition, and persistent cartilaginous phenotype remains an enduring challenge in cartilage repair. Fourteen patients with minor contour deformity were treated with fluid cartilage filler gently injected as autologous fluid graft in deep planes of defect of the nose that were close to the bone or the cartilage. A computerized tomographic scan control was performed after 12 months. Pearson's Chi-square test was used to investigate differences in cartilage density between native and newly formed cartilages. The endpoints were the possibility of using fluid cartilage as filler with aesthetic and functional improvement and versatility. Patients were followed up for two years. The constructs of fluid cartilage graft that were injected in the deep plane resulted in a persistent cartilage tissue with appropriate morphology, adequate central nutritional perfusion without central necrosis or ossification, and further augmented nasal dorsum without obvious contraction and deformation. This report demonstrated that fluid cartilage grafts are useful for cartilage regeneration in patients with outcomes of rhinoplasty, internal nasal valve collapse, and minor congenital nose aesthetics deformity.
Collapse
Affiliation(s)
- Angelo Trivisonno
- Department of Surgical Science University of Rome "La Sapienza", Rome 00161, Italy.
| | - Steven R Cohen
- FACES+ Plastic Surgery, Skin and Laser Center, La Jolla CA 92121, USA and Division of Plastic Surgery, University of California San Diego, San Diego, CA 92121, USA.
| | - Guy Magalon
- Cell Therapy Laboratory, CBT-1409, INSERM, Assistance Publique Hôpitaux de Marseille, Marseille 13005, France.
| | - Jèrèmy Magalon
- Plastic Surgery Department, Assistance Publique Hôpitaux de Marseille (APHM), Aix Marseille University, Marseille 13005, France.
| | - Aris Sterodimas
- Department of Plastic Surgery, IASO General Hospital, Athens 15562, Greece.
| | - Michele Pascali
- Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Valerio Cervelli
- Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute, Rome 00144, Italy.
| | - Alfredo Colaprietra
- Department of Plastic Surgery, Campus Bio-Medico University of Rome, Rome 00128, Italy.
| | - Filippo Calcagni
- Department of Plastic Surgery Catholic University of the Sacred Heart, Rome 00168, Italy.
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome 00133, Italy.
| | - Maria Giovanni Scioli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome 00133, Italy.
| | - Pietro Gentile
- Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata, Rome 00133, Italy.
| |
Collapse
|